След, детерминант и собственные числа ядерных операторов

О.И. Рейнов

Аннотация. Показывается, как новые результаты в теории детерминантов и следов, а также в теории квазинормированных тензорных произведений могут быть применены для получения новых теорем о распределении собственных чисел ядерных операторов в банаховых пространствах и о совпадении спектральных и ядерных следов таких операторов. В качестве примеров рассматриваются новые классы операторов — обобщенные ядерные операторы Лоренца-Лапресте $N_{(r,s),p}$.

Содержание

1.	Введение	1
2.	Предварительные сведения	
3.	Основные определения и факты	4
4.	Детерминант и след	14
5.	Спектральный тип и формула следа	16
6.	Примеры применения	18
Список литературы		23

1. Введение

В 1950-х В. Б. Лидский [2] и А. Гротендик [5] независимо получили знаменитые формулы следа для некоторых классов ядерных операторов (В. Б. Лидский — в гильбертовых пространствах H, А. Гротендик — в общих банаховых пространствах X): ядерный след соответствующего оператора равен его спектральному следу. Напомним, что к классу ядерных операторов в X

AMS Subject Classification 2010: 47B10, 47A75.

Key words: ядерный оператор, след, детерминант, собственное число, квазинорма, тензорное произведение.

принадлежат операторы $T: X \to X$, которые допускают представления вида

$$T(x) = \sum_{k=1}^{\infty} \lambda_k x_k'(x) x_k$$
 для $x \in X$,

гле числа λ_k , функционалы $x_k' \in X^*$ и элементы $x \in X$ удовлетворяют некоторым условиям суммируемости (при этом $\sum |\lambda_k| < \infty$).

Напомним только некоторую информацию из конечномерной теории.

Для всякого конечномерного оператора

$$T: X \to X, \ Tx = \sum_{k=1}^{N} x_k' \otimes x_k$$

ядерный след trace $T:=\sum_{k=1}^N x_k'(x_k)$ вполне определен и не зависит от представления T. Также вполне определен детерминант оператора 1-T :

$$det(1-T) = \prod_{j} (1-\mu_j),$$

где (μ_j) — полный набор собственных чисел оператора T. В этом случае, естественно, имеем формулу следа

trace
$$T = \sum_{j} \mu_{j}$$
.

Для получения формулы в случае ядерных операторов надо научиться продолжать функционалы "след"и "детерминант"с множества конечномерных операторов на соответствующие пространства ядерных операторов. Такое продолжение, в частности, — цель работы.

Доказательства основных теорем о спектральных свойствах ядерных операторов основано как раз на возможности этих продолжений.

2. Предварительные сведения

Вся терминология и факты (в настоящее время, классические), приводимые здесь без каких-либо объяснений, могут быть найдены в [4, 5, 13, 14].

Пусть X, Y — банаховы пространства. Для банахова сопряженного к X, мы используем обозначение X^* . Если $x \in X$ и $x' \in X^*$, то мы используем обозначение $\langle x', x \rangle$ для x'(x).

Обозначим через $X^* \widehat{\otimes} Y$ пополнение тензорного произведения $X^* \otimes Y$ (рассматриваемого как линейное пространство всех конечномерных операторов из X в Y) по норме

$$||w|| := \inf \left\{ \left(\sum_{k=1}^{N} ||x_k'|| \, ||y_k|| \right) : \ w = \sum_{k=1}^{N} x_k' \otimes y_k \right\}$$

см., например, [5, 14]). Для X = Y, естественные непрерывный линейный функционал "trace" на $X^* \otimes X$ имеет единственное непрерывное продолжение сна пространство $X^* \widehat{\otimes} X$, которое мы также будем обозначать "trace".

Положим N(X,Y):= образ тензорного произведения $X^*\widehat{\otimes} Y$ в пространстве L(X,Y) всех ограниченных линейных отображений при каноническом фактор отображении $X^*\widehat{\otimes} Y\to N(X,Y)\subset L(X,Y)$. Мы рассматриваем (гротендиковское) пространство N(X,Y) всех ядерных операторов из X в Y с естественной нормой, индуцированной из $X^*\widehat{\otimes} Y$. Для тензорного элемента $u\in X^*\widehat{\otimes} Y$, мы обозначаем через \widetilde{u} соответствующий ядерный оператор из X в Y. Иногда норму проективного тензорного произведения обозначают через π , а инъективную норму (т. е. норму, индуцированную обычной операторной нормой — через ε). Поэтому, например, $X^*\widehat{\otimes}_{\pi}Y=X^*\widehat{\otimes} Y$ и $X^*\widehat{\otimes}_{\varepsilon} Y$ — замыкание множества конечномерных операторов в L(X,Y).

Примеры ядерных операторов (о квазинормах см. информацию ниже). Напомним их общий вид:

$$T(x) = \sum_{k=1}^{\infty} \lambda_k x_k'(x) x_k$$
 для $x \in X$,

Например, если $0 < s \le 1$, $\sum |\lambda_k|^s < \infty$ и $\{x_k'\}, \{x_k\}$ ограничены, то $T \in N_s(X)$ (s-ядерный оператор с естественной квазинормой).

Более общо, если $(\lambda_k) \in l_{s,u}, 0 < u \leq 1$ (пространство Лоренца), то $T \in N_{s,u}(X)$ $(l_{s,u}$ -ядерный оператор с естественной квазинормой).

Если $0 < r \le 1, 1 \le p \le 2$, $(\lambda_k) \in l_r$, т. е. $\sum |\lambda_k|^r < \infty$, $\{x_k'\}$ ограничена и $(x_k) \in l_{p'}^w(X)$ (см. ниже), т. е. для всякого $x' \in X^*$ ряд $\sum |x'(x_k)|^{p'}$ сходится, то $T \in N_{r,p}(X)$ ((r,p)-ядерный с естественной квазинормой).

Ядерный след оператора T определяется как сумма ряда:

trace
$$T := \sum \lambda_k x_k'(x_k)$$
,

 $cne \kappa m p a n b h u u c n e d$ оператора T — как сумма $\sum \mu_n$, где $\{\mu_n\}$ — последовательность всех собственных чисел T.

Ядерный след определен не для каждого ядерного оператора. В условиях теоремы Лидского он определен всегда, а в условиях теоремы Гротендика — для случая, когда $\sum |\lambda_k|^{2/3} < \infty$.

Напомним общий вид проективного тензорного элемента:

$$z = \sum_{k=1}^{\infty} \lambda_k y_k' \otimes x_k \in Y^* \widehat{\otimes} X$$

Сопряженное к $Y^*\widehat{\otimes} X$ пространство есть $L(X,Y^{**})$. Двойственность задается следом.

Рассмотрим функционал $\widetilde{T}\in (Y^*\widehat{\otimes} X)^*$, определяемый оператором $T\in L(X,Y^{**}).$ Имеем:

$$\langle \widetilde{T}, z \rangle := \operatorname{trace} T \circ z = \sum_{k=1}^{\infty} \lambda_k T x_k(y'_k)$$

для $z = \sum_{k=1}^{\infty} \lambda_k y_k' \otimes x_k \in Y^* \widehat{\otimes} X$.

Для $q\in(0,+\infty]$, мы обозначаем через $l_q^w(X)$ пространство всех слабо q-суммируемых последовательностей $(x_i)\subset X$ см., например, $[{\bf 13,\ 14}])$ с квазинормой

$$\varepsilon_q((x_i)) := \sup \left\{ \left(\sum_i |\langle x', x_i \rangle|^q \right)^{1/q} : \ x' \in X^*, \ ||x'|| \le 1 \right\}$$

(в случае, когда $q = \infty$, мы предполагаем, что (x_i) — просто ограниченная, т. е. $\varepsilon_{\infty}((x_i)) = \sup_i ||x_i||$).

Пространство Лоренца $l_{p,q}$ $(0 состоит из последовательностей <math>\alpha := (\alpha_n) \in c_0$, для которых

$$||\alpha||_{p,q}:=\left(\sum_{n\in\mathbb{N}}lpha_n^{*q}n^{q/p-1}
ight)^{1/q}<+\infty$$
 при $q<\infty$ и $||\alpha||_{p\infty}:=\sup_{n\in\mathbb{N}}lpha_n^*n^{1/p}<+\infty,$

где (α_n^*) есть неубывающая перестановка последовательности α , n-й элемент α_n^* которой определяется так:

$$\alpha_n^* := \inf_{|J| < n} \sup_{j \notin J} |\alpha_j|.$$

С указанными квазинормами пространства $l_{p,q}$ являются полными квазинормированными пространствами. При $p=q<\infty$ получаем пространства l_p .

Еще несколько стандартных обозначений: $l_p(X)$ — пространство абсолютно суммируемых последовательностей из X, L(X) := L(X,X), Π_p — идеалы абсолютно p-суммирующих операторов, N_s (для $s \in (0,1]$) — квазинормированный идеал s-ядерных операторов (см. ниже более общее определения операторов из квазинормированного идеала $N_{r,p}$). Норма в банаховом пространстве X обозначается обычно просто $||\cdot||$, но если необходимо подчеркнуть, в каком пространстве берется норма, то мы пишем $||\cdot||_X$. Для последовательностей элементов некоторого множества используются обозначения типа: $(x_k), (x_k)_k, (x_k)_{k=1} \infty, \{x_k\}$ и т.д.

Понятие детерминанта (Фредгольма) появится в своем месте. Отметим только, что для элемента $u \in X^* \widehat{\otimes} X$ его детерминант Фредгольма есть целая функция

$$\det(1-zu) = 1 - \operatorname{trace} uz + \dots$$

с нулями, равными $1/\mu_k(\tilde{u})$, — обратным к ненулевым собственным значениям (каждое взятое с учетом кратности) оператора \tilde{u} (см. [5]).

3. Основные определения и факты

3.1. Квазинормы и операторные идеалы. Наше определение квазинормы несколько нестандартно. Пусть α — функция на некотором векторном пространстве $E, \alpha : E \to \widehat{\mathbb{R}}$. Мы говорим, что α есть *квазинорма* на E, если 1) $\alpha(E) \subset [0, +\infty]$ и $\alpha(x) = 0$ влечет x = 0; 2) существует такая постоянная C > 0 что $\alpha(x + y) \leq C \left[\alpha(x) + \alpha(y)\right]$ для $x, y \in E; 3$) $\alpha(ax) = |a| \alpha(x)$ for $a \in \mathbb{K}, x \in E$.

Определение 3.1. Пусть дана пара (E, α) , где α есть квазинорма на векторном пространстве E, (i) квазинормированным пространством, ассоциированным с парой (E, α) называется, квазинормированное векторное пространство

$$E_{\alpha} := \{ x \in E : \ \alpha(x) < \infty \} .$$

(ii) квазинормированным пространство E_{α} полно (= квази-банахово пространство), если каждая последовательность Коши в E_{α} α -сходится к некоторому элементу из E_{α} .

Отметим, что E_{α} является квазинормированным пространством в смысле книги [10, р. 159] мы можем рассматривать соответствующую топологию (см. [10, р. 159-160], [3, р. 445]).

Замечание 3.1. 1) Вполне может быть, что выполняется равенство $E_{\alpha}=E.$

2) Хорошо известно [3, р. 445], что если E_{α} — квазинормированное пространство, то существует число $\beta \in (0,1]$ и β -норма $||\cdot||$ на E_{α} , эквивалентная квазинорме α . Напомним, что β -норма на векторном пространстве F это квазинорма $||\cdot||: F \to \mathbb{R}$, для которой при всех $x, y \in F$ выполняется следующее β -неравенство треугольника: $||x+y||^{\beta} \le ||x||^{\beta} + ||y||^{\beta}$.

Напомним, что операторный идеал $\mathbb{A} := (A(X,Y):X,Y-$ банаховы пространства) есть подкласс класса всех линейных ограниченных операторов, компоненты $A(X,Y) \subset L(X,Y)$ которого удовлетворяют следующим условиям:

- (O_i) $1_K \in \mathbb{A}$, где K обозначает одномерное банахово пространство;
- (O_{ii}) Если $U,V \in A(X,Y)$, то $a_1U + a_2V \in A(X,Y)$ для всех скалярных $a_1,a_2.$

$$(O_{iii})$$
Ёсли $S\in L(Z,X),\,U\in A(X,Y)$ и $T\in L(Y,W),\,$ то $TUS\in A(Z,W.)$

Операторный идеал \mathbb{A} называется квазинормированным, если на нем определен класс a квазинорм которые (обозначим их снова a) на компонентах являются квазинормами. обладающими свойством

- $(O_{iv}) \ a(1_K)=1$
- (O_v) Если $S \in L(Z,X), U \in A(X,Y)$ и $T \in L(Y,W)$, то $a(TUS) \leq ||T|| a(U) ||S||$.
- 3.2. Проективные квазинормы и свойства аппроксимации. Теперь, пусть α квазинорма на проективном тензорном произведении $X \widehat{\otimes} Y$ такая, что $\alpha(x \otimes y) = ||x|| \, ||y||$ for $x \in X, y \in Y$. Ассоциированное квазинормированное тензорное произведение (которое мы будем обозначать через $X \widehat{\otimes}_{\alpha} Y$ и называть " α -проективным тензорным произведением") есть α -замыкание алгебраического тензорного произведения $X \otimes Y$ в $(X \widehat{\otimes} Y)_{\alpha}$ (в конкретных случаях мы будем использовать некоторые специфические обозначения). Таким образом,

$$X \widehat{\otimes}_{\alpha} Y := \left\{ u \in X \widehat{\otimes} Y : \ \alpha(u) < \infty \ \text{ and } \ \exists (u_n) \subset X \otimes Y : \ \alpha(u - u_n) \underset{n \to \infty}{\longrightarrow} 0 \right\}.$$

Более общо:

ОПРЕДЕЛЕНИЕ 3.2. (i) Пусть $\widehat{\otimes}$ обозначает класс всех тензорных элементов проективных тензорных произведений произвольных банаховых пространств. Проективная тензорная квазинорма α есть отображение из $\widehat{\otimes}$ в $\widehat{\mathbb{R}}$ такое, что α является квазинормой на каждой компоненте $X\widehat{\otimes}Y$, обладающей свойствами:

- (Q_1) $\alpha(x \otimes y) = ||x|| ||y||$ θ as $x \in X, y \in Y$.
- (Q_2) Существует такая постоянная C > 0, что $\alpha(u_1 + u_2) \leq C [\alpha(u_1) + \alpha(u_2)]$ для всех X, Y и $u_1, u_2 \in X \widehat{\otimes} Y$.
- (Q_3) Ecau If $u \in X \widehat{\otimes} Y$, $A \in L(X,E)$ $u B \in L(Y,F)$, mo $\alpha(A \otimes B(u)) \leq ||A|| \alpha(u) ||B||$.
 - (Q_4) Для всех X,Y тензорное произведение $X\otimes Y$ плотно в $X\widehat{\otimes}_{\alpha}Y$.
- (ii) Проективная тензорная норма α называется полной, если каждое α -проективное тензорное произведение $X \widehat{\otimes}_{\alpha} Y$ является полным, то ксть квазибанаховым.

Для каждой проективной тензорной квазинормы α существует $\beta \in (0,1]$ и эквивалентная β -норма $||\cdot||_{\beta}$ на $\widehat{\otimes}$ такие, что $X\widehat{\otimes}_{\alpha}Y = X\widehat{\otimes}_{||\cdot||_{\beta}}Y$ (т. е., существует квазинорма $||\cdot||_{\beta}$ с β -неравенством треугольника такая, что для некоторых положительных постоянных C_1, C_2 и для всех проективных тензорных элементов u выполняются неравенства $C_1\alpha(u) \leq ||u||_{\beta} \leq C_2\alpha(u)$). Таким образом, мы можем предполагать, если нужно, что а priori α есть β -норма.

Мы не будем рассматривать детально свойства введенных объектов здесь. Однако, нам понадобится ниже тот факт, что отображение включения $X \widehat{\otimes}_{\alpha} Y \hookrightarrow X \widehat{\otimes} Y$ непрерывно для всех банаховых пространств X, Y (в основных примерах 3.1 ниже это будет автоматически выполнено). Доказательство можно найти в работе автора [18, Proposition 4.1].

Так как $X \widehat{\otimes}_{\alpha} Y$ есть линейное подпространтво в $X \widehat{\otimes} Y$, то пространство $L(Y, X^*)$ разделяет точки $X \widehat{\otimes}_{\alpha} Y$. Если $u \in X \widehat{\otimes}_{\alpha} Y$, то u = 0 тогда и только тогда, когда trace $U \circ u = 0$ для каждого $U \in L(Y, X^*)$. В частности, сопряженное пространство к $(X \widehat{\otimes}_{\alpha} Y)^*$ разделяет точки $X \widehat{\otimes}_{\alpha} Y$.

Ясно, что каждый тензорный элемент $u \in X \widehat{\otimes}_{\alpha} Y$ порождает ядерный оператор $\widetilde{u}: X^* \to Y$. Если X является сопряженным пространством, скажем E^* , то мы получаем каноническое отображение $j_{\alpha}: E^* \widehat{\otimes}_{\alpha} Y \to L(E,Y)$. Образ отображения j_{α} обозначается нами через $N_{\alpha}(E,Y)$, и снабжается " α -ядерной "квазинормой $\nu_{\alpha}:$ это квазинорма, индуцированная из $E^* \widehat{\otimes}_{\alpha} Y$ фактор-отображением $E^* \widehat{\otimes}_{\alpha} Y \to N_{\alpha}(E,Y)$. Если проективная тензорная квазинорма α полна, то $N_{\alpha}(E,Y)$ является квази-банаховым пространством, а N_{α} — квази-банахов операторный идеал.

ОПРЕДЕЛЕНИЕ 3.3. Пусть α — полная проективная тензорная квазинорма . Говорят, что банахово пространство X обладает свойством аппроксимации AP_{α} , если для любого банахова пространства E каноническое отображение $E^* \widehat{\otimes}_{\alpha} X \to N_{\alpha}(E,X)$ взаимно-однозначно (другими словами, если if $E^* \widehat{\otimes}_{\alpha} X = N_{\alpha}(E,X)$).

Заметим, что если $\alpha = ||\cdot||_{\wedge}$, то мы получаем классическое свойство аппроксимации AP А. Гротендика [5]. Должно быть понятно, что AP влечет the AP_{α} для любой проективной тензорной квазинормы.

Ниже нам понадобится следующая лемма.

ЛЕММА 3.1. Банахово пространство X имеет свойство AP_{α} тогда и только тогда, когда каноническое отображение $X^*\widehat{\otimes}_{\alpha}X \to L(X)$ взаимно-однозначно.

ДОКАЗАТЕЛЬСТВО. Достаточно повторить (слово в слово с теми же обозначениями) доказательство предложения 6.1 из [18].

ПРИМЕР 3.1. Пусть $0 < r, s \le 1, \ 0 < p, q \le \infty \ u \ 1/r + 1/p + 1/q = 1/\beta \ge 1.$ Определим тензорное произведение $X \widehat{\otimes}_{r,p,q} Y$ как линейное подпространство проективного тензорного произведения $X \widehat{\otimes} Y$, состоящее из всех тензорных элементов z, которые допускают представления вида

$$z = \sum_{k=1}^{\infty} \alpha_k x_k \otimes y_k, \ (\alpha_k) \in l_r, \ (x_k) \in l_{w,p}(X), \ (y_k) \in l_{w,q}(Y);$$

мы снабжаем его квазинормой $||z||_{r,p,q} := \inf ||(\alpha_k)||_r ||(x_k)||_{w,p} ||(y_k)||_{w,q}$, где инфимум берется по всем представлениям z в указанной выше форме. Отметим, что это тензорное произведение β -нормировано (cf. [11], где рассмотрена версия рассматриваемого тензорного произведения как пополнение алгебраического тензорного произведения по соответствующей "конечной"||·||_{r,p,q}-квазинорме). Оно квази-банахово (о его полноте см. препринт автора "Approximation properties associated with quasi-normed operator ideals of (r,p,q)-nuclear operators"\frac{1}{2}). Соответствующий квазинормированный операторный идеал $N_{r,p,q}$ есть квази-банахов идеал (r,p,q)-ядерных операторов (cf. [13, 11]). В частных случаях, когда один или двое из показателей p,q равны ∞ , мы используем обозначения, близкие к аналогичным обозначениям из [16, 18] (но здесь мы поменяли p',q' на p,q): Мы обозначаем $N_{r,\infty,\infty}$ через $\widehat{\otimes}_{[r,q]}$, $\widehat{\otimes}_{r,p,\infty,}$ через $\widehat{\otimes}_{[r,p]}$.

Соответствующие обозначения используем также для свойств $AP_{r,p,q}$:

- (i) Для $p = q = \infty$, мы получаем AP_r из [18].
- (ii) Для $p = \infty$, получаем $AP_{[r,q]}$ из [16, 18].
- (iii) Для $q=\infty$, получаем $AP^{[r,p]}$ из [16, 18].

Нам понадобятся некоторые факты о свойствах аппроксимации из примера 3.1. Соберем их в следующей лемме.

- ЛЕММА 3.2. 1) [17, Corollary 10] Пусть $s \in (0,1]$, $p \in [1,\infty]$ и 1/s = 1 + |1/p 1/2|. Если банахово пространство изоморфно подпространству фактор-пространства (или фактор-пространству подпространства) некоторого L_p -пространства, то оно имеет свойство AP_s .
- 2) [16, Corollary 4.1], [18, Theorem 7.1] Пусть 1/r 1/p = 1/2. Каждое банахово пространство обладает свойствами $AP_{[r,p']}$ и $AP^{[r,p']}$.

¹http://www.mathsoc.spb.ru/preprint/2017/index.html#08

Доказательство утверждения 2) может быть найдено ниже (см. пример3.3). См. также [18] для других результатов в этом направлении.

ЗАМЕЧАНИЕ 3.2. По-существу, доказательства того, что каждое банахово пространство имеет свойство $AP^{[1,2]}$ явно содержится в [13]. Там получено, что это утверждение (после применения некоторых фактов из комплексного анализа) влечет формулы типа формул Гротендика-Лидского для операторов из $N^{[1,2]}$ [13, 27.4.11] (и это влечет формулу Лидского для trace-класса операторов в гильбертовых пространствах и также формулу следа Гротендика для $N_{2/3}$). С другой стороны, существует весьма простой способ получить эти результаты о свойствах $AP^{[1,2]}$ и $N^{[1,2]}$ из теоремы Лидского (см. доказательства теорем [18, Theorems 7.1-7.3] для p=2).

3.3. Факторизация через прямые суммы. Ниже X, Y — произвольные банаховы пространства.

Напомним, что последовательность (x_k) элементов из X называется безусловным базисом, если каждый $x \in X$ единственным образом разлагается в ряд $x = \sum_{k=1}^{\infty} a_k x_k$ и этот ряд безусловно сходится (сходится при любой перестановке ряда). Это эквивалентно тому, что существует акая постоянная $K \ge 1$, что для любого выбора знаков $(t_k) = (\pm 1)$ выполняется неравенство

$$||\sum_{k=1}^{\infty} t_k a_k x_k|| \le K ||\sum_{k=1}^{\infty} a_k x_k||.$$

Безусловная константа базиса (x_k) есть $ub(x_k) := \inf K$. Таким образом, 1-безусловны базис — это базис, для которого $||x|| = ||\sum_{k=1}^{\infty} t_k a_k x_k||$ для всякого $x \in X$ при любом выборе знаков (t_k) . Базис нормирован, если все его элементы имеют единичную норму.

Если (x_k) — безусловный базис и σ есть подмножество множества натуральных чисел, то естественный проектор $P_{\sigma}: X \to X$, определяемый формулой

$$P_{\sigma}(x) := \sum_{k \in \sigma} a_k x_k$$

ограничен и $||p_{\sigma}|| \le ub(x_k)$ (см., например, [12, р. 18]).

Напомним определение прямой суммы банаховых пространств. Пусть E — банахово пространство с 1-безусловным нормированным базисом (e_k) и (X_i) — последовательность банаховых пространств. Прямой суммой этих пространств по типу E называется банахово пространство $(\sum X_i)_E$ состоящее из последовательностей (x_i) , $x_i \in X_i$, для которых конечна норма

$$||(x_i)|| := ||\sum_i ||x_i|| e_i||_E.$$

Пространство $(\sum X_i)_E$ обладает такими важными свойствами:

 (u_1) Каждое пространство X_n естественным образом изометрически вкладывается в $(\sum X_i)_E$ и его образ 1-дополняем там, т. е. существует (естественный) непрерывный проектор из $(\sum X_i)_E$ на образ X_n и норма этого проектора равна

1. Более того, то же верно, если вместо одного пространства X_n рассмотреть конечную прямую сумму $(\sum_{i=1}^n X_i)_E$ и соответствующий проектор P_n . [Действительно, $||P_n(x_i)_{i=1}^\infty||=||\sum_{i=1}^n ||x_i||\,e_i||_E \le ||\sum_{i=1}^\infty ||x_i||\,e_i||_E$ по заме-

чаниям выше.

 (u_2) Если в каждой из изометрических копий пространств X_i взять по элементу x_i единичной нормы, то полученная последовательность (x_i) будет образовывать последовательность, эквивалентную базису (e_i) .

Заметим, что определить понятие прямой суммы ("по базису") с теми же хорошими свойствами для пространств в базисами более слабых типов (например, условного) затруднительно (цитата из [1]: как ни определяй понятие прямой суммы бесконечномерных пространств X_i по последовательности (e_i) , не являющейся безусловной базисной последовательностью, свойство (u_2) прямой суммы не будет выполнено ни в каком смысле).

Ниже, говоря о прямых суммах пространств, мы будем подразумевать (если не задан явно тип суммы), что рассматриваемая сумма берется по типу E для некоторого пространства Е с 1-безусловным базисом.

Пусть $\mathbb{Z} := (Z_{\alpha})$ — семейство банаховых пространств, которое с каждой парой пространств Z_1, Z_2 содержит и их прямую сумму $Z_1 \oplus Z_2$. Обозначим через Γ_Z совокупность всех операторов, которые факторизуются через пространство из $\mathbb{Z}:T\in\Gamma_{\mathbb{Z}}(X,Y)$ тогда и только тогда, когда существуют пространство $Z\in\mathbb{Z}$ и операторы $A\in L(X,Z)$ и $B\in L(Z,Y)$ такие, что $T=BA:X\overset{A}{\to}Z\overset{B}{\to}Y.$ С нормой

$$\gamma_{\mathbb{Z}}(T) := \inf\{||A|| \, ||B|| : \, \exists \, Z \in \mathbb{Z}, A \in L(X, Z), B \in L(Z, Y); \, T = BA\}$$

пространство $\Gamma_{\mathbb{Z}}(X,Y)$ нормировано, а $(\Gamma_{\mathbb{Z}},\gamma_{\mathbb{Z}})$ есть нормированный операторный идеал.

Действительно, пусть 1_K — тождественный оператор в одномерном пространстве K и $Z \in \mathbb{Z}$. Пусть, далее, $j: K \to Z$ — какое-либо изометрическое вложение. Продолжим отображение (линейный функционал) $1_K j^{-1}: j(K) \to K$ с подпространства $j(K) \subset Z$ на все Z до отображения $J: Z \to K$ с сохранением нормы. Ясно, что $1_K = Jj : K \to Z \to K, \gamma_{\mathbb{Z}}(1_K) = 1$. Таким образом, выполнены условия (O_i) и (O_{iv}) .

Проверим линейность (условие (O_{ii})). Для $U, V \in \Gamma_{\mathbb{Z}}(X, Y)$ пусть $U = B_1 A_1$ и $V=B_2A_2$ — факторизации этих операторов через пространства Z_1 и через Z_2 из $\mathbb Z$ соответственно. Рассмотрим прямую сумму $Z:=Z_1\oplus Z_2$, обозначив через j_k и P_k естественные изометрические вложения $Z_k \to Z$ и проекторы $Z \to Z_k$ (k=1,2) соответственно (так что $P_k j_k = 1_{Z_k}$ и $P_1 j_2 = P_2 j_1 = 0$). Положим

$$A(\cdot) := (j_1 A_1(\cdot), j_2 A_2(\cdot)) : X \to Z = Z_1 \oplus Z_2$$

И

$$B(\cdot) := B_1 P_1(\cdot) + B_2 P_2(\cdot) : Z = Z_1 \oplus Z_2 \to Y.$$

Для $x \in X$ имеем:

$$BAx = B(j_1A_1x, j_2A_2x) = (B_1P_1 + B_2P_2)(j_1A_1x, j_2A_2x) = B_1A_1x + B_2A_2x = Ux + Vx,$$

т. е., $U + V \in \Gamma_{\mathbb{Z}}(X, Y)$, причем ясно, что

$$\gamma_{\mathbb{Z}}(U+V) \leq \gamma_{\mathbb{Z}}(U) + \gamma_{\mathbb{Z}}(V).$$

Мультипликативность из условия (O_{ii} очевидна, так же как и ясно выполнение условий (O_{iii}) и (O_v).

Для полноты операторного идеала нужна сходимость соответствующих рядов. Поэтому мы обратимся к частному случаю рассмотренного только что идеала ("подидеалу").

Пусть теперь $\mathbb{Z}:=(Z_{\alpha})$ — семейство банаховых пространств. замкнутое относительно взятия не более чем счетных прямых сумм (напомним, что надо фиксировать банахово пространство с 1-безусловным базисом E и говорить о прямых E-суммах). Мы рассматриваем снова Γ_Z — идеал операторов, которые факторизуются через пространство из \mathbb{Z} с нормой, описанной выше. Пространство $\Gamma_{\mathbb{Z}}(X,Y)$ банахово, а $(\Gamma_{\mathbb{Z}},\gamma_{\mathbb{Z}})$ есть банахов нормированный операторный идеал. Действительно, нам надо лишь установить полноту идеала. Для этого мы фиксируем $\varepsilon > o$ и рассмотрим сходящийся ряд

$$\sum_{k=1}^{\infty} \gamma_{\mathbb{Z}}(T_k) < \infty,$$

где $T_k:=B_kA_k\in \Gamma_{\mathbb{Z}}(X,Y),\ A_k:X\to Z_k$ и $B_k:Z_k\to Y$ для некоторых пространств $Z_k\in\mathbb{Z}$. Будем считать, что

$$||A_k|| \le (1+\varepsilon)\gamma_{\mathbb{Z}}(T_k)^{1/2}$$

И

$$||B_k|| < (1+\varepsilon)\gamma_{\mathbb{Z}}(T_k)^{1/2}.$$

Покажем, что ряд $\sum T_k$ сходится в $\Gamma_{\mathbb{Z}}(X,Y)$.

Положим $Z:=(\sum Z_k)_E\in\mathbb{Z}$. Для каждого k пусть j_k и P_k — изометрическое вложение $Z_k\to Z$ и проектор $Z\to Z_k$ соответственно такие, что $1_{Z_k}=P_kj_k$, $||P_k||=$ (ср. с тем,, как подобное было проделано выше). Определим операторы $A:X\to Z$ и $B:Z\to Y$ равенствами

$$A := \sum_{k=1}^{\infty} j_k A_k, \ B := \sum_{k=1}^{\infty} B_k P_k$$

Так как $\sum ||j_k A_k|| \leq \sum (1+\varepsilon) \gamma_{\mathbb{Z}} (T_k)^{1/2}$ и $\sum ||B_k P_k|| \leq \sum (1+\varepsilon) \gamma_{\mathbb{Z}} (T_k)^{1/2}$, то эти операторы вполне определены, причем

$$||BA|| = ||\sum_{k=1}^{\infty} B_k P_k j_k A_k|| = ||\sum_{k=1}^{\infty} B_k A_k|| \le \sum_{k=1}^{\infty} ||B_k|| \, ||A_k|| \le (1+\varepsilon) \sum_{k=1}^{\infty} \gamma_{\mathbb{Z}}(T_k).$$

Отсюда заключаем, что $T = BA = \sum T_k$, т. е., наш ряд сходится в $\Gamma_{\mathbb{Z}}(X,Y)$ и, следовательно, пространство $\Gamma_{\mathbb{Z}}(X,Y)$ полно.

3.4. Спектральный тип. Пусть T — оператор в X, все ненулевые собственные значения которого есть собственные числа конечной (алгебраической) кратности и которые не имеют предельных точек кроме, быть может, нуля. Положим $\lambda(T) = \{\lambda \in \text{eigenvalues}\,(T) \setminus \{0\}\}$ (собственные числа T берутся в соответствие с их алгебраической кратностью). Мы говорим что оператор $T \in L(X,X)$ имеет спектральный тип $l_{p,q}$, если последовательность собственных чисел $\lambda(T) := (\lambda_k(T))$ лежит в пространстве Лоренца $l_{p,q}$. Если T — спектрального типа l_1 , то мы можем определить спектральный след оператора T: sp tr $(T) := \sum \lambda_k(T)$. Говорим, что подпространство $L_1(X,X) \subset L(X,X)$ — спектрального типа $l_{p,q}$, если каждый оператор $T \in L_1(X,X)$ имеет спектральный тип $l_{p,q}$, Напомним, что операторный идеал $\mathfrak A$ имеет спектральный тип $l_{p,q}$, если каждая его компонента $\mathfrak A(X,X)$ спектрального типа $l_{p,q}$,

ОПРЕДЕЛЕНИЕ 3.4. Пусть α — проективная квазинорма. Тензорное произведение $X \widehat{\otimes}_{\alpha} X$ имеет спектральный тип $l_{p,q}$, если пространство $N_{\alpha}(X,Y)$ есть пространство спектрального типа $l_{p,q}$, Проективная тензорная квазинорма α (или тензорное произведение $\widehat{\otimes}_{\alpha}$) — спектрального типа $l_{p,q}$, если соответствующий операторный идеал N_{α} имеет спектральный тип $l_{p,q}$,

ПРИМЕР 3.2. $N_1(H)$ (= $N_{[1,2]}(H) = N^{[1,2]}(H) = S_1(H)$, (trace-класс onepamopos в гильбертовом пространстве) — спектрального типа l_1 [19]. $\widehat{\otimes}_{2/3}$ и $N_1 \circ N_1$ — спектрального типа l_1 [5]. $N^{[1,2]}$ — спектрального типа l_1 (см. [13, see 27.4.9, конец доказательства]). $N_{[1,2]}$ — спектрального типа l_1 (см. [18, Theorem 7.2 для p=2]; это следует из предыдущего утверждения. Более общо, если 1/r-1/p=1/2, то $\widehat{\otimes}_{[r,p]}=N_{[r,p]}$, $\widehat{\otimes}^{[r,p]}=N^{[r,p]}$ и они имеют спектральный тип l_1 (см. [18, Theorems 7.1-7.3]; простое доказательство будет дано нижее в примере 3.3).

Отметим, что во всех случаях примера 3.2 для соответствующих операторов (скажем, T) верна формула следа: trace $T=\operatorname{sptr} T$. Общий результат в этом направлении — предложение 5.2. А вот результат для частного случая (когда рассматривается семейство всех банаховых пространств). Он является частным случаем предложения 5.2.

ПРЕДЛОЖЕНИЕ 3.1. Пусть α — полная проективная квазинорма спектрального типа l_1 . Для каждого банахова пространства X со свойством AP_{α} и для любого $T \in N_{\alpha}(X)$, имеем: trace $T = \operatorname{sp}\operatorname{tr} T$.

Иногда полезно такое обращение предыдущего предложения (но для произвольной квазинормы).

ПРЕДЛОЖЕНИЕ 3.2. Пусть α — полная проективная квазинорма. Если для банахова пространства X и для всякого $z \in X^* \widehat{\otimes}_{\alpha} X$ выполняется равенство trace $z = \operatorname{sptr} \widetilde{z}$, то X обладает свойством AP_{α} .

ДОКАЗАТЕЛЬСТВО. Предположим, что X не имеет своства AP_{α} . По лемме 3.1, найдется такой элемент $z \in X^* \widehat{\otimes}_{\alpha} X$, что trace z=1 and $\widetilde{z}=0$. По предположению, sp tr $\widetilde{z}=$ trace z=1. Противоречие.

ПРИМЕР 3.3. Пусть $0 < r \le 1, 1 \le p \le 2, 1/r = 1/2 + 1/p$.

1) Если $T \in N_{[r,p']}(X)$ (см. пример 3.1), то T допускает факторизацию

$$T = BA : X \xrightarrow{A} l_p \xrightarrow{B} X, A \in N_r(X, l_p), B \in L(l_p, X).$$

Полные системы собственных чисел операторов T=BA and AB совпадают. Но $AB \in N_r(l_p, l_p)$. Следовательно, AB (u, значит, T) — спектрального типа l_1 , как и всякий r-ядерный оператор в l_p [8, Theorem 7]. Отсюда вытекает, что $N_{[r,p']}$ — спектрального типа l_1 . Легко видеть, что если $z \in X^* \widehat{\otimes}_{[r,p']} X$ таков, что $\widetilde{z} = T$, то trace z = trace AB (напомним, что l_p имеет свойство AP). Но trace AB = sp tr AB (это установлено, например, в [15, 18], а также следует из предложения 3.1). Следовательно, для каждого $z \in X^* \widehat{\otimes}_{[r,p']} X$ имеем: trace $z = \text{sp tr } \widetilde{z}$. По предложению 3.2, каждое банахово пространство обладает свойством $AP_{[r,p']}$ ($= AP_{r,\infty,p'}$, см. пример 3.1; таким образом, мы дали и доказательство леммы 3.2, 2) для случая $AP_{[r,p']}$).

2) Если $T \in N^{[r,p']}(X)$ (см. пример 3.1), то T допускает факторизацию

$$T = BA : X \xrightarrow{A} l_p \xrightarrow{B} X, A \in L(X, l_p), B \in N_r(l_p, X).$$

Как и в 1), мы видим, что для любого $z \in X^* \widehat{\otimes}^{[r,p']} X$ имеем: trace $z = \operatorname{sp} \operatorname{tr} \widetilde{z}$. Далее, по предложению 3.2, каждое банахово пространство имеет свойство $AP^{[r,p]}$ (= $AP^{r,\infty,p'}$, см. пример 3.1; таким образом, мы доказали лемму 3.2, 2) для случая свойств $AP^{[r,p']}$).

Ниже нам понадобится основной результат из работы [20]:

(W) Если J — квази-банахов операторный идеал спектрального типа l_1 , то спектральная сумма является следом на этом идеале J.

Напомним (см. определение 2.1 в [20]), что *след* на операторном идеале J — это класс комплексно-значных функций τ , каждая из которых (обозначаем снова τ) задана на компоненте J(E,E), где E — произвольное банахово пространство, такой, что

- (i) $\tau(e' \otimes e) = \langle e', e \rangle$ для всех $e' \in E^*, e \in E$;
- (ii) $\tau(AU) = \tau(UA)$ для всех банаховых пространств E, F и операторов $U \in J(E, F)$ and $A \in L(F, E)$;
 - (iii) $\tau(S+U) = \tau(S) + \tau(U)$ для всех $S, U \in J(E, E)$;
 - (iv) $\tau(\lambda U) = \lambda \tau(U)$ для всех $\lambda \in \mathbb{C}$ и $U \in J(E, E)$.
- **3.5.** Свойства α -продолжения и α -лифтинга. Следующие определения и предложения понадобятся ниже. Впрочем, они представляют и самостоятельный интерес.

ОПРЕДЕЛЕНИЕ 3.5. Пусть α — полная проективная тензорная квазинорма. Банахово пространство X имеет свойство α -продолжения, если для любого подпространства $X_0 \subset X$ и для всякого тензорного элемента $z_0 \in X_0^* \widehat{\otimes}_{\alpha} X_0$ существует продолжение $z \in X^* \widehat{\otimes}_{\alpha} X_0$ (так что $z \circ i = z_0$ и trace $i \circ z =$ trace z_0 , где $i: X_0 \to X$ — естественное вложение). Банахово пространство X имеет свойство α -лифтинга, если для всякого подпространства $X_0 \subset X$ и для каждого тензорного элемента $z_0 \in (X/X_0)^* \widehat{\otimes}_{\alpha} X/X_0$ существует лифтинг

 $z \in (X/X_0)^* \widehat{\otimes}_{\alpha} X$ (так что $Q \circ z = z_0$, где Q — фактор-отображение из X на X/X_0 , u trace $z \circ Q = \operatorname{trace} z_0$).

ЗАМЕЧАНИЕ 3.3. Если X имеет свойство α -продолжения, то и каждое его подпространство имеет свойство α -продолжения. Если пространство X имеет свойство α -лифтинга, то и каждое его фактор-пространство имеет свойство α -лифтинга.

ПРИМЕР 3.4. Каждое банахово пространство обладает свойствами $||\cdot||_{r,\infty,q}$ -продолжения u $||\cdot||_{r,p,\infty}$ -лифтинга (см. пример 3.1). Для тензорных произведений $(\widehat{\otimes}_s, ||\cdot||_{s,\infty,\infty})$, $s \in (0,1]$, все банаховы пространства имеют как свойство $||\cdot||_{s,\infty,\infty}$ -продолжения так u свойство $||\cdot||_{s,\infty,\infty}$ -лифтинга. Это следует из теорема Хана-Банаха u из определения банаховых фактор-пространств.

ТЕОРЕМА 3.1. Пусть α — полная проективная тензорная квазинорма и банахово пространство X имеет свойство α -продолжения. Если $N_{\alpha}(X)$ имеет спектральный тип $l_{p,q}$, то всякое его подпространство также имеет спектральный тип $l_{p,q}$.

Proof. Пусть X_0 —подпространство в X и $T \in N_{\alpha}(X_0, X_0)$. Найдется элемент $z_0 \in X_0^* \widehat{\otimes}_{\alpha} X_0$, для которого $\tilde{z}_0 = T$. По предположению, существует продолжение $z \in X^* \widehat{\otimes}_{\alpha} X_0$ (так что $z \circ i = z_0$ и trace $i \circ z = \text{trace } z_0$, где $i : X_0 \to X$ — естественное вложение). Рассмотрим диаграмму

$$i\tilde{z}i:X_0\stackrel{i}{\to}X\stackrel{\tilde{z}}{\to}X_0\stackrel{i}{\to}X.$$

Так как $T = \tilde{z}_0 = \tilde{z}i$ и $\tilde{z} \in N_{\alpha}(X, X_0)$, то $i\tilde{z} \in N_{\alpha}(X)$ и спектр sp $i\tilde{z} \setminus \{0\} \in l_{p,q}$. Но собственные числа оператора T (с учетом кратностей) те же, что и собственные числа оператора $i\tilde{z}$. Следовательно, T — спектрального типа $l_{p,q}$.

ТЕОРЕМА 3.2. Пусть α — полная проективная тензорная квазинорма и банахово пространство X имеет свойство α -лифтинга. Если $N_{\alpha}(X)$ имеет спектральный тип $l_{p,q}$, то всякое его фактор-пространство также имеет спектральный тип $l_{p,q}$.

ДОКАЗАТЕЛЬСТВО. Возьмем подпространство $X_0 \subset X$ и рассмотрим фактор-пространство X/X_0 . Если $T \in N_\alpha(X/X_0, X/X_0)$, то найдется элемент $z_0 \in (X/X_0)^* \widehat{\otimes}_\alpha X/X_0$) такой, что $\tilde{z}_0 = T$. По предположению, существует тензорный элемент $z \in (X/X_0)^* \widehat{\otimes}_\alpha X$, для которого $Q \circ z = z_0$, где Q — фактор-отображение из X на X/X_0 . Рассмотрим диаграмму

$$Q\tilde{z}Q:X\stackrel{Q}{\to}X/X_0\stackrel{\tilde{z}}{\to}X\stackrel{Q}{\to}X/X_0.$$

Так как $T = \tilde{z}_0 = Q\tilde{z}$ и $\tilde{z} \in N_{\alpha}(X, X_0)$, то $\tilde{z}Q \in N_{\alpha}(X)$ и спектр sp $\tilde{z}Q \setminus \{0\} \in l_{p,q}$. Но собственные числа оператора T (с учетом кратностей) те же, что и собственные числа оператора $\tilde{z}Q$. Следовательно, T — спектрального типа $l_{p,q}$.

4. Детерминант и след

Нам понадобятся некоторые вспомогательные факты из теории следов и детерминантов. Ниже мы доказываем два из них; нам не удалось найти доказательства этих утверждений (именно в том виде, в котором мы хи применяем) в литературе, а ссылаться на очень общие аналогичные по виду теоремы, отметив, что "доказательства проводятся по той же схеме не очень хорошо. Бывают случаи, когда как раз "общая схема"и не работает. Итак два предложения о непрерывности следа и о непрерывности детерминанта.

Напомним еще раз, что для всякого конечномерного оператора

$$T: X \to X, \ Tx = \sum_{k=1}^{N} x_k' \otimes x_k$$

ядерный след trace $T:=\sum_{k=1}^N x_k'(x_k)$ вполне определен и не зависит от представления T. Также вполне определен детерминант оператора 1-T:

$$det(1-T) = \prod_{i} (1-\mu_i),$$

где (μ_j) — полный набор собственных чисел оператора T. В этом случае, естественно, имеем формулу следа.

trace
$$T = \sum_{j} \mu_{j}$$
.

ПРЕДЛОЖЕНИЕ 4.1. Пусть $A-\kappa$ вазинормированный операторный идеал, X- банахово пространство, для которого множество конечномерных операторов плотно в пространстве A(X). Предположим, что стандартный функционал trace ограничен на подпространстве всех конечномерных операторов из A(X) (и, таким образом, может быть продолжен до непрерывного следа на все пространство A(X)). Тогда соответствующий детерминант Фредгольма равномерно непрерывен (по A-квазинорме) на некотором A-шаре подпространства всех конечномерных операторов из A(X). Более того, существуют такие постоянные $r_0 \in (0,1)$ и $c_0 > 0$, что для конечномерных $u,v \in A(X)$, если $||u||_A \le r_0$ и $||v||_A \le r_0$, то

$$|\det(1-u) - \det(1-v)| \le c_0 ||u-v||_A$$
.

ДОКАЗАТЕЛЬСТВО. Без ограничения общности, мы можем (и будем) предполагать, что данная квазинорма в A является s-нормой, т. е. существует такое число $s \in (0,1]$, что для любых $x,y \in A$ выполняется неравенство $||x+y||_A^s \le ||x||_A^s + ||y||_A^s$ (см. [7, р. 1102]).

Обозначим через b такую постоянную, что $|\operatorname{trace} R| \leq b||R||_A$ для любого конечномерного оператора R из A. Пусть u,v- два конечномерных оператора из A такие что $||u||_A^s \leq r$ и $||v||_A^s \leq r$, где r>0 мало. Тогда (см., например, теорему I.3.3 в [4] или [5]) для $|z| \leq 1$

$$\det (1 - zu) = \exp \left(-\sum_{n=1}^{\infty} \frac{1}{n} \operatorname{trace} (u^n) z^n\right),$$

откуда, для малых r > 0,

$$|\det(1-u) - \det(1-v)| = |\exp\left(\sum_{n=1}^{\infty} (-\frac{1}{n})\operatorname{trace}(u^n) - \sum_{n=1}^{\infty} (-\frac{1}{n})\operatorname{trace}(v^n)\right)| \le c_1 \sum_{n=1}^{\infty} \frac{1}{n}|\operatorname{trace}(u^n) - \operatorname{trace}(v^n)| \le c_1 b \sum_{n=1}^{\infty} \frac{1}{n}||u^n - v^n||_A,$$

где c_1 — некоторая постоянная. Если $q:=\max\{||u||_A;||v||_A\}$, то

$$\begin{aligned} ||u^{n}-v^{n}||_{A}^{s} &\leq ||(u^{n-1}-v^{n-1})u||_{A}^{s} + ||v^{n-1}(u-v)||_{A}^{s} \leq \\ &\leq ||u||_{A}^{s} \left[||(u^{n-2}-v^{n-2})u||_{A}^{s} + ||v^{n-2}(u-v)||_{A}^{s}\right] + ||v^{n-1}||_{A}^{s} ||u-v||_{A}^{s} \end{aligned}$$

(мы воспользовались тем, что в A для любых H,K имеет место соотношение $||HK||_A \le ||H||_A ||K||_A$, так как $||K||_L \le ||K||_A$); продолжаем неравенства:

$$\leq \left(q^{(n-1)s}||u-v||_A^s + q^s \cdot q^{s(n-2)}||u-v||_A^s\right) + q^{2s}||u^{n-2} - v^{n-2}|| \leq \\ \leq 2q^{s(n-1)}||u-v||_A^s + q^{2s}[||(u^(n-3)-v^{n-3})u||_A^s + ||v^{n-3}(u-v)||_A^s] \leq \\ 3q^{s(n-1)}||u-v||_A^s + q^{3s}||u^{n-3}-v^{n-3}||_A^s \leq \cdots \\ \leq (n-1)q^{s(n-1)}||u-v||_A^s + q^{s(n-1)}||u-v||_A^s = nq^{s(n-1)}||u-v||_A^s.$$

Таким образом,

$$||u^n - v^n||_A \le n^{1/s} q^{(n-1)} ||u - v||_A.$$

Поэтому, если $r \in (0,1)$ достаточно мало, и если $||u||_A^s \le r$ и $||v||_A^s \le r$, то

$$|\det(1-u) - \det(1-v)| \le c_1 b \sum_{n=1}^{\infty} \frac{1}{n} ||u^n - v^n||_A \le c_1 \sum_$$

$$c_1 b \sum_{n=1}^{\infty} n^{1/s-1} r^{n-1} ||u - v||_A = c_0 ||u - v||_A.$$

Следствие 4.1. В условиях предложения 3.1, функция $\det(1-u)$ допускает непрерывное продолжение (по A-квазинорме) с подпространства всех конечномерных операторов из A(X) на все пространство A(X).

ДОКАЗАТЕЛЬСТВО. Это вытекает из равномерной непрерывности (по A-квазинорме) на некотором A-шаре подпространства всех конечномерных операторов из A(X). Соответствующее доказательство предоставляется читателю в качестве упражнения (см, однако, [4, р.28]).

ПРЕДЛОЖЕНИЕ 4.2. Пусть $A-\kappa$ вазинормированный операторный идеал X — банахово пространство, для которого множество конечномерных операторов плотно в пространстве A(X). Предположим, что стандартный функционал $\det(1+u)$ допускает непрерывное продолжение с подпространства всех конечномерных операторов из A(X) на все A(X) (по квазинорме из A(X)). Тогда соответствующий функционал trace ограничен (по A-квазинорме) на подпространстве всех конечномерных операторов из A(X) и, таким образом, продолжается по непрерывности (единственным способом) на все A(X).

ДОКАЗАТЕЛЬСТВО. Для конечномерного оператора $u \in A(X)$, $\det (1+zu)$ имеет вид

$$\det(1 + zu) = 1 + z \operatorname{trace} u + \sum_{n=1}^{m} a_n z^n.$$

Следовательно, по теореме о вычетах,

trace
$$u = \frac{1}{2\pi i} \int_{|z|=1} \frac{\det(1+zu) - 1}{z^2} dz$$
.

Так как $\det(1+zu)$ непрерывен в точке u=0 (по квазинорме из A), то существует $\delta>0$, что $|\det(1+zu)-1|<1$ для $||u||_A<\delta$ и $|z|\leq 1$; поэтому для таких конечномерных u имеем:

$$|\operatorname{trace} u| \le \frac{1}{\pi} \int_{|z|=1} \left\| \frac{\det(1+zu) - 1}{z^2} \right\| |dz| \le 1.$$

ЗАМЕЧАНИЕ 4.1. Для доказательства предложения достаточно непрерывности детерминанта в нуле.

5. Спектральный тип и формула следа

Доказательство следующего факта проводится по аналогии с принципом равномерной ограниченности [14, 3.4.6]. В отличие от теоремы из [14] мы рассматриваем выделенное семейство банаховых пространств, а не все банаховы пространства. Это дает нам возможность, например, применять подобный принцип к семействам всех $L_p(\mu)$ -пространств (в качеств пространства с 1-безусловным базисом берется тогда пространство l_p).

ПРЕДЛОЖЕНИЕ 5.1. Пусть $t, u > 0, \alpha$ — проективная тензорная квазинорма, \mathcal{F} — некоторое семейство банаховых пространств, замкнутое относительно взятия не более чем счетных прямых сумм. Если для любого пространства $X \in \mathcal{F}$ пространство $N_{\alpha}(X)$ имеет спектральный тип $l_{t,u}$, то существует такая постоянная C > 0, что для всякого $X \in \mathcal{F}$ и для любого оператора $T \in N_{\alpha}(X)$

$$||\{\mu_k(T)\}||_{l_{t,u}} \le C||T||_{N_\alpha}$$

 $(здесь \{\mu_k(T)\} - полный набор собственных значений оператора <math>T).$

ДОКАЗАТЕЛЬСТВО. Предположим противное. Тогда для каждого n можно найти такие банахово пространство $X_n \in \mathcal{F}$ и оператор $T_n \in N_{\alpha}(X_n)$, что[PiEig]

$$||\{\mu_k(T_n)\}||_{l_{t,u}} \ge n \text{ if } ||T_n||_{N_\alpha} \le (2\nu_\alpha)^{-n}$$

где ν_{α} — постоянная из "неравенства треугольника" для квазинормы из N_{α} . Положим $X:=(\sum_{n=1}^{\infty}X_n)_E$, и пусть $j_n:X\to X_n,\, i_n:X_n\to X$ — естественные фактор-отображения и вложения (с единичными нормами). Тогда

$$\left\| \sum_{n=m+1}^{m+l} j_n T_n i_n \right\|_{N_{\alpha}} \le \sum_{k=1}^{\infty} \nu_{\alpha}^k \|T_{m+k}\|_{N_{\alpha}} \le (2\nu_{\alpha})^{-m}$$

П

для l>0. Поэтому $T:=\sum_{n=1}^{\infty}j_nT_ni_n\in N_{\alpha}(X)$. Поскольку $T_n=j_nTi_n$, то совокупность всех собственных чисел оператора T_n есть часть семейства $\{\mu_k(T)\}$. Из этого вытекает, что

$$\infty > ||\{\mu_k(T)\}||_{l_{t,u}} \geq ||\{\mu_k(T_n)\}||_{l_{t,u}} \geq n$$
 для $n = 1, 2, \ldots$

Полученное противоречие доказывает предложение.

ПРЕДЛОЖЕНИЕ 5.2. Пусть $r \in (0,1]$, α — проективная тензорная квазинорма, \mathcal{F} — некоторое семейство банаховых пространств, обладающих свойством AP_{α} , замкнутое относительно взятия не более чем счетных прямых сумм. Если для любого пространства $X \in \mathcal{F}$ пространство $N_{\alpha}(X)$ имеет спектральный тип l_r , то для всякого $X \in \mathcal{F}$ и для любого оператора $T \in N_{\alpha}(X)$ его ядерный след trace T вполне определен и совпадает c его спектральным следом, m. e.

trace
$$T = \sum_{k=1}^{\infty} \mu_k(T)$$

 $(здесь \{\mu_k(T)\}\ -\ nonный набор,\ c\ yчетом\ кратностей,\ coбственных значений оператора\ T).\ При этом,\ детерминант\ Фредгольма оператора\ T\ имеет\ вид$

$$\det(1 - zT) = \prod_{k=1}^{\infty} (1 - \mu_k(T)z)$$

и является целой функцией порядка r (u, следовательно, минимального рода, если r < 1).

ДОКАЗАТЕЛЬСТВО. Пусть $T \in N_{\alpha}(X)$, где $X \in \mathcal{F}$. Так как $X \in AP_{\alpha}$, то $N_{\alpha}(X) = X^* \widehat{\otimes}_{\alpha} X$, что гарантирует существование единственного непрерывного следа на N(X), который есть просто непрерывное продолжение с подпространства всех конечномерных операторов в X обычного функционала "след". По следствию 4.1 из предложения 4.1, на $N_{\alpha}(X)$ вполне определен единственный непрерывный детерминант (Фредгольма), — $\det(1-zT)$. Возьмем последовательность $\{T_n\}$ конечномерных операторов из $N_{\alpha}(X)$, сходящуюся в пространстве $N_{\alpha}(X)$ к T.

Пространство $N_{\alpha}(X)$ имеет спектральный тип l_r , так что, по предложение 5.1, существует такая постоянная C > 0, что для любого оператора $T \in N_{\alpha}(X)$

$$||\{\mu_k(T)\}||_{l_1} \le C||T||_{N_\alpha},$$

в частности, это неравенство верно для всех рассматриваемых операторов. Для конечномерного $U \in N_{\alpha}(X)$ детерминант имеет вид

$$\det(1 - zU) = \prod_{i=1}^{M} (1 - \mu_i(U)z).$$

Отсюда, для всякого T_n

$$|\det(1-zT_n)| \le \exp\{\sum_k |\mu_k(T_n)| |z|\} \le e^{C||T_n||_{N_\alpha}|z|}.$$

Используя непрерывность детерминанта, мы приходим к неравенству

$$|\det(1 - zT)| \le e^{C||T||_{N_{\alpha}}|z|}.$$

По теореме Адамара,

$$\det(1 - zT) = e^{cz} \prod_{i=1}^{\infty} (1 - \mu_i(T)z) e^{\mu_i(T)z}$$

(так как значение левой части в нуле есть 1). С другой стороны, разлагая правую часть равенства в ряд, получаем $\det{(1-zT)}=1+cz+\ldots$ Значит, $c=-\operatorname{trace} T$ (напомним, что $\det{(1-zT)}=1-\operatorname{trace} Tz+\ldots$) Но $\{\mu_k(T)\}\in l_1$ и, следовательно.

$$\det (1 - zT) = e^{az} \prod_{i=1}^{\infty} (1 - \mu_i(T)z),$$

где $a = -\operatorname{trace} T + \sum \mu_i$.

Теперь мы применим теорему Уайта (см. [20]). Для этого рассмотрим банахов идеал $\Gamma_{\mathcal{F}}$ операторов, факторизующихся через пространства из \mathcal{F} и образуем квазинормированный. операторный идеал $\Gamma_{\mathcal{F}} \circ N_{\alpha}$ — суперпозицию двух идеалов. Ясно, что этот идеал имеет спектральный тип l_1 . следовательно, к нему может быть применена теорема Уайта. Поскольку идеал конечно-мерных операторов плотен в последнем идеале, спектральный след на нем есть линейный непрерывный функционал, совпадающий с ядерным следом на плотном множестве. Поэтому a=0, trace $T=\sum_{i=1}^{\infty} \mu_i(T)$ и

$$\det(1 - zT) = \prod_{k=1}^{\infty} (1 - \mu_k(T)z).$$

Порядок этой целой функции есть r, поскольку $(\mu_k(T)) \in l_r$ (теорема Бореля о порядке канонического произведения).

6. Примеры применения

Теперь применим полученные выше вспомогательные факты в некоторых конкретных ситуациях.

6.1. Операторы в подпространствах факторпространств L_p . Сначала рассмотрим случай ядерных операторов в подпространствах факторпространств пространств $L_p(\mu)$. Известно, что такие пространства обладают свойством аппроксимации AP_s при $1 \le p \le \infty$ и 0 < s < 1, 1/s = 1 + |1/p - 1/2| (Reinov-Latif, 2013, 2014). Используя этот факт и некоторые идеи (как оказалось, те же, что и в [9, 2.b.13]) из теории абсолютно суммирующих операторов, Рейнов и Латиф сначала получили формулу Гротендика-Лидского для подпространств пространств L_p (в работе [15]), а затем и для подпространств факторпространств пространств L_p (см. [17]).

В [9, 2.с.9], однако, получены более сильные результаты о спектрах ядерных операторов в L_p (но не формула следа). Мы применим приведенные выше

теоремы и предложения вместе с результатом из [9, 2.с.9] для установления более общих фактов, а также снова все той же формулы следа для операторов в подпространствах фактор-пространств пространств L_p . На прежде мы приведем утверждение, усиливающее указанный выше факт о наличии свойств AP_s в таких пространствах (что представляет и самостоятельный интерес). Нам понадобится такая простая

ЛЕММА 6.1. Пусть 0 < s < 1, 1/s = 1 + 1/q. Если $d := (d_k) \in l_{(s,1)}$, то найдутся $\alpha := (\alpha_k) \in l_1$ и $\beta := (\beta_k) \in l_{(q,\infty)}^0$, для которых $d = \alpha\beta$, т. е. $d_k = \alpha_k\beta_k$ для $k = 1, 2, \ldots$ Здесь $l_{(q,\infty)}^0 := \{(\beta_k) : \exists a_k \to 0, |\beta_k| \le a_k/k^{1/q}\}$. Обратно, если $\alpha := (\alpha_k) \in l_1$ и $\beta := (\beta_k) \in l_{(q,\infty)}^0$, то $\alpha\beta \in l_{(s,1)}$. Более того, $l_1 \cdot l_{(q,\infty)} = l_{(s,1)}$.

ДОКАЗАТЕЛЬСТВО. Возьмем $d \in l_{(s,1)}$ (предполагая, что $d = d^* = (d_k^*)$). Тогда $\sum_{k=1}^{\infty} k^{1/s} \, d_k^* / k < \infty$, т. е. $\sum_{k=1}^{\infty} k^{1/q} \, d_k^* < \infty$. Пусть $\varepsilon = (\varepsilon_k)$ — числовая последовательность такая, что $\varepsilon_k \searrow 0$ и $\sum_{k=1}^{\infty} d_k^* k^{1/q} / \varepsilon_k < \infty$. Положим $\alpha_k := d_k^* k^{1/q} / \varepsilon_k$, $\beta_k := \varepsilon_k / k^{1/q}$. Тогда $\alpha := (\alpha_k) \in l_1$ и $\beta := (\beta_k) \in l_{(q,\infty)}^0$. Таким образом, $d = \alpha\beta \in l_1 \cdot l_{(q,\infty)}^0$. По поводу последних двух утверждений, см. [14, 2.1.13]. \square

ПРЕДЛОЖЕНИЕ 6.1. Пусть $\alpha \in [0, 1/2]$ и $1/s = 1 + \alpha$. Для банахова пространства Y, предположим, что

(α) существует такая постоянная C>0 что для каждого $\varepsilon>0$, для любого натурального n и для всякого n-мерного подпространства E пространства E существует конечномерный оператор E в E0 такой, что E1 E2 E3 апд E4 E4 E5 E6.

Тогда
$$Y \in AP_{(s,1)}$$
.

ДОКАЗАТЕЛЬСТВО. Пусть $0 \neq z \in Y^* \widehat{\otimes}_{(s,1)} X$. Воспользуемся леммой 6.1: возьмем представление $z = \sum_{k=1}^\infty a_k b_k \, y_k' \otimes x_k$, в котором $(x_k), (y_k')$ ограничены, $(a_k) \in l_1, \ (b_k) \in l_{q\infty}^0$ и $b_k \searrow 0$. Тогда $(\widetilde{x}_k := b_k x_k) \in l_{q\infty}^0(X)$ и, для достаточно малого $\varepsilon > 0$ (которое будет выбрано ниже), можно найти оператор $R \in X^* \otimes X$ с тем свойством, что $\sup_n ||R\widetilde{x}_n - \widetilde{x}_n|| \leq \varepsilon$ (здесь мы использовали свойства рассматриваемого пространства X, отмеченные в разделе 1 работы [18]). Так как $z \neq 0$, то можно найти оператор $V \in L(Y^*, X^*)$ такой, что $\sum_{k=1}^\infty a_k \, \langle V y_k', \widetilde{x}_k \rangle = 1$. Теперь, когда оператор V выбран, получаем:

$$1 = \sum_{k=1}^{\infty} a_k \langle Vy'_k, \widetilde{x}_k - R\widetilde{x}_k \rangle + \sum_{k=1}^{\infty} a_k \langle Vy'_k, R\widetilde{x}_k \rangle$$

$$\leq \varepsilon ||(a_k)||_{l_1} ||V|| \cdot const + |\sum_{k=1}^{\infty} a_k b_k \langle R^* V y_k', x_k \rangle|,$$

и, если ε достаточно мало, для конечномерного оператора $R^*V:Y^*\to X^*$ имеем:

$$|\operatorname{trace} z^{t} \circ (R^{*}V)| = |\operatorname{trace} (R^{*}V) \circ z^{t}| = |\sum_{k=1}^{\infty} a_{k}b_{k} \langle R^{*}Vy'_{k}, x_{k} \rangle| > 0.$$

Последняя сумма есть ядерный след тензорного элемента $\sum_{k=1}^{\infty} a_k b_k \, R^* V y_k' \otimes x_k$, который является композицией $R \circ z_0$ конечномерного оператора R и тензорного элемента $z_0 := \sum_{k=1}^{\infty} a_k b_k \, V y_k' \otimes x_k$, принадлежащего тензорному произведению $X^* \widehat{\otimes}_{(s,1)} X$ по второй части леммы 6.1. Отсюда следует, что как z_0 , так и z порождают ненулевые операторы \widetilde{z}_0 и \widetilde{z} .

Свойствами (α) обладают, в частности, факторпространства подпространств и подпространства факторпространств пространств L_p (при $1 \le p \le \infty$ с $\alpha = |1/2 - 1/p|$); см. обсуждение этого в разделе 1 статьи [18], а также в [17, Предложение 9]. Поэтому, в частности, получаем

СЛЕДСТВИЕ 6.1. Пусть $s \in (0,1]$, $p \in [1,\infty]$ и 1/s = 1+|1/p-1/2|. Если банахово пространство Y изоморфно подпространству факторпространства (или факторпространству подпространства) некоторого L_p -пространства, то оно обладает свойством $AP_{(s,1)}$ (и, следовательно, свойством AP_s).

Кстати, при s=2/3 получаем уже упоминавшийся результат о наличии свойства $AP_{(2/3,1)}$ у любого банахова пространства.

Н. König [9, 2.с.9] показал. что если 1 и <math>0 < s < 1, 1/r = 1/s - |1/p - 1/2|, то для $X = L_p(\mu)$, то собственные значения любого оператора $T \in N_s(X)$ лежат в $l_{(r,s)}$. Поэтому, получаем небольшое усиление ранее полученных теорем (Латиф-Рейнов, 2013-2016) о ядерных операторах в подпространствах факторпространств пространств $L_p(\mu)$:

Итак, обобщение предложения [9, 2.с.9]:

ПРЕДЛОЖЕНИЕ 6.2. Пусть 1 и <math>0 < s < 1, 1/r = 1/s - |1/p - 1/2|. Существует такая постоянная $C_{s,p} > 0$, что для всякого подпространства X любого факторпространства пространства $L_p(\mu)$ и для любого оператора $T \in N_s(X)$

$$||\{\mu_k(T)\}||_{l_{(r,s)}} \le C_{s,p}||T||_{N_s}.$$

 $(здесь \{\mu_k(T)\} - полный набор собственных значений оператора <math>T)$. При r=1 $u \ 1 = 1/s - |1/p - 1/2|$ полный набор собственных значений оператора T абсолютно суммируем, для любого оператора $T \in N_s(X)$ его ядерный след trace T вполне определен u совпадает c его спектральным следом, m. e.

trace
$$T = \sum_{k=1}^{\infty} \mu_k(T)$$
.

ДОКАЗАТЕЛЬСТВО. Любое банахово пространство имеет как свойство $||\cdot||_s$ -продолжения, так и свойство $||\cdot||_s$ -лифтинга (см. пример 3.4). Из [9, 2.с.9] следует, что L_p -пространства имеют спектральный тип $l_{(r,s)}$. По теоремам 3.1 и 3.2, как подпространства, так и факторпространства L_p -пространств имеют спектральный тип $l_{(r,s)}$. По тем же теоремам их, соответственно, факторпространства и подпространства также имеют имеют спектральный тип $l_{(r,s)}$. Применим предложение 5.1 к семействам факторпространств подпространств и подпространств факторпространств пространств L_p , рассматривая прямые

суммы по типу l_p . Получим нужные нам неравенства. Применяя в этих же ситуациях предложение 5.2 (учитывая наличие свойств AP_s), получаем формулы следа.

6.2. Операторный идеал $N_{(r,s),p}$. Пусть $0 < r, s \le 1, 1 \le p \le 2$. Определим новую проективную квазинорму $||\cdot||_{(r,s),p}$ следующим образом. Если $u \in X \widehat{\otimes} Y$, то

$$||u||_{(r,s),p} := \inf \left\{ ||(\lambda_i)_{i=1}^{\infty}||_{l_{(r,s)}} ||(x_i)_{i=1}^{\infty}||_{l_{\infty}(X)} \cdot ||(y_i)_{i=1}^{\infty}||_{l_{p'}(X)} : u = \sum_{i=1}^{\infty} \lambda_i x_i \otimes y_i \right\}$$

Получаем новое тензорное произведение $X \widehat{\otimes}_{(r,s),p} Y$, состоящее из тензорных элементов $u \in X \widehat{\otimes} Y$ конечной квазинормы $||\cdot||_{(r,s),p}$. Оно квази-банахово (проверяется стандартным образом на абсолютно сходящихся рядах) и является частичным обобщением тензорного произведения Лапресте [11].

Естественным образом мы приходим к квазинормированному операторному идеалу $N_{(r,s),p}$, рассматривая фактор-отображения $X^* \widehat{\otimes}_{(r,s),p} Y \to N_{(r,s),p}(X,Y)$. Всякий оператор из этого идеала допускает соответствующее разложение в ряд. Мы применим полученные выше факты (аналогично случаю операторов в подпространствах L_p -пространств) к операторам из этого нового операторного идеала типа Лапресте (идеала Лоренца-Лапресте).

ЗАМЕЧАНИЕ 6.1. Более общим является тензорное произведение $X \widehat{\otimes}_{(r,s),p,q} Y$, получаемое аналогичным образом, но с дополнительным ограничением на последовательность (y_i) : требуется, чтобы эта последовательность была слабо q-суммируемой, где $1 \leq q < \infty$. Мы не рассматриваем его здесь в силу ограниченности объема работы.

Перейдем теперь к операторам из $N_{(r,s),p}$.

ПРЕДЛОЖЕНИЕ 6.3. Если $1 \le p \le 2, 1/r = 1/p + 1/2$, то всякое банахово пространство обладает свойством $AP_{(r,1),p}$.

Отметим, что при p=1 свойство $AP_{(r,1),p}$ превращается в $AP_{(2/3,1)}$, о наличия которого в любом банаховом пространстве известно из работ [18] и [6].

Следствие 6.2. Если $0 < r \le 1, 1/r = 1/p + 1/2, 1 \le p \le 2$ и $0 < s \le 1$, то $N_{(r,s),p} \subset N_{(r,1),p}$ и, следовательно, всякое банахово пространство обладает свойством $AP_{(r,s),p}$.

ПРЕДЛОЖЕНИЕ 6.4. Идеал $N_{(r,s),p}$ имеет спектральный тип $l_{(1,s)}$.

ДОКАЗАТЕЛЬСТВО. Мы приведем доказательство, в ходе которого будут получены все три сформулированные выше утверждения. Пусть $0 < r \le 1, 1/r = 1/p + 1/2, 1 \le p \le 2$ и $0 < s \le 1$. Предположим, что $X \notin AP_{(r,s),p}$. Пусть $z \in X^* \widehat{\otimes}_{(r,s),p} X$ — такой элемент, что trace $z = 1, \tilde{z} = 0$.

$$z = \sum_{k=1}^{\infty} \lambda_k x_k' \otimes x_k,$$

где $(\lambda_k)\in l_{r,s},\ (x_k')\in l_\infty(X^*)$ et (x_k) — слабо p'-суммируема.

Поскольку $z = \sum \lambda_k x_k' \otimes x_k$, где $(\lambda_k) \in l_{r,s}, (x_k') \in l_{\infty}(X^*)$ et (x_k) — слабо p'-суммируема, то \tilde{z} может быть факторизован как

$$\tilde{z}: X \stackrel{A}{\to} l_{\infty} \stackrel{\Delta}{\to} l_{1} \stackrel{j}{\to} l_{p} \stackrel{V}{\to} X,$$

где $Ax = \{\langle x_k', x \rangle\} \in l_\infty$ для $x \in X, V\{\delta_k\} := \sum \delta_k x_k$ для $\{\delta_k\} \in l_p, j$ — вложение, Δ — диагональный оператор с диагональю (λ_k) из $l_{(r,s)}$. Так как $\tilde{z} = 0$, то $V|_{j\Delta A(X)} = 0$. Рассмотрим $S := j\Delta AV : l_p \to l_p$:

$$S\{\delta_k\} = \sum_{k=1}^{\infty} \delta_k j \Delta A x_k = \sum_{k=1}^{\infty} \delta_k j \Delta (\sum_{j=1}^{\infty} \langle x'_j, x_k \rangle e_j) = \sum_{k,j=1}^{\infty} \lambda_j \langle x'_j, \delta_k x_k \rangle e_j =$$

$$\sum_{j=1}^{\infty} \lambda_j \langle x_j', \sum_{k=1}^{\infty} \delta_k x_k \rangle e_j = \sum_{j=1}^{\infty} \lambda_j \langle \{\delta_k\}_k, \{\langle x_j', x_k \rangle\}_k \rangle e_j \in l_p$$

для $\{\delta_k\} \in l_p$, Положим $\langle \{\delta_k\}_k, \{\langle x_j', x_k \rangle\}_k \rangle =: \psi_j(\delta)$. Тогда $S\{\delta_k\} = \sum_{j=1}^\infty \lambda_j \psi_j(\delta) e_j$. Следовательно,

trace
$$S = \sum_{j} \lambda_{j} \psi_{j}(e_{j}) = \sum_{j} \lambda_{j} \langle x'_{j}, x_{j} \rangle = 1.$$

Очевидно, $S^2 = 0$ и trace S = trace z = 1.

Рассмотрим диагональный оператор $j\Delta:l_\infty\to l_p$ с диагональю из $l_{(r,s)}$. Из $[{\bf 14},\ 2.9.17^*]$ следует, что этот оператор есть оператор вейлевского (а значит и спектрального) типа (1,s) ($[{\bf 14},\ 3.6.2^*]$; подробно об операторах Вейля см. указанную монографию). Следовательно, идеал $N_{(r,s),p}$ имеет спектральный тип $l_{1,s}$.

Поскольку $S \in N_{(r,1),p}(l_p, l_p)$:

$$S: l_p \xrightarrow{V} X \xrightarrow{A} l_\infty \xrightarrow{\Delta} l_1 \xrightarrow{j} l_p,$$

 $N_{(r,1),p}$ имеет спектральный тип l_1 и пространство l_p обладает свойством аппроксимации Гротендика (а, значит, и свойством $AP_{(r,1),p}$), то ядерный след trace S вполне определен и равен сумме всех собственных значений оператора S (по предложению 5.2, в котором сейчас \mathcal{F} есть семейство всех банаховых пространств). Противоречие с тем, что $S^2=0$.

Применяя предложения 5.1 и 5.2 для рассматриваемой ситуации, получаем:

ТЕОРЕМА 6.1. Пусть $0 < r \le 1, 1/r = 1/p + 1/2, 1 \le p \le 2$ и $0 < s \le 1$. Существует такая постоянная C > 0, что для всякого банахова пространства X и для любого оператора $T \in N_{(r,s),p}(X)$

$$||\{\mu_k(T)\}||_{l_{(1,s)}} \le C||T||_{N_{(r,s),p}}$$

 $(здесь \{\mu_k(T)\} - полный набор собственных значений оператора <math>T)$. В частности, полный набор собственных значений оператора T абсолютно суммируем,

его ядерный след trace T вполне определен u совпадает c его спектральным следом, m. e.

trace
$$T = \sum_{k=1}^{\infty} \mu_k(T)$$
.

Отметим частные случаи теоремы для $N_{(r,s),p}$: Пусть $0 < r \le 1, 1/r = 1/p + 1/2, 1 \le p \le 2$ и $0 < s \le 1$.

- а) r = 1, s = 1, p = 2: В.Б. Лидский (1959), А. Пич (1980)
- b) r = 2/3, s = 2/3, p = 1: А. Гротендик (1955)
- с) r=2/3, s=1, p=1: А. Хинрихс и А. Пич (2010) и, независимо, автор (2016)
 - d) $0 \le r \le 1, s = r, 1/r = 1/2 + 1/p$: О. Рейнов и К. Латиф (2013)

Теорема соединяет в одной шкале операторов частные случаи с) и а):

$$\{r = 2/3, s = 1, p = 1\} \longrightarrow \{2/3 \le r \le 1, s = 1, 1/r = 1/p + 1/2\}$$

 $\longrightarrow \{r = 1, s = 1, p = 2\}$

О точности результатов

Все результаты, приведенные до теоремы об $N_{(r,s),p}$, точны. Теорема точна для случаев, когда r=s. Для $r\neq s$ проблема возникает уже в частном случае $N_{(2/3,1)}$ (т. е. при p=1).

Из статьи А. Хинрихса и А. Пича [6] (2010) в нашей формулировке:

Верно ли что в шкале пространств Лоренца $l_{r,s}$ результат «любое банахово пространство обладает свойством $AP_{(2/3,1)}$ » есть наилучший результат?

Список литературы

- [1] В. М. Кадец, О прямой сумме нормированных пространств, Сиб. матем. журн., 32:1 (1991), 186–189.
- [2] В.Б. Лидский, Несамосопряженные операторы, имеющие след, Докл. АН СССР, 125: 3, 1959, 485–487.
- [3] Yoav Benyamini, Joram Lindenstrauss, Geometric Nonlinear Functional Analysis: 1, American Mathematical Society Colloquium Publications 48, 2000.
- [4] I. Gohberg, S. Goldberg, N. Krupnik, Traces and Determinants of Linear Operators, Birkhäuser Verlag, Basel-Boston-Berlin, 2000.
- [5] A. Grothendieck, Produits tensoriels topologiques et éspaces nucléaires, Mem. Amer. Math. Soc., 16 (1955).
- [6] A. Hinrichs, A. Pietsch, p-nuclear operators in the sense of Grothendieck, Math. Nachr., 283, No. 2 (2010), 232–261.
- [7] N. J. Kalton, Quasi-Banach spaces. Handbook of the geometry of Banach spaces, Vol. 2, 1099–1130, North-Holland, Amsterdam, 2003.
- [8] H. König, On the eigenvalue spectrum of certain operator ideals, Coll. Math., 44 (1981), 15–28.
- [9] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser, Boston, 1986.
- [10] G. Köthe, Topological vector spaces I, Berlin-Heidelberg-New York, 1969.

- [11] J. T. Lapresté, Opérateurs sommants et factorisations à travers les espaces L_p , Studia Math. 57 (1976), 47–83
- [12] J. Lindenstrauss, L. Tzafriri: Classical Banach spaces, vol.1: Sequence spaces, Berlin-Heidelberg-New York (1977).
- [13] A. Pietsch, Operator ideals, North-Holland, 1978.
- [14] A. Pietsch, Eigenvalues and s-Numbers, Cambridge studies in advanced mathematics, 13, Cambridge University Press, 1987.
- [15] O. Reinov, Q. Latif, Grothendieck-Lidskiĭ theorem for subspaces of L_p -spaces, Math. Nachr., 286, No. 2-3 (2013), 279–282.
- [16] O. I. Reinov, Q. Latif, Distribution of eigenvalues of nuclear operators and Grothendieck-Lidski type formulas, Journal of Mathematical Sciences, Springer, 193, 2, 2013, 312–329.
- [17] O. I. Reinov, Q. Latif, Grothendieck-Lidskii theorem for subspaces of quotients of L_p -spaces, Banach Center Publications, 102 (2014), 189–195.
- [18] O. I. Reinov, Some Remarks on Approximation Properties with Applications, Ordered Structures and Applications, Trends in Mathematics, 2016, 371–394,
- [19] H. Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. USA, 35 (1949), 408–411.
- [20] M.C. White, Analytic multivalued functions and spectral trace, Math. Ann., 304 (1996), 665–683.

Санк-Петервургский государственный университет $Email\ address$: orein51@mail.ru