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BOUNDED GENERATION OF STEINBERG GROUPS

OVER DEDEKIND RINGS OF ARITHMETIC TYPE

BORIS KUNYAVSKĬI, ANDREI LAVRENOV, EUGENE PLOTKIN,
AND NIKOLAI VAVILOV

Abstract. The main result of the present paper is bounded elementary gener-
ation of the Steinberg groups St(Φ, R) for simply laced root systems Φ of rank
≥ 2 and arbitrary Dedekind rings of arithmetic type. Also, we prove bounded
generation of St(Φ,Fq[t, t

−1]) for all root systems Φ, and bounded generation of
St(Φ,Fq[t]) for all root systems Φ 6= A1.

The proofs are based on a theorem on bounded elementary generation for the
corresponding Chevalley groups, where we provide uniform bounds.

Introduction

In the present paper, we consider simply-connected Chevalley groups G =
Gsc(Φ, R), and the corresponding Steinberg groups St(Φ, R) over Dedekind rings
of arithmetic type. G is generated by the elementary root unipotents xα(r), α ∈ Φ,
r ∈ R, and we are interested in the classical problem of estimating the width of G
with respect to the generators xα(r). The width is defined as the smallest possible
m such as every element of G is representable as a product of m generators xα(r).
If there is no such m, we say that the width is infinite. If the width is finite, we
say that G is boundedly elementarily generated.

The problem of bounded generation has attracted considerable attention over
the last 40 years or so. We refer the reader to [KPV] containing a survey of this
long activity as well as some applications to Kac–Moody groups and model theory.

To make a long story short, given a reduced irreducible root system Φ of rank
≥ 2, a Dedekind ring of arithmetic type R, and a Chevalley group G = Gsc(Φ, R),
until now there were many cases where it was known that G is boundedly ele-
mentarily generated, and two kinds of general upper estimates for the elementary
width of G were available:

• explicit estimates depending on Φ and the fraction field of R;
• estimates depending on Φ alone in the case Φ = Al.
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Combining the methods of [KPV] and [Tr22], we are now able to come up with
a complete solution in the general case:

Theorem A ([KPV2]). Let Φ be a reduced irreducible root system of rank l ≥ 2,
Then there exists a constant L = L(Φ), depending on Φ alone, such that for any
Dedekind ring of arithmetic type R, any element in Gsc(Φ, R) is a product of at
most L elementary root unipotents. If the multiplicative group R∗ is infinite then
the restriction on the rank l ≥ 2 can be dropped.

An important — and unexpected! — aspect of this result is the existence of
explicit uniform bounds in the function case. In the number case the bounds
are also uniform, but if we wish to cover all R and not just those with infinite
multiplicative group R∗, they are not explicit. Note that for symplectic groups the
result is new even in the number case.

We will sketch the proof of Theorem A in Section 2. However, since the goal
of the present work is bounded generation for Steinberg groups, we intentionally
do not provide any computational arguments, especially taking into account that
in the most tricky case Φ = C2 they are long and tedious. We refer to [KPV2]
for all details and discussions of the proof of Theorem A, taking uniform bounded
generation for Chevalley groups for granted. Note, however, that for the sake
of completeness we collect in Theorem E all cases of Theorem A needed for the
treatment of Steinberg groups and provide a full proof.

At this point it is natural to ask whether Theorem A or maybe its weaker forms
can be generalised to Steinberg groups. This question was explicitly raised by
Alexei Myasnikov at the conference GAGTA 2022. The reason was that bounded
generation of Steinberg groups would have important model-theoretic applications.
It plays a crucial role in such problems as first order rigidity, elementary equivalence
of groups, Diophantine theory, and the like. So, having Theorem A for Chevalley
groups as a base, one can think about the similar properties for their coverings.

Again, we are interested in the bounded generation in terms of the set

X = {xα(r) | α ∈ Φ, r ∈ R}

of elementary generators (which we continue to denote by the same letter).

However, this case turned out to be much more challenging. Apart from the
bounded generation of the Chevalley groups themselves, it depends on the deep
results on the finiteness of the (linear) K2-functor, and on bunch of other difficult
results of K-theory, such as stability theorem for K2, centrality of K2, etc.

It is not clear how one could get uniform bounds in this case. Even with the
bounds that depend on R so far we could only prove it for the case when the root
system Φ is simply-laced , i.e., Φ = Al,Dl,El.

Theorem B. Let Φ be a reduced irreducible simply laced root system of rank ≥ 2,
and let R be a Dedekind ring of arithmetic type. If Φ = A2 assume additionally
that R∗ is infinite. Then St(Φ, R) is boundedly elementarily generated.
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The idea is to derive this result from Theorem A. It suffices to establish that the
kernel K2(Φ, R) of the projection St(Φ, R) → Gsc(Φ, R) is finite and central, and
thus bounded elementary generation of Gsc(Φ, R) implies that of St(Φ, R). Here
are the main sources on which we rely in this proof.

• The stable linear K2(R) is finite, for the function case this is proven by Hyman
Bass and John Tate [BaTa] and for the number case by Howard Garland [Gar].
(These finiteness results were generalised to higher K-theory by Daniel Quillen and
Günter Harder, see the survey by Chuck Weibel [W]).

• However, we need similar results for the unstable K2-functors K2(Φ, R). For
the linear case SL(n,R) there is a definitive stability theorem by Andrei Suslin
and Marat Tulenbaev [SuTu]. However, injective stability for Dedekind rings
only starts with n ≥ 4, so that for SL(3, R) one has to refer to Wilberd van
der Kallen [Ka81] instead, which accounts for the extra-condition in this case.

• For other embeddings there are no stability theorems in the form we need them
and starting where we want them to start. For instance, in the even orthogonal
case the theorem of Ivan Panin [Pan] starts with Spin(10, R), whereas we would
like to cover also Spin(8, R). In any case, there are no similar results for the
exceptional embeddings.

Thus, we have to prove a comparison theorem relating K2(Φ, R) to K2(A3, R).
This is obtained as a corollary of partial stability results for Dedekind rings devel-
oped by Hideya Matsumoto [Mat] and surjective stability of K2 for some embed-
dings, established by Michael Stein [St78] and the third author [Pl91, Pl98].

We also remark that the centrality of K2 for all Chevalley groups over arbitrary
rings is accomplished by the second author, Sergey Sinchuk and Egor Voronetsky,
also in collaboration [Lav, Sin, LS17, LS20, Vor, LSV].

• An essential obstacle in the symplectic case is that K2(Cl, R) is the Milnor–
Witt KMW

2 , rather than the usual Milnor KM
2 , as for all other cases (compare [Sus]

for an explicit connection between K2Sp(R) and K2(R)). As is well known, it may
fail to be finite, which means that our approach does not work at all in this case.
This does not mean that the result itself fails, but the proof would require an
entirely different idea.

But even for non-symplectic multiply laced systems, where our approach could
theoretically work, we were unable to overcome occurring technical difficulties
related to the K2-stability and comparison theorems. At least, as yet.

In contrast to Theorem B, in our second generalisation of Theorem A, we put
the restrictions on the ring rather than the root system.

Namely, using specific calculations of K2(Φ,Fq[t]) and K2(Φ,Fq[t, t
−1]) by Eiichi

Abe, Jun Morita, Jürgen Hurrelbrink and Ulf Rehmann [AbMo, Hur, MoRe, Reh]
we were able to establish similar results over Fq[t] and Fq[t, t

−1] also for the mul-
tiply laced systems, even the symplectic ones.
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Theorem C. Let Φ be a reduced irreducible root system, and R = Fq[t, t
−1] or

R = Fq[t]. In the latter case assume additionally that Φ 6= A1. Then St(Φ, R) is
boundedly elementarily generated.

The paper is organised as follows. In § 1 we recall notation and collect some
preliminary results. In § 2 we give a sketch of the proof of Theorem A. In § 3 we
recall some basic facts concerning K2(Φ, R) and in § 4 collect the necessary facts
concerning finiteness of K2 in the arithmetic case. In § 5 we prove comparison
theorems for K2(Φ, R) in the case of simply laced Φ, and thus prove Theorem B.
In § 6 we recall computation of K2 of polynomial rings, which imply Theorem C.
Finally, in § 7 we mention some further generalisations.

1. Notation and preliminaries

In this section we briefly recall the notation that will be used throughout the
paper and some background facts. For more details on Chevalley groups over rings
see [Va91] or [VaPl], where one can find many further references.

1.1. Chevalley groups. Let Φ be a reduced root system and W = W (Φ) be its
Weyl group. In our main results, Φ will be assumed irreducible, though in some
proofs one has to use subsystems that are not. As usual, we choose an order on
Φ and let Φ+, Φ− and Π =

{

α1, . . . , αl

}

be the corresponding sets of positive,
negative and fundamental roots, respectively. Further, we consider a lattice P
intermediate between the root lattice Q(Φ) and the weight lattice P(Φ). Finally,
let R be a commutative ring with 1, with the multiplicative group R∗.

These data determine the Chevalley group G = GP(Φ, R), of type (Φ,P) over
R. It is usually constructed as the group of R-points of the Chevalley–Demazure
group scheme GP(Φ,−) of type (Φ,P). In the case P = P(Φ) the group G is called
simply connected and is denoted by Gsc(Φ, R). In another extreme case P = Q(Φ)
the group G is called adjoint and is denoted by Gad(Φ, R).

Many results do not depend on the lattice P and hold for all groups of a given
type Φ. In all such cases, or when P is determined by the context, we omit any
reference to P in the notation and denote by G(Φ, R) any Chevalley group of type
Φ over R. However in some cases specific bounds may depend on P. Usually, we
work with a simply connected group, but in some cases it is convenient to work
with the adjoint group, which is then reflected in the notation.

In what follows, we also fix a split maximal torus T = T(Φ, R) in G = G(Φ, R)
and identify Φ with Φ(G, T ). This choice uniquely determines the unipotent root
subgroups, Xα, α ∈ Φ, in G, elementary with respect to T . As usual, we fix maps
xα : R 7→ Xα, so that Xα = {xα(r) | r ∈ R}, and require that these parametri-
sations are interrelated by the Chevalley commutator formula with integer coef-
ficients, see [C], [S]. The above unipotent elements xα(r), where α ∈ Φ, r ∈ R,
elementary with respect to T(Φ, R), are also called [elementary] unipotent root
elements or, for short, simply root unipotents.
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Further,

E(Φ, R) =
〈

xα(r) | α ∈ Φ, r ∈ R
〉

denotes the absolute elementary subgroup of G(Φ, R), spanned by all elementary
root unipotents, or, what is the same, by all [elementary] root subgroups Xα,
α ∈ Φ. For ǫ ∈ {+,−} denote

U ǫ(Φ, R) = 〈xα(r) | α ∈ Φǫ, r ∈ R〉 ≤ E(Φ, R).

1.2. Steinberg groups. Denote by St(Φ, −) the Steinberg group functor corre-
sponding to Φ. For Φ that does not have irreducible components ∼= A1, and a
commutative ring R the Steinberg group St(Φ, R) is a group defined by the set of
generators

{xα(r) | α ∈ Φ, r ∈ R}

subject to the Steinberg relations

• Additivity

xα(r)xα(s) = xα(r + s) for α ∈ Φ, r, s ∈ R,

• Chevalley commutator formula

(1) [xα(r), xβ(s)] =
∏

i,j∈N\0
iα+jβ∈Φ

xiα+jβ(Nαβij r
isj) for α, β ∈ Φ, β 6= −α, r, s ∈ R,

where, as usual, [g, h] = ghg−1h−1 denotes the left normed commutator, whereas
Nαβij ∈ Z are the structure constants of the Chevalley group Gsc(Φ, R).

The choice of the structure constants Nαβij ∈ Z and the order of factors in (1)
are not unique, and we fix any possible choice, see [VaPl, Va08] for many more
details and further references. It is not a problem to specify signs for classical cases,
see [B]. On the other hand in [Va01] one can find specific choice of the structure
constants Nαβ for E6, E7 and E8, corresponding to a positive Chevalley base (in
this case automatically i = j = 1, so that Nαβ11 = Nαβ are just the structure
constants of the corresponding Lie algebra). All structure constants Nαβij for F4

and G2 are tabulated in [VaPl].

• For A1 one needs another relation

wα(u)xα(r)wα(u)
−1 = x−α(−u−2r) for α ∈ Φ, u ∈ R∗, r ∈ R,

where

(2) wα(u) = xα(u)x−α(−u−1)xα(u).

Remark. If Φ does not have irreducible components ∼= A1 this extra relation follows
from additivity and the Chevalley commutator formula.
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1.3. Arithmetic case. Let F be a global field and S be a finite non-empty set of
places of F containing all archimedean places when F is a number field. Follow-
ing [BMS] we will say that

R = {x ∈ F | v(x) ≥ 0 ∀v 6∈ S}

is the Dedekind ring of arithmetic type defined by the set S. Obviously, R is indeed
a Dedekind domain, and one can canonically identify the maximal ideals of R with
the places outside S.

The following result proven by Matsumoto in [Mat, Théorème 12.7] explains
why we usually prefer to work with simply connected groups.

Lemma 1.1. Let R be a Dedekind ring of arithmetic type and Φ a reduced irre-
ducible root system of rank at least 2. Then

Esc(Φ, R) = Gsc(Φ, R).

In fact, for Φ = Al, Cl this result was established already by Hyman Bass, John
Milnor and Jean-Pierre Serre in [BMS]. Recently Anastasia Stavrova generalised
it to isotropic reductive groups and to polynomial rings over R, see [Sta, Corol-
lary 1.2].

2. Uniform bounded generation of Chevalley groups:

around the proof of Theorem A

In this section we sketch a proof of Theorem A.
Recall that the results of [Mor, MRS, Tr22, KMR] completely solve the prob-

lem of the uniform bounded elementary generation for the special linear groups
SL(n,R), n ≥ 3, — and when R∗ is infinite, even for SL(2, R).

Observe that the methods of [KPV] completely reduce the proof of similar
result for almost all other Chevalley groups, including even the symplectic groups
Sp(2l, R), l ≥ 3, to the case of Φ = A2.

The only case that does not follow rightaway from results of the above papers,
is that of Sp(4, R). The analysis of that case is longer and far too technical, its
inclusion would tilt the balance of the present paper. Therefore, below we give a
complete argument only for the cases needed for the proof of Theorem B, collecting
these cases in Theorem E. The proof for all other cases, with all details and explicit
bounds, is contained in [KPV2].

2.1. Tavgen rank reduction theorem. In most cases the reduction to A1 or A2

is based on the following cunning observation, whose idea goes back to the work
of Oleg Tavgen [Tav]. His trick was then generalised in [VSS] and [SSV]. The
following final form is proven in [KPV, Theorem 3.2].

Lemma 2.1. Let Φ be a reduced irreducible root system of rank l ≥ 2, and R be a
commutative ring. Let ∆1, . . . ,∆t be some subsystems of Φ, whose union contains
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all fundamental roots of Φ. Suppose that for all ∆i the elementary Chevalley group
E(∆i, R) admits a unitriangular factorisation

E(∆i, R) = U+(∆i, R)U−(∆i, R)U+(∆i, R) . . . U±(∆i, R)

of length N (not depending on i). Then the elementary group E(Φ, R) itself admits
unitriangular factorisation

E(Φ, R) = U+(Φ, R)U−(Φ, R)U+(Φ, R) . . . U±(Φ, R)

of the same length N .

Below, we essentially apply it to two cases, when all ∆i’s are A1, and when all
of them are A2.

2.2. The case when R∗ is infinite. The case where R has infinitely many units
and its field of fractions is a number field is completely solved, with very small
absolute constant. We cannot describe the whole chain of events here, and mention
all contributors. After the initial breakthrough by Maxim Vsemirnov [Vse], which
was a first unconditional result of this sort, not depending on the GRH, Aleksander
Morgan, Andrei Rapinchuk and Sury [MRS] succeeded in solving the number case,
with the bound L = 9. This bound was then improved to L = 8 by Bruce Jordan
and Yevgeny Zaytman [JoZa] (and can be further improved in the presence of finite
or real valuations in S).

Lemma 2.2. [JoZa] For any Dedekind ring of arithmetic type R in a number field
with the infinite multiplicative group R∗ any element in SL(2, R) is a product of at
most 8 elementary transvections.

Remark 2.3. In the paper presently under way the first author, Dave Morris and
Andrei Rapinchuk [KMR] improve the bound to L = 7 in the number case (which
we believe is the best possible and cannot be further improved, in general). Also,
they obtain a similar result in the function case, with the bound L = 8 (which, we
believe, can be further improved to L = 7).

Theorem D ([KMR]). For any Dedekind ring of arithmetic type R with the in-
finite multiplicative group R∗ any element in Gsc(Φ, R) is a product of at most
L = 8|Φ+| elementary unipotents.

Proof. Combine Lemma 2.1 with ∆i = A1, Lemma 2.2 and Remark 2.3. �

Thus, if we are not interested in actual bounds, but just in uniform bounded-
ness, one can restrict oneself to considering the Dedekind rings of arithmetic type
with finite multiplicative groups. In the number case, these are Z and the rings of
integers in imaginary quadratic number fields. Note that as discovered by Alexan-
der Trost [Tr22], in the function case for ranks ≥ 2 we do not have to distinguish
between rings with finite and infinite multiplicative group.
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2.3. The simply laced case and Φ = F4.

Lemma 2.4. [Tr22, Theorem 4.1] For each l ≥ 2, there exists a constant L =
L(l) ∈ N such that for any Dedekind ring of arithmetic type R, any element in
Gsc(Al, R) is a product of at most L elementary root unipotents.

Proof. By a theorem of Carter–Keller–Paige (redeveloped by Morris [Mor]), see
[CKP, (2.4)], bounded generation for groups of type Al, l ≥ 2, holds for Dedekind
rings R in number fields K, with a bound depending on l and also on the degree
d of K. But since for all degrees d ≥ 3 the existence of a uniform bound already
follows from Theorem D, we only need to take maximum of that, and the universal
bound for d = 1, 2.

Combining this result with the subsequent work of Trost [Tr22] on the function
field case, one obtains the result. �

Remark 2.5. In fact, in the sequel we only need the special case of the above result
pertaining to SL(3, R), which corresponds to Φ = A2. In the function case Trost
[Tr22] gave the estimate L(2) ≤ 65. No such explicit estimate is known in the
number case.

Since the fundamental systems of the simply laced systems and F4 are covered
by copies of A2, combining Lemma 2.1 with Lemma 2.4 one gets another stronger
form of Theorem A, now without the assumption that R∗ is infinite, but only in
the special case of simply laced systems of rank ≥ 2 and F4. This is the only part
of Theorem A on which Theorem B relies.

Theorem E. Let Φ be simply laced of rank ≥ 2 or Φ = F4 and R be any Dedekind
ring of arithmetic type. Then Gsc(Φ, R) is a product of at most L(2) · |Φ+| ele-
mentary unipotents.

The bound here is very rough, since L(2) is the number of elementary factors,
the number of unitriangular ones can be much smaller. Also, the use of stability
allows to get much better bounds, of the type L = L(2) + 4|Φ+|, where some
multiple of |Φ+| occurs as a summand, not as a factor.

2.4. Idea of the rest of the proof of Theorem A. To establish Theorem A for
the cases of Chevalley groups G(Φ, R) not covered by Theorem E, where Tavgen’s
trick played a crucial role, we use the arguments based on the surjective stability
of K1-functor, in the spirit of [KPV]. This way, we obtain the following reduction
theorem.

Lemma 2.6. Let R be a Dedekind ring of arithmetic type. Then (uniform) bounded
generation of the groups G(Φ, R), Φ 6= C2 follows from (uniform) bounded gener-
ation of the group G(A2, R). �

For instance, the case G(G2, R) follows from [KPV, Proposition 4.3]. By sta-
bility arguments, G(Bl, R) and G(Cl, R) (l ≥ 3) reduce to G(B3, R) and G(C3, R),
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respectively. The group G(B3, R) is treated as in [KPV, Section 6.2]. Somewhat
surprisingly, the case G(C3, R) can be reduced to G(A2, R), along the lines of
[KPV, Sections 5 and 6], using arithmetic lemmas of Carter and Keller [CaKe] in
the number case and of Trost [Tr22] in the function case. Actually, the idea of
such a reduction was contained already in Zakiryanov’s thesis, see [Zak], but the
authors of [KPV] have not realised this fact before rediscovering the same idea in
the general case in March 20231.

Note that in all cases we get absolute constants as bounds, depending only on
L(2) appearing in Lemma 2.4. Thus these bounds are explicit in the function case
and implicit in the case where R is a quadratic imaginary ring.

This finishes the proof of Theorem A in all cases except C2 which turns out to
be much more involved. It does not reduce to G(A2, R) and is settled in [KPV2]
by the same methods as in [Mor, Tr21, Tr22], using some results of [KPV]. As in
all other cases, the obtained bounds are in the form of absolute constants, which
are explicit in the function case.

3. K2 modeled on Chevalley groups

In this section we collect the classical results on K2(Φ, −) which we will use in
this paper.

There is a natural map from St(Φ, R) to Gsc(Φ, R) sending generators of the
Steinberg group xα(r) to elementary root unipotents xα(r) of the Chevalley group,
α ∈ Φ, r ∈ R. Following [St78], we denote

K2(Φ, R) = Ker
(

St(Φ, R) → Gsc(Φ, R)
)

.

Let R be a commutative ring. Following Steinberg, for α ∈ Φ, u ∈ R∗ we define
the elements

hα(u) = wα(u)wα(−1)(3)

of the Steinberg group St(Φ, R), where wα(u) is defined in § 1 (2), see [St71].
Further, for two invertible elements u, v ∈ R∗ we define the Steinberg symbol

{u, v}α = hα(uv)hα(u)
−1hα(v)

−1.

The following fact is well-known, see, for instance, [St73, Proposition 1.3].

Lemma 3.1. For a ring R and a reduced irreducible root system Φ elements
{u, v}α for u, v ∈ R∗, α ∈ Φ, are central in St(Φ, R) and belong to K2(Φ, R).

The following classical result is due to Matsumoto [Mat, Corollaire 5.11].

1It is wrongly claimed in [Zak] that Sp(4,Z) is not boundedly generated. As a result this
work has not been given the credit it deserves. In particular, it should have been cited in the
historical survey of [KPV].
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Lemma 3.2. Let k be a field, Φ be a reduced irreducible root system.
1) The group K2(Φ, k) is generated by {u, v}α for any fixed long root α ∈ Φ, and
all u, v ∈ R∗.
2) Let Φ be a non-symplectic reduced irreducible root system (i.e., Φ 6= A1, B2, Cl).
Consider any embedding A2 →֒ Φ on long roots. Then the induced map

K2(A2, k) → K2(Φ, k)

is in fact an isomorphism.
3) For a symplectic reduced irreducible root system C1 = A1, C2 = B2, or Cl, l ≥ 3,
consider any embedding A1 →֒ Cl on long roots. Then the induced map

K2(A1, k) → K2(Cl, k)

is in fact an isomorphism.

Remark 3.3. In fact, Matsumoto describes K2(Φ, k) in terms of generators and
relations in [Mat, Corollaire 5.11]. In modern terms, Matsumoto proved that
K2(Φ, k) coincides with Milnor KM

2 (k) for non-symplectic Φ and with Milnor–
Witt KMW

2 (k) for symplectic Φ. However, we will not need the explicit description
of relations in this paper.

We will also need the following stabilisation results. The next statement is a
particular case of the Suslin–Tulenbaev theorem, see [SuTu, Corollary 4.2].

Lemma 3.4. Let R be a Dedekind domain, then the natural map

K2(Al, R) → K2(Al+1, R)

is surjective for l ≥ 2 and injective for l ≥ 3.

For the root systems other than Al we only have the surjective stability part,
established by Stein [St78, Corollary 3.2, Theorem 4.1].

Lemma 3.5. Let R be a Dedekind domain. Consider the following embeddings of
root systems Ψ →֒ Φ:

• natural embedding Dl →֒ Dl+1 for l ≥ 3;
• natural embedding El →֒ El+1 for l = 6, 7;
• the embedding D5 = {α1, α2, α3, α4, α5} →֒ E6 (with numbering according
to Bourbaki [B, Table V]).

Then the induced map

K2(Ψ, R) → K2(Φ, R)

is surjective.

On the other hand, for Dedekind rings of arithmetic type with infinite multi-
plicative groups the bounds in surjective/injective stability can be improved by 1.
This was done by van der Kallen [Ka81, Theorem 1].
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Lemma 3.6. Let R be a Dedekind ring of arithmetic type with infinitely many
units. Then the natural map

K2(Al, R) → K2(Al+1, R)

is surjective for l ≥ 1 and injective for l ≥ 2.

Finally, we will need also another result by Stein claiming that surjective sta-
bility implies centrality of K2 [St71, Theorem 5.1].

Lemma 3.7. Let Π denote a set of simple roots in a reduced root system Φ. For
α ∈ Π, let Ψ ⊆ Φ be the subsystem generated by Π \ α. Then

K2(Φ, R) ∩ Im
(

St(Ψ, R) → St(Φ, R)
)

is a central subgroup of St(Φ, R) for any commutative ring R.

4. Stable linear K2

Recall that

K2(R) = lim
l→∞

K2(Al, R)

is the usual stable linear K2-functor for any ring R (cf. [W, Chapter III, Section 5]).
For a place v of a field F let κv denote the corresponding residue class field and

∂v : K2(F ) → κ∗
v

the corresponding residue homomorphism (also called tame symbol) sending gen-
erators {x, y}α of K2(F ) (see Proposition 3.2) to

(−1)v(x)v(y)
(

y v(x)

x v(y)

)

∈ κ∗
v,

see [W, Chapter III, Lemma 6.3]. We will need the following result due to
Christophe Soulé, see, for instance, [W, Chapter V, Theorem 6.8].

Lemma 4.1. Let R be a Dedekind domain whose field of fractions F is a global
field. Then there is an exact sequence

0 → K2(R) → K2(F )
⊕∂p
−−→

⊕

p

(R/p)∗ → 0,

where the first arrow is induced by the natural inclusion R →֒ F , and the sum is
taken over all non-zero prime ideals p of R.

Our proof of Theorem B heavily relies on the following classical result. In the
function case this is due to Bass and Tate [BaTa, Chapter II, Theorem 2.1]. In
the number case this was first established by Garland [Gar] by analytic methods
(see also [BaTa, Chapter II, Remark after Theorem 2.1]).
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Lemma 4.2. Let F be a global field. Then

H2 = Ker
(

K2(F )
⊕∂v−−→

⊕

κ∗
v

)

,

where the sum is taken over all finite places of F , is finite.

Remark 4.3. The case charF = p > 0 of Proposition 4.2 was generalised to higher
K-theory by Harder [Har, Korollar 3.2.3].

The following corollary is perhaps also well-known, however we do not know the
reference and provide an argument for the convenience of the reader.

Corollary 4.4. Let R be a Dedekind ring of arithmetic type defined by the set of
places S. Then K2(R) is finite.

Proof. By Proposition 4.1 we get an exact sequence

0 → K2(R) → K2(F )
⊕∂v−−→

⊕

v 6∈S

κ∗
v → 0.

Therefore we may consider K2(R) as a subgroup of K2(F ), and restricting ∂v to it
we get an exact sequence

0 → H2 → K2(R)
⊕∂v−−→

⊕

v∈S
finite

κ∗
v → 0,

where H2 is the group from Proposition 4.2. However, S is a finite set, κv is a
finite field for a finite place v, and H2 is finite by Proposition 4.2. �

We will denote by I(k) the fundamental ideal of the Witt ring of symmetric
bilinear forms W (k) of a field k, see [MH]. Following [Sus, MoRe] we denote
K2Sp(R) = lim

l
K2(Cl, R). We will need the following result due to Suslin [Sus,

Theorem 6.5].

Lemma 4.5. For any field k there is an exact sequence

0 → I3(k) → K2Sp(k) → K2(k) → 0.

5. Comparison theorems for K2: proof of theorem B

5.1. Simply laced root systems. The aim of this section is to prove the follow-
ing result, which, together with Theorem A (or, in fact, already with its special
case, Theorem E), implies Theorem B. We believe it is very interesting in its own
right, and may have further applications.

Theorem F. Let R be a Dedekind ring of arithmetic type, and let Φ 6= A1 be a
simply laced reduced irreducible root system (i.e., Φ = Al, Dl, El, l 6= 1). Assume
additionally that

either rk(Φ) ≥ 3 or R has infinitely many units.
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Then K2(Φ, R) is a central subgroup of St(Φ, R), and, moreover,

K2(Φ, R) = K2(R),

in particular, K2(Φ, R) is finite.

The above theorem was probably never published, but it may be mostly known
to experts. In any case, for Φ = Dl, l ≥ 5, it follows from a result by Panin [Pan,
Theorem 6.1]. Moreover, in the same paper Panin proves in [Pan, Theorem 9.1] a
similar stabilisation result also for higher orthogonal K-theory.

However, to cover also Φ = D4,E6,E7 and E8 we start with the following result.

Lemma 5.1. Let R be a Dedekind ring of arithmetic type, and let Φ denote a
simply laced reduced irreducible root system of rk(Φ) ≥ 3. Then there exists an
embedding A3 →֒ Φ such that the induced map

K2(A3, R) → K2(Φ, R)

is an isomorphism.

Proof. By Proposition 3.5 we conclude that there exists an embedding A3 →֒ Φ
such that the induced map

K2(A3, R) → K2(Φ, R)

is surjective. Let F be the field of fractions of R. By Proposition 3.2 we conclude
that the induced map

K2(A3, F ) → K2(Φ, F )

is an isomorphism. Moreover, by Proposition 3.4 we have K2(A3, R) = K2(R), and
therefore the natural map

K2(A3, R) → K2(A3, F )

is injective by Proposition 4.1. Consider the following commutative diagram:

K2(A3, R) K2(A3, F )

K2(Φ, R) K2(Φ, F ).

∼=

The claim follows by a simple diagram chase. �

Now we are all set to finish the proof of Theorem F.

Proof of Theorem F. For rk(Φ) ≥ 3 consider the embedding A3 →֒ Φ from Lemma 5.1
and use that K2(A3, R) = K2(R) by Proposition 3.4 to get the equality

K2(Φ, R) = K2(R).
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To prove centrality, use the surjectivity of the map K2(A3, R) → K2(Φ, R) for
rk(Φ) ≥ 4 or the surjectivity of the map K2(A2, R) → K2(A3, R) from Propo-
sition 3.4 together with Proposition 3.7. The finiteness of K2(R) follows from
Corollary 4.4.

For Φ = A2 the claim follows from Proposition 3.6 (together with Proposition 3.7
and Corollary 4.4). �

Theorem B is a direct consequence of Theorem A and Theorem F.

5.2. Multiply laced root systems. As we see in the next section, for multiply
laced root systems Φ the equality

K2(Φ, R) = K2(R)

may hold for some Dedekind rings R.
However, the following counter-example shows that it certainly fails in the sym-

plectic case, in general.

Lemma 5.2. For l ≥ 3 one has

K2(Cl, Z) 6= K2(Z).

Proof. Recall that K2(Z) = Z/2 (see, e.g., [M, Corollary 10.2]). However, the map
K2(Cl, Z) → K2(Cl+1, Z) is surjective by [St78, Corollary 3.2], and

lim
l
K2(Cl, Z) = K2Sp(Z) = Z,

see, e.g., [Sch, Theorem 2.1]. �

Thus, there is no hope to prove the symplectic analogue of Theorem B along
the same lines. This does not mean that bounded generation of St(Cl, R), l ≥ 3,
fails. But if it holds, its proof would require some completely different ideas.

6. K2 for polynomial rings: proof of Theorem C

In this section we consider the polynomial rings R = Fq[X ] and R = Fq[X, X−1].
Bounded generation of the Chevalley groups themselves in these cases is proven
in [KPV]. On the other hand, for these rings K2(Φ, R) is generated by the usual
Steinberg symbols {u, v}α, u, v ∈ R∗, which allows one to explicitly calculate it.
Observe that this is rarely the case for more general Dedekind domains, where one
needs higher symbols.

Recall that I(k) denotes the fundamental ideal of the Witt ring of symmetric
bilinear forms of a field k (see [MH]). We will use the following well-known facts.

The first statement below is the [second] Steinberg theorem, it is proven, e.g., in
[S] or in [M, Corollary 9.13]. For the second statement see, e.g., [MH, Chapter IV,
Lemma 1.5].

Lemma 6.1. Let Fq be a finite field. Then

1) K2(Fq) = 0;



BOUNDED GENERATION OF STEINBERG GROUPS 15

2) I2(Fq) = 0.

The next result is an immediate corollary of a result by Rehmann [Reh].

Lemma 6.2. Let R = Fq[X ] be the polynomial ring over a finite field, Φ any
reduced irreducible root system. Then

K2(Φ, R) = K2(R) = 0.

Proof. For any field k the natural embedding induces an isomorphism

K2(Φ, k) ∼= K2(Φ, k[t])

by [Reh, Korollar zu Satz 1]. It remains to use that K2(Fq) = 0 = I3(Fq) by
Proposition 6.1, and apply Proposition 4.5. �

The key role in the proof of Theorem C is played by the following observation
of the second author and Sinchuk, see [LS20, Lemma 2.2], which in turn relies on
deep results of Hurrelbrink, Abe and Morita.

Lemma 6.3. For an arbitrary field k and a non-symplectic root system Φ there is
an exact sequence of abelian groups

0 → K2(Φ, k) → K2(Φ, k[X, X−1]) → k∗ → 0

split by the map
{X, −}α : k

∗ → K2(Φ, k[X, X−1])

for any fixed long root α ∈ Φ. In particular, the natural embedding induces an
injective map

K2(Φ, k[X, X−1]) →֒ K2(Φ, k(X)).

Proof. Since K2(Φ, F ) = K2(F ) for any field F by Proposition 3.2, the second
statement follows from the first one.

Indeed, the map K2(k) → K2(k(X)) is injective, e.g., by Milnor’s theorem [W,
Chapter III, Example 6.1.2, Theorem 7.4], and k∗ → K2(k(X)) is injective as a
splitting to the residue homomorphism ∂X corresponding to an order of the zero
or the pole at X = 0 (see Section 4, cf. also [LS20, Proof of Lemma 2.2]).

The first statement is proven for Φ 6= G2 in [Hur, Satz 3] (cf. [LS20, Lemma 2.2],
Proposition 3.2). For Φ = G2 consider the following commutative diagram

K2(A2, k[X, X−1]) K2(G2, k[X, X−1])

K2(A2, k(X)) K2(G2, k(X)),
∼=

where the horizontal arrows are induced by the natural embedding A2 →֒ G2 as a
set of long roots.

Since K2(G2, k[X, X−1]) is generated by {u, v}α for u, v ∈ k[X, X−1]∗, and
α ∈ G2 a fixed long root by [AbMo, Corollary 6], we conclude that the top hor-
izontal arrow is surjective. The bottom horizontal arrow is an isomorphism by
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Proposition 3.2. The injectivity of left horizontal arrow is already discussed above.
Therefore, a simple diagram chase shows that the top horizontal arrow is in fact
an isomorphism. �

Modulo this results we can now summarise the Hurrelbrink, Abe–Morita, and
Morita–Rehmann as follows.

Lemma 6.4. Let R = Fq[X, X−1] be the Laurent polynomial ring over a finite
field, Φ any reduced irreducible root system. Then K2(Φ, R) is a central subgroup
of St(Φ, R), and, moreover,

K2(Φ, R) = K2(R) = F
∗
q .

Proof. For any field k there is an isomorphism

K2(Φ, k[X, X−1]) ∼= K2(k)⊕ k∗

for Φ 6= Cl by Lemma 6.3, and

K2(Cl, k[X, X−1]) ∼= K2Sp(k)⊕ P(k)

where P(k) = k∗ ⊕ I2(k) for l ≥ 1 by [MoRe, Theorem B]. It remains to observe
that I2(Fq) = 0 = K2(Fq) by Proposition 6.1, and therefore (using Proposition 4.5)
one has

K2(Φ, R) = K2(R) = F
∗
q .

To prove the first statement, observe that K2(Φ, k[X, X−1]) is generated by the
Steinberg symbols {u, v}α for u, v ∈ k[X, X−1]∗ by [AbMo, Corollary 6], in par-
ticular, it is a central subgroup of St(Φ, k[X, X−1]) by Proposition 3.1. �

Now Theorem C is a direct consequence of [KPV, Theorem A and Theorem C]
and Propositions 6.2, 6.4.

7. Concluding remarks

Here we mention some eventual generalisations of the results of the present
paper.

• Let I E R be an ideal of R. In the present paper we addressed the absolute
case I = R alone. However, it makes sense to ask similar questions for the relative
case, in other words for the relative elementary subgroups E(Φ, R, I) of level I E
R. (Unlike the absolute case, E(Φ, R, I) does not necessarily coincide with the
congruence subgroups G(Φ, R, I) of the same level.)

The expectation is that for E(Φ, R, I) one can get similar uniform bounds in
terms of the elementary conjugates

x−α(r)xα(s)x−α(−r), α ∈ Φ, s ∈ I, r ∈ R.

Otherwise, one could look at the true = unrelativised elementary subgroup
E(Φ, I) of level I generated by xα(s), α ∈ Φ, s ∈ I, and ask a similar question in
terms of the elementary generators of level I.
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Problem 1. Establish analogues of Theorem A for the elementary groups E(Φ, I)
and E(Φ, R, I) of level I, with uniform bounds not depending on either R or I.

Some partial results in this direction for classical groups are obtained by Sergei
Sinchuk and Andrei Smolensky [SiSm] and by Pavel Gvozdevsky [Gv23], but their
bounds are not uniform. As a more remote goal one could think of generalisations
to birelative subgroups, see [HSVZ] for this context.

• It is known that bounded elementary generation is closely related to many
other flavours of bounded generation, including, in particular, finite width in com-
mutators.

Namely, Alexei Stepanov [Ste] has discovered that there exists a universal bound
L = L(Φ), depending on Φ alone, such that the commutators [x, y], x ∈ G(Φ, R),
y ∈ E(Φ, R) have elementary width ≤ L over an arbitrary commutative ring R.
(Previously in [SiSt] and [StVa] similar results were proven for finite-dimensional
rings, with the bound L depending on Φ and dimension dim(R)).

Thus, for all Chevalley groups bounded elementary generation and bounded
commutator width are equivalent! Morally, this says that there are very few com-
mutators in x ∈ G(Φ, R), not much more than elementary generators.

But of course the actual bound for commutator width will be much smaller
than the elementary width. So far, using the results of Smolensky [Smo] we were
able to prove that for a Dedekind ring of arithmetic type R with the infinite
multiplicative group R∗ every element of Gsc(Φ, R) is a product of not more than
4,5,6 or 7 commutators, depending on the type Φ and on whether R is a number
ring or a function ring, this result is contained in [KPV2].

• Above, Theorem F is stated only for simply laced root systems. But there is
very strong evidence that suggests that the same is true for all non-symplectic root
systems. We strongly believe in the following statement and are tempted to call
it a conjecture.

Problem 2. Let R be the Dedekind ring of arithmetic type with infinitely many
units and Φ be a reduced irreducible non-symplectic root system (i.e., Φ 6= A1, B2, Cl).
Then K2(Φ, R) is a finite central subgroup of St(Φ, R).

In particular, St(Φ, R) is boundedly generated by the set X = {xα(r) | r ∈
R, α ∈ Φ}.

Remark 7.1. The centrality of K2(Φ, R) in fact holds for any commutative ring R
and any reduced irreducible root system Φ of rank at least 3. This result was first
proven in [Ka77] for Φ = Al, and then in [Lav, Sin, LS17, Vor, LSV] for the other
root systems. However, if Φ has rank 2 then as shown in [Wen] centrality may fail
even for some very nice rings.

As Proposition 5.2 shows, one cannot expect an analogue of this to hold in the
symplectic case. However, one can still hope that St(Cl, R), l ≥ 3, is boundedly
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generated and could try to approach it by other means. We state the following
problem.

Problem 3. Let R be a Dedekind ring of arithmetic type with infinitely many
units. Is St(Cl, R) boundedly elementarily generated?

• Yet another aspect is that Theorem B is much weaker than Theorem A in that
the bound depends on the size of K2(R). The natural question arises, whether
there is a uniform bound in this case too? However, it seems that an answer to
this question is presently out of range, and in any case should involve some hard
core arithmetic.
Acknowledgements. We are grateful to Nikolai Bazhenov, Sergei Gorchinsky, Alexei
Myasnikov, Denis Osipov, Ivan Panin, Victor Selivanov, and Dmitry Timashev for
useful discussions of various aspects of this work and [KPV2].
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