
CYBERNETICS AND PHYSICS, VOL. 12, NO. 1, 2023, 42–50

FREQUENCY-INDEPENDENT SMARTPHONE
PERIPHERALS ENERGY CONSUMPTION ESTIMATION

Ilya Kuznetsov
Department of System Programming

Saint Petersburg State University
St. Petersburg, Russia

kuznetsov.ilya.alexandrovich@gmail.com

Vladislav Miroshnikov
Department of System Programming

Saint Petersburg State University
St. Petersburg, Russia

vladislaw.miroshnikov@gmail.com

Stanislav Sartasov
Department of System Programming

Saint Petersburg State University
St. Petersburg, Russia

Stanislav.Sartasov@spbu.ru

Article history:
Received 11.11.2022, Accepted 25.12.2022

Abstract
The power consumption of mobile devices is a hot

topic these days, and it is important to address it when
developing applications. One of the most popular ways
to measure it is accessing internal sensors using Android
Debug Bridge (ADB). We discovered that measurement
frequency may skew the power readings. Based on this
approach we propose our own algorithm for calculating
smartphone energy consumption constants — the power
in milliamperes at nominal voltage for different periph-
erals states. Our algorithm takes measurement frequency
bias into account, and its results are compared with the
method previously published in literature as well as the
baseline data from power profile. We conclude that the
developed approach provides better estimation.

Key words
Android, Power Profile, Energy Consumption, Power

Constants, Wi-Fi, Bluetooth.

1 Introduction
Our time is unimaginable without mobile devices. Due

to their high portability and versatility, smartphones,
tablets, and smartwatches are consistently spreading
throughout the world. In 2021 there were already more
than 6.3 billion smartphone users, and in 2022 this figure
is expected to exceed 6.6 billion people [Statista, 2021b].
Today, the most common operating system for mobile
devices is Android [Statcounter Global Stats, 2022].

The battery capacity of mobile devices is limited, so

the issue of evaluating and optimizing power consump-
tion is relevant. On the hardware side, device manufac-
turers apply more advanced technologies to create high-
capacity batteries and install sensors to monitor power
consumption. Software manages the power consumption
of device modules based on monitoring using various al-
gorithms. The software also allows obtaining power con-
sumption models and profiles, as well as to perform its
refactoring [Sahin et al., 2012].

From a practical standpoint estimating energy con-
sumption might be simpler than directly measuring it be-
cause no additional metering hardware is required. Such
estimation might be done as a sum of the time various
peripherals spent in particular power states multiplied
on power constants presented in the device power pro-
file. By convention [Google, 2009] the manufacturers
are obliged to provide these values, but in most cases
this requirement is ignored. Therefore, the task of deter-
mining constants when they are absent is a relevant and
important one, and various algorithms and approaches
exist to solve it.

In our research we concentrate on determining the
power consumption constants and building an energy
profile for Wi-Fi and Bluetooth modules as they are
among the most battery consuming peripherals. While
this task was previously solved by Saksonov [Saksonov,
2014], it was found that Android Debug Bridge (ADB)
[Android doc., 2022] — a de-facto standard software
tool to get information about the energy used by smart-
phone peripherals — requires well-thought measure-
ment methodology in order not to skew the power read-
ings. Based on this consideration we present our own

CYBERNETICS AND PHYSICS, VOL. 12, NO. 1, 2023 43

approach to estimate power constants and compare them
both with baseline data from power profile and the re-
sults obtained from Saksonov’s algorithm (SA).

This paper is organized as follows. Section 2 gives an
overview of the different methods for obtaining power
consumption information, the power profile of the device
and approaches to calculate energy consumption con-
stants. Section 3 contains a research on the ADB tool
and an experiment showing dependence between power
reading frequency and the readings themselves. Sec-
tion 4 experimentally investigates the found dependence.
Section 5 describes our approach to calculate power con-
sumption constants of the smartphone. Its results are
compared with SA and power profile constants in Sec-
tion 6. Section 8 gives general conclusion of the research
and further plans.

2 Background
2.1 Methods to obtain energy consumption data

Energy consumption may be either measured or esti-
mated. In both cases one should first obtain raw con-
sumption data and then either calculate the end result or
make an estimation model (i.e. determine coefficients
for weighted sum). When working with Android OS
there are three methods to obtain this raw data: through
external measurement device, through Android OS API
calls or through ADB.

External measurement device While the exact device
might differ from paper to paper, its modus operandi is
the same. For example, in [Saksonov, 2014] a Yoctopuce
Yocto-Amp USB Electrical Sensor [Yoctopuce, 2022]
ammeter was used to measure the power consumption of
the device modules, which can be programmed to per-
form a specific test scenario. Other ammeters or more
functional multimeters can also be used such as Mon-
soon power monitor [Monsoon Solutions, Inc., 2022].
External measuring devices have a considerable disad-
vantage: obtaining energy consumption data requires di-
rect physical intervention with the device. Many modern
devices do not allow access to the battery without special
preparations.

Constructing a device energy consumption model us-
ing Android OS API calls As in the PowerTutor API
[PT, 2011], information on device modules power con-
sumption in different states can be obtained from the cor-
responding API calls. Then, by correlating the measured
power consumption with the pre-defined data, namely
peripherals hardware power states, a power consump-
tion model of the device is constructed [Zhang et al.,
2010]. For example, for the Wi-Fi module pre-defined
power states includes uplink channel rate, uplink data
rate and packets transmitted per second. The disadvan-
tages of this approach are that under Android 7.0 (An-
droid API Level 24) and higher this API requires supe-
ruser access rights, and many system calls are marked as

“Deprecated”.
In the article [Hu et al., 2018] is also proposed an ap-

proach with construction of the Android device energy
consumption model. The authors developed an algo-
rithm that allows to perform a ”lightweight” analysis and
prediction of the Android application energy consump-
tion. This method does not require the source code of the
application, but allows users to perform tooling and im-
plement in the APK file a special ”monitoring” calls that
provide an ability to log method calls and API of the ap-
plication. Next, based on linear regression analysis and
using ADB calls, the energy consumption is predicted at
the Method Level and API Level of the application un-
til the desired accuracy is achieved using three statistical
metrics: the multiple correlation coefficient, the average
value of relative error, and the standard deviation of rel-
ative error.

Android Debug Bridge ADB is a command line tool
that allows interaction with the smartphone and provides
access to UNIX shell for running various commands on
the device. The ADB API is supported and receives up-
dates in the most recent versions of Android OS. How-
ever, its power readings are as precise as on-board power
sensors.

In the end, ADB is a good enough alternative for es-
timating power consumption constants when an external
device is not available.

The command adb shell dumpsys
batterystats outputs information about the
power consumption of the modules as well as their con-
sumption in the context of each process [Android doc.,
2021]. This includes general information about how
much power the respective module has consumed, for
how long it has been running, and some other data with
a report from the RESET point, which is responsible for
resetting the device’s battery consumption statistics. It is
automatically set when fully charged, but can also be set
manually with the adb shell command dumpsys
batterystats --reset.

Attention should be paid to the Statistics
since last charge block. It contains informa-
tion about the energy consumed during Wi-Fi and
Bluetooth operation. The data is stored in the
fields Wi-Fi Battery drain and Bluetooth
Battery drain respectively.

For example, on a Samsung Galaxy S9+ (Android API
Level 28) test device, the following result was obtained
after outputting the information with the command.
WiFi Battery drain : 12.363808 mAh
Bluetooth Battery drain: 1.86 mAh
After resetting the statistics the field values are

set to zero or not displayed at all until actual con-
sumption is shown. Below are the values af-
ter using adb shell dumpsys batterystats
--reset command with Wi-Fi and Bluetooth enabled
on the same test device.
WiFi Battery drain : 0.101896 mAh

44 CYBERNETICS AND PHYSICS, VOL. 12, NO. 1, 2023

Bluetooth Battery drain: 0.0506 mAh
The next important output block is Estimated

power use (mAh). It shows a wide range of power
consumption values, including information for the var-
ious peripherals of the device, as well as information
about each individual process, exactly how much the
CPU, Sensor, and many other modules, including Wi-Fi
and Bluetooth, are consuming in the context of its op-
eration. In addition, Wi-Fi and Bluetooth are presented
here as processes, and it’s possible to see detailed in-
formation for them, which extends the Statistics
since last charge block. All data here is also
counted from the RESET point.

After RESET, with Wi-Fi and Bluetooth enabled, the
output on a test device is as follows.
Wifi: 0.00228 (cpu=0.000645

wifi=0.00164),
Bluetooth: 0.001947 (cpu=0.000967

bt=0.00098).
In the article [Armendáriz Irigaray, 2019] was applied

the ADB tool approach. In this paper is considered the
creation of an application that allows users to evaluate
the power consumption of different modules in certain
test scenarios. For example, to test the Wi-Fi module was
implemented a test scenario with a 500 MB file transfer
via Dropbox. For each of the test scenarios, 30 runs are
performed and, using the ADB API calls, the average
power consumption value is collected and displayed.

2.2 Energy profiles of devices
Power Profile (power profile.xml) is an XML

file provided by the manufacturers in a specific direc-
tory containing constant values for various peripherals’
energy consumption in a specific Android device. If a
particular manufacturer doesn’t provide those values, the
content of this file is initialized with default values from
Google [Google, 2009]. The profile specifies the power
in milliamperes (mA) at nominal voltage.

The main focus of this article are Wi-Fi and Bluetooth
modules in Android devices as they are actively used in
everyday life [Statista, 2021a] [Bluetooth, 2021]. Ac-
cording to the power profile structure, the following en-
ergy constants are defined which correspond to different
peripherals states:

wifi.on Power consumed when the Wi-Fi module is
on but not transmitting or receiving data. According to
Google’s recommendations, this value can be measured
by the difference between the power consumption when
the system is suspended with Wi-Fi turned on and turned
off.

wifi.scan Power consumed during Wi-Fi access point
scanning.

wifi.active Power used when transmitting or receiving
data over Wi-Fi.

bluetooth.on Power when the Bluetooth module is
switched on and in search mode for available devices,
but not connected to any device.

bluetooth.active Power when receiving or transmit-
ting data via Bluetooth.

2.3 Approaches to determine energy consumption
constants

Several other algorithms are described in the litera-
ture to determine power constants for specific smart-
phone modules. A power model was shown to provide
good estimations for Wi-Fi and GPS modules [Bareth,
2012]. CPU power consumption can be estimated with
non-linear model [Myasnikov et al., 2021]. However,
a direct predecessor for this research is SA [Saksonov,
2014], and in order to determine the energy consumption
constants using this method, the following steps must be
followed:

1. Measure the data at the selected sampling rate using
external measuring device or ADB.

2. Calculate the mean a and the standard deviation s
from the data.

3. All values that are not within the interval [a− s; a+
s] are no longer considered.

4. Calculate the expectation of the points c that are in
part of the segment [a− s, a]. The resulting value is
the power consumption in mAh, then it is converted
to mA to match the standard units for the power pro-
file.

3 Android Debug Bridge and Sampling Rate Influ-
ence

3.1 Reasoning behind experimentation
The phenomenon under discussion was first encoun-

tered when building an energy consumption estimation
model for Wi-Fi and Bluetooth peripherals for a broader
research. Initially, SA was chosen to evaluate energy
consumption constants for each module state, and the
following steps were taken to ensure the test scenario
power metering will provide proper values.

In the end, different constant values were obtained in
different experiments, and after ruling out the possibility
of mathematical or algorithmic error we’ve found that
the notable methodological difference between original
SA and our scripts was ADB sampling rate. Thus, we
decided to investigate the power consumption of Wi-
Fi and Bluetooth modules in different operating modes
with adb shell dumpsys batterystats com-
mand over a fixed time interval at different sampling
rates.

CYBERNETICS AND PHYSICS, VOL. 12, NO. 1, 2023 45

3.2 Experimental methodology
A test scenario was created to test each specific mod-

ule energy state for 60 seconds, and multiple test runs
were conducted for a specific set of sampling rates. The
following list was selected based on preliminary obser-
vations (values are presented in Hz from highest to low-
est): 4, 2, 1.33, 1, 0.66, 0.5, 0.4, 0.33, 0.28, 0.25, 0.22,
0.2, 0.16, 0.14, 0.12, 0.11, 0.1. The number of measure-
ments was calculated as frequency multiplied by 60.

To reduce the noise from background processes and
other peripherals the following steps were taken:

1. Put all applications, except those directly involved
in the experiment, into (deep) sleep mode, prohibit-
ing any background activity and sending notifica-
tions.

2. Disabling mobile phone communication, activating
air mode.

3. Disabling device charging using adb shell
dumpsys battery unplug command.

4. Disconnect device screen using adb shell
input keyevent command 26.

5. Enabling only the module under test to prevent
components from affecting each other. This ac-
tion is performed with the adb shell svc
[module] enable command.

We consider those steps to be in line with other works
in the field, and it was experimentally verified that on
the two tested devices Samsung Galaxy S5 (Android API
Level 23) and Samsung Galaxy S9+ (Android API Level
28) a “clean” zero is displayed in the relevant fields when
no power consumption by the modules is present, or the
fields equivalently remain hidden.

An appropriate bash script was written for each
test case. It performs isolation steps and then col-
lects measurement results at time points correspond-
ing to sampling rate. Power consumption values
are extracted from Wi-Fi Battery drain and
Bluetooth Battery drain fields for the module
under examination.

For each sampling rate appropriate regression lines ex-
pressing the best prediction of the power consumption
dependent variable on the time point independent vari-
able were constructed, as well as the confidence intervals
showing the estimate with a given confidence interval of
95%.

All test runs were performed on a Samsung Galaxy
S9+ device (Android API Level 28).

3.3 Experimental results
Testing the Wi-Fi module in wifi.active mode The
Wi-Fi module was switched on, the device was con-
nected to the network, and then the YouTube broad-
cast was played at 1080p resolution and the screen was
switched on, which required the video to be played back.
There was no additional delay before testing, as the Wi-
Fi scanning takes place before connecting to the network
and therefore could not be affected in this experiment.

The following graphs were plotted using regression
analysis and confidence intervals for the sampling rates
from 0.1 to 4 Hz. For other frequencies similar construc-
tion was performed.

The resulting regression lines show that energy con-
sumption over time may be approximated as a linear
function, but the slope is different for each sampling rate.

Figure 1. Information on Wi-Fi module power consumption in
wifi.active at a sampling rate of 4 Hz

Figure 2. Information on Wi-Fi module power consumption in
wifi.active mode at a sampling rate of 2 Hz

Testing the Wi-Fi module in wifi.on mode The de-
vice had Wi-Fi on, was not connected to the network and,
unlike the previous experiment, had a 30-second time in-
terval to skip the scan, which starts automatically when
Wi-Fi is switched on.

Testing the Wi-Fi module in wifi.scan mode This
mode has not been tested as there is no command to scan
Wi-Fi networks for the specified Android API level.

46 CYBERNETICS AND PHYSICS, VOL. 12, NO. 1, 2023

Testing the Bluetooth module in bluetooth.on mode
The device had Bluetooth on and was not connected to
the points, with a time interval of 30 seconds to skip
the scan, which starts automatically when Bluetooth is
switched on.

Testing the Bluetooth module in bluetooth.active
mode The Bluetooth module on the device was
switched on and it was connected to a wireless portable
audio system in playback mode of the pre-loaded audio.
A time interval of 30 seconds is unnecessary as the Blue-
tooth points are scanned before they are connected and
therefore could not be reflected in this experiment.

We omit here graphs for wifi.on, bluetooth.on
and bluetooth.active test cases for the sake of
brevity, but a trend similar to wifi.active exper-
iment was observed: the higher sampling rate is, the
higher recorded power consumption.

3.4 Conclusions for experiments
First and foremost, our experiments show that energy

consumption over time may be reliably approximated by

Figure 3. Information on Wi-Fi module power consumption in
wifi.active mode at a sampling rate of 1 Hz

Figure 4. Information on Wi-Fi module power consumption in
wifi.active mode at a sampling rate of 0.5 Hz

a linear function for each of the peripherals’ states we

were able to conduct experiments for. While real-world
scenarios seldom use Wi-Fi or Bluetooth for data trans-
fer for the entire scenario duration, slope coefficient is a
good upper bound estimate.

Second, qualitative analysis of our results is straight-
forward and in a sense self-evident: increased sampling
rate introduces more overhead from sampling tool itself
— ADB in our case. However, our experiments also
allow us to investigate this relationship in quantitative
way — plotting of regression lines slope coefficients as
a function of frequency will be indicative.

4 Relation between ADB overhead and sampling
rate

To conduct a quantitative analysis, another set of bash
scripts was written as an extension of previous ones and
the same preparation steps as described in Section 3.2
were done. This time, however, the experiment was run
on two test devices: Samsung Galaxy S21 Ultra (An-
droid API Level 30) and Sony ZL (Android API Level
22). We assumed that difference in particular peripher-
als model and Android OS versions could be indicative
whether relation between sampling rate and ADB over-
head is the same or similar among different smartphones
or not.

For each of the states wifi.on, wifi.active,
bluetooth.on, bluetooth.active testing was
conducted at the frequencies shown in the Table 1 be-
low. Experiments in wifi.scan mode were not con-
ducted due to the absence of commands for the specified
Android API levels.

To improve the accuracy of the experiment, 5 test runs
were performed for each frequency, and the slope coef-
ficient for each regression line was calculated. Then for
each frequency the mean and median of the slope were
calculated. We chose two modes of calculation because
5 values obtained for each frequency allow to average
its slope coefficient in order to minimize the external ef-
fects in different ways in addition to the experiment’s
isolation.

Figure 5. Information on Wi-Fi module power consumption in
wifi.active mode at a sampling rate of 0.1 Hz

CYBERNETICS AND PHYSICS, VOL. 12, NO. 1, 2023 47

Table 1. Sampling rates and number of measurements per 30 seconds
for one test run

Sampling rate (Hz)
Number of measurements

(pcs.)

10 300

5 150

3.33 100

2.5 75

2 60

1.67 50

1.43 42

1.25 37

1.11 33

1 30

0.91 27

0.83 25

0.77 23

0.71 21

0.67 20

0.625 18

0.59 17

0.56 16

0.52 15

0.5 15

Figure 6. Relation between the slope of the power consumption re-
gression line and measurement frequency in wifi.on mode (SG
S21 mean)

Figure 7. Relation between the slope of the power consumption re-
gression line and measurement frequency in wifi.on mode (SG
S21 median)

Figure 8. Relation between the slope of the power consumption re-
gression line and measurement frequency in wifi.on mode (Sony
ZL mean)

Figure 9. Relation between the slope of the power consumption re-
gression line and measurement frequency in wifi.on mode (Sony
ZL median)

48 CYBERNETICS AND PHYSICS, VOL. 12, NO. 1, 2023

Figure 10. Relation between power consumption constant and sam-
pling rate for wifi.on state (mean/mean)

The results were plotted using linear and exponential
regression analysis. We chose exponential function over
power functions because the researched frequency inter-
val is compact, and exponential regression could produce
similar results to power regression while at the same time
being more generic. These were extrapolated at the point
of intersection with the ordinate axis based on the exper-
imental results from Section 3.3.

Again, for the sake of brevity, we are showing only
the experiments for wifi.on state. Other test sce-
narios such as wifi.active, bluetooth.on and
bluetooth.active follow a similar trend. Results
for Samsung Galaxy S21 Ultra (Android API Level 30)
are drawn in Fig.6-7, and results for Sony ZL (Android
API Level 22) are drawn in Fig.8-9.

We take a special note on points where regression lines
intersect Y-axis. While these points cannot be obtained
physically as they correspond to a sampling rate of 0 Hz,
that is, an estimation where no samples were taken at all,
they are nonetheless important as they show a hypothet-
ical peripheral power consumption without using ADB.
Therefore, by constructing regression lines and evaluat-
ing which one better approximates obtained slope val-
ues, we could also extrapolate it to obtain “clean” pe-
ripheral power consumption in a particular state.

Starting at 2 Hz linear regression gives the closest ap-
proximation compared to exponential regression on both
devices, which approximates better at low frequencies.
This is also confirmed by the determination coefficients
shown in the graphs. As linear regression demonstrates
the maximum likelihood ratio, in this set of experiments
we choose it to determine the power constant for a pe-
ripheral state.

While the presented graphs tend to be better approx-
imated with linear regression, in some cases extrapola-
tion from exponential regression might provide better
results. In Fig.6 linear regression intersects the Y-axis
close to zero which is not feasible from a physical stand-

point, and exponential regression provides better esti-
mation in this case. Anecdotal evidence suggests that
for older smartphone models linear increase in sampling
rate results in exponential increase in power consump-
tion, making linear regression not applicable.

Overall, as a rule of thumb to reduce the noise from
higher frequencies we suggest constructing regression
lines based on points from 0.5 to 2 Hz.

5 Frequency-independent algorithm for calculating
energy constants

5.1 Algorithm description
Based on the previous sections we propose the follow-

ing algorithm to take into account energy measurement
bias occurring at a particular measurement frequency, es-
timate energy constants and construct the power profile
of the device if it is not available. Note that while this
algorithm as initially developed for Wi-Fi and Bluetooth
modules we consider it to be general enough to be used
for other peripherals as well. Each peripheral state en-
ergy constant should be determined by a separate run of
an algorithm.

1. Create a test case for the selected peripheral energy
state (i.e. continuous data transfer via Bluetooth)
which records energy consumption of a peripheral
at a selected sampling rate.

2. Run test case n times for each of the sampling fre-
quencies specified in Table 1.

3. From all recorded energy consumption readings cal-
culate power rate by dividing consumed energy to its
timestamp from the beginning of the test run. Find
mean or median power rate for the test run.

4. Find mean or median power rate among test runs for
a selected sampling rate.

5. Construct a regression line (linear or exponential)
for power rates at sampling rates and extrapolate
“clean” power rate value at 0 Hz.

Our experiments show that selecting the same aver-
aging approach at both steps 3 and 4 (“mean/mean” or
“median/median”) produces the most consistent results
comparing with SA approach and taking into account
power profile of the device, which is also confirmed by
the maximum likelihood ratio obtained in the regression
analysis.

5.2 Example of calculation
As an example, we’ve written a bash script for the

described algorithm which also includes the aforemen-
tioned isolation steps and assume that n is 5. The ex-
periment took place on a Sony ZL device (Android API
Level 22), and it has a power profile initialized by the
manufacturer.

The resulting graphs in Fig.10 and Fig.11 show the
power consumption constants obtained by the proposed
algorithm. The coefficient of determination shows that
the linear regression gives a better approximation than

CYBERNETICS AND PHYSICS, VOL. 12, NO. 1, 2023 49

Table 2. Table of energy consumption constants

Test algorithm

/ data source

wifi.on

(mA)

wifi.active

(mA)

BT.

active

(mA)

SA 5 Hz 1.15 0.8 9.9

SA 1 Hz 0.34 0.17 2.97

Mean / mean /

linear
2.24 2.2 28.13

Mean / mean /

exponential
2.54 2.35 41.7

Median / median /

linear
2.46 2.41 30.1

Median / median /

exponential
2.75 2.56 35.8

Power profile 2.7 26 27.7

Figure 11. Relation between power consumption constant and sam-
pling rate for wifi.on state (median/median)

the exponential one. Note that the values obtained from
mean/mean and median/median approaches do not differ
significantly.

For other test scenarios, the energy consumption con-
stants have been determined in a similar way. The excep-
tion is the Bluetooth module in bluetooth.on mode,
as on the device under test the ADB always gave a zero
power consumption value. Note that mentioned ADB
commands provide only the data for Wi-Fi and Blue-
tooth components, so, for example, CPU power readings
are deliberately excluded, as their contribution to total
energy consumption might be considerable [Bogdanov
et al., 2021].

6 Algorithm comparison
As stated before, we consider our work to be a con-

tinuation of SA approach, therefore we compare results

of our approach to SA results as well as the constants
provided by manufacturer in power profile.xml.

Testing was done on the Sony ZL device (Android API
Level 22) which has an extensive power profile from the
manufacturer. Values for our method were obtained from
the calculation described in Section 5.2. SA algorithm
was implemented in a bash script. Separate sets of SA
test runs were obtained under sampling rates of 1 Hz and
5 Hz. The results for both methods were converted from
mAh to mA and compared to power profile constants.
Results are shown in Table 2.

Our results demonstrate that SA at 5 Hz produces
higher constants than at 1 Hz. For bluetooth.on
mode it is not possible to obtain a constant because the
device displays zero power consumption. It is not clear
whether it is due to API limitations or due to the de-
vice optimizing the battery consumption. The values of
the constants obtained by our algorithm are significantly
closer to the values specified in the actual power pro-
file of the test device than those calculated by SA ex-
cept wifi.active. It is possible that the value in
power profile is wrong, but there is also a possibility that
our test case doesn’t load Wi-Fi module to maximum.
Video and audio streaming is usually done in data trans-
fer bursts as this approach saves more energy than con-
sistent Wi-Fi usage. If it is true, then careful design of a
test case is of utmost importance. It can also be assumed
that wifi.active test scenario may be affected by
the fact that the amperage values may differ from the
rated amperage, and electronic components always have
performance tolerances. Nevertheless, based on the col-
lected data we consider our algorithm to provide better
estimation of power constants than SA approach.

7 Applicability of the developed approach
Our approach has been implemented in the open-

source energy profiler [Navitas Framework, 2022] and
can be applied to estimate energy consumption and de-
rive energy constants on the user’s Android smartphone
using pre-defined or custom test scenarios. This allows
users to implement a suitable test case for their purposes
in order to achieve the most accurate estimates of energy
consumption or constants obtained with our method.

8 Conclusion and future work
The scripts referenced in this work are openly avail-

able12.
To summarise our contribution, while it was known

that ADB imposes overhead when using it for energy

1https://docs.google.com/spreadsheets/d/
1CWjhzBHlUclDs2EKD_uKymNy5BPSjoQNTvve97tBK5E/
edit?usp=sharing

2https://github.com/Stanislav-Sartasov/
Navitas-Framework/tree/wifi_bluetooth_research

https://docs.google.com/spreadsheets/d/1CWjhzBHlUclDs2EKD_uKymNy5BPSjoQNTvve97tBK5E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1CWjhzBHlUclDs2EKD_uKymNy5BPSjoQNTvve97tBK5E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1CWjhzBHlUclDs2EKD_uKymNy5BPSjoQNTvve97tBK5E/edit?usp=sharing
https://github.com/Stanislav-Sartasov/Navitas-Framework/tree/wifi_bluetooth_research
https://github.com/Stanislav-Sartasov/Navitas-Framework/tree/wifi_bluetooth_research

50 CYBERNETICS AND PHYSICS, VOL. 12, NO. 1, 2023

consumption investigations, this overhead wasn’t esti-
mated for a given sampling rate and results were not ad-
justed. Simply changing sampling rate would introduce
result skewing in one way or another, therefore it is nec-
essary to compile a list of frequencies, obtain data for
each of them, and then apply the best approximation de-
pending on the given module and target device. Our al-
gorithm is built on this observation and provides power
constants using ADB that are closer to power profile val-
ues.

In the future we plan to expand our approach to other
device peripherals, e.g. GPS module. However, even
with Wi-Fi and Bluetooth support our algorithm is an en-
abling technology for a broader research in energy anti-
patterns occurring in mobile software.

Acknowledgements
This work was supported in part by the St. Petersburg

State University (project ID 94062114).

References
Android doc. (2021). ADB gathering data

with Batterystats. https://developer.
android.com/topic/performance/power/
setup-battery-historian#gather-data.
[Online; accessed 02-February-2022].

Android doc. (2022). Android Debug Bridge
(adb). https://developer.android.com/
studio/command-line/adb. [Online; accessed
02-February-2022].

Armendáriz Irigaray, T. (2019). Development of a tool
to measure smarthphone´s battery consumption.

Bareth, U. (2012). Simulating power consumption
of location tracking algorithms to improve energy-
efficiency of smartphones. In 2012 IEEE 36th Annual
Computer Software and Applications Conference, pp.
613–622.

Bluetooth (2021). Total Annual Bluetooth Device Ship-
ments in 2021. https://www.bluetooth.
com/wp-content/uploads/2021/01/
2021-Bluetooth_Market_Update.pdf.
[Online; accessed 02-February-2022].

Bogdanov, E., Bozhnyuk, A., Bykov, D., Sartasov,
S., Sergeenko, A., and Granichin, O. (2021). Dy-
namic voltage-frequency optimization using simul-
taneous perturbation stochastic approximation. In
2021 60th IEEE Conference on Decision and Control
(CDC), pp. 3774–3779.

Google (2009). Power Profile of Android device.
https://android.googlesource.com/
platform/frameworks/base/+/master/
core/res/res/xml/power_profile.xml.
[Online; accessed 02-February-2022].

Hu, Y., Yan, J., Yan, D., Lu, Q., and Yan, J. (2018).
Lightweight energy consumption analysis and predic-

tion for android applications. Science of Computer
Programming, 162, pp. 132–147. Special Issue on
TASE 2016.

Monsoon Solutions, Inc. (2022). High voltage
power monitor. https://www.msoon.com/
online-store. [Online; accessed 8-February-
2022].

Myasnikov, V., Shaposhnikov, A., Sartasov, S., Gordi-
enko, E., Aphonina, O., and Gamaonov, A. (2021).
Navitas framework: A novel tool for android appli-
cations energy profiling. In Proceedings of the Sixth
Conference on Software Engineering and Information
Management 2021 (SEIM 2021), CEUR Workshop
Proceedings, pp. 1–9.

Navitas Framework (2022). An open-source power
profiling framework for Android. https:
//github.com/Stanislav-Sartasov/
Navitas-Framework. [Online; accessed 24-
December-2022].

PT (2011). PowerTutor - A Power Monitor for
Android-Based Mobile Platforms. http:
//ziyang.eecs.umich.edu/projects/
powertutor/index.html. [Online; accessed
02-February-2022].

Sahin, C., Cayci, F., Manotas, I., Clause, J., Kiamilev,
F., Pollock, L., and Winbladh, K. (2012). Initial explo-
rations on design pattern energy usage. 2012 1st In-
ternational Workshop on Green and Sustainable Soft-
ware, GREENS 2012 - Proceedings.

Saksonov, A. (2014). Method to derive energy profiles
for android platform.

Statcounter Global Stats (2022). Mobile Operat-
ing System Market Worldwide. https://gs.
statcounter.com/os-market-share/
mobile/worldwide. [Online; accessed 02-
February-2022].

Statista (2021a). Mobile internet usage world-
wide - statistics. https://www.statista.
com/topics/779/mobile-internet/
#dossierKeyfigures. [Online; accessed
02-February-2022].

Statista (2021b). Number of smartphone
users from 2016 to 2021. https://www.
statista.com/statistics/330695/
number-of-smartphone-users-worldwide/.
[Online; accessed 02-February-2022].

Yoctopuce (2022). Yocto-Amp ammeter. http:
//www.yoctopuce.com/EN/products/
usb-electrical-sensors/yocto-amp.
[Online; accessed 02-February-2022].

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P.,
Mao, Z. M., and Yang, L. (2010). Accurate on-
line power estimation and automatic battery behav-
ior based power model generation for smartphones.
CODES/ISSS ’10, New York, NY, USA, Association
for Computing Machinery, p. 105–114.

https://developer.android.com/topic/performance/power/setup-battery-historian##gather-data
https://developer.android.com/topic/performance/power/setup-battery-historian##gather-data
https://developer.android.com/topic/performance/power/setup-battery-historian##gather-data
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://android.googlesource.com/platform/frameworks/base/+/master/core/res/res/xml/power_profile.xml
https://android.googlesource.com/platform/frameworks/base/+/master/core/res/res/xml/power_profile.xml
https://android.googlesource.com/platform/frameworks/base/+/master/core/res/res/xml/power_profile.xml
https://www.msoon.com/online-store
https://www.msoon.com/online-store
https://github.com/Stanislav-Sartasov/Navitas-Framework
https://github.com/Stanislav-Sartasov/Navitas-Framework
https://github.com/Stanislav-Sartasov/Navitas-Framework
http://ziyang.eecs.umich.edu/projects/powertutor/index.html
http://ziyang.eecs.umich.edu/projects/powertutor/index.html
http://ziyang.eecs.umich.edu/projects/powertutor/index.html
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.statista.com/topics/779/mobile-internet/##dossierKeyfigures
https://www.statista.com/topics/779/mobile-internet/##dossierKeyfigures
https://www.statista.com/topics/779/mobile-internet/##dossierKeyfigures
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-amp
http://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-amp
http://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-amp

	Introduction
	Background
	Methods to obtain energy consumption data
	Energy profiles of devices
	Approaches to determine energy consumption constants

	Android Debug Bridge and Sampling Rate Influence
	Reasoning behind experimentation
	Experimental methodology
	Experimental results
	Conclusions for experiments

	Relation between ADB overhead and sampling rate
	Frequency-independent algorithm for calculating energy constants
	Algorithm description
	Example of calculation

	Algorithm comparison
	Applicability of the developed approach
	Conclusion and future work

