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Simple Summary: Antimicrobial drugs, in addition to exerting antibiotic, antifungal, antiparasitic,
or antiviral effects, may also affect the central nervous system and gut microbiota, thereby modulating
brain and behavior. Zebrafish models can be used for studying the effects of antimicrobial drugs on
the central nervous system. Here, we discuss recent findings on using zebrafish for assessing the
effects of a wide range of antimicrobial drugs on brain and behavior in vivo.

Abstract: Antimicrobial drugs represent a diverse group of widely utilized antibiotic, antifungal,
antiparasitic and antiviral agents. Their growing use and clinical importance necessitate our improved
understanding of physiological effects of antimicrobial drugs, including their potential effects on the
central nervous system (CNS), at molecular, cellular, and behavioral levels. In addition, antimicrobial
drugs can alter the composition of gut microbiota, and hence affect the gut–microbiota–brain axis,
further modulating brain and behavioral processes. Complementing rodent studies, the zebrafish
(Danio rerio) emerges as a powerful model system for screening various antimicrobial drugs, including
probing their putative CNS effects. Here, we critically discuss recent evidence on the effects of
antimicrobial drugs on brain and behavior in zebrafish, and outline future related lines of research
using this aquatic model organism.

Keywords: antimicrobial drugs; microbiota; antibiotic; zebrafish; brain; behavior

1. Introduction

Animal models are indispensable tools for translational biomedical research, including
studying the systemic effects of various drugs in complex living systems [1]. Alongside
rodent models, a small freshwater teleost fish, the zebrafish (Danio rerio), has become a
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powerful in vivo vertebrate system widely used in biomedicine [2]. Characterized by high
genetic (~70%) and physiological homology to humans [3], zebrafish are also increasingly
utilized in the central nervous system (CNS) research, including modeling neurodegen-
eration (e.g., Alzheimer’s, Parkinson’s, and Huntington’s diseases, amyotrophic lateral
sclerosis) [4], epilepsy [5], affective disorders [6], addiction and various other drug-induced
conditions [7]. In addition to offering multiple genetic models of CNS pathogenesis [8], ze-
brafish can also serve as sensitive pharmacological screens for major classes of neuroactive
drugs [9], including antidepressants, anxiolytics, antipsychotics, antiepileptics, and anes-
thetics [10,11]. Zebrafish are also commonly used to assess central nervous action of various
other chemicals, including CNS side effects of clinically used drugs [12] and neural deficits
caused by toxins, environmental pollutants [13,14], and endocrine disruptors [15].

In general, antimicrobials represent a large diverse group of drugs used to prevent
and treat infection, and include antibacterial (antibiotic), antiviral, antifungal, and an-
tiparasitic agents [16]. Common antibiotics, classified based on their chemical structures
and multiple modes of antimicrobial action, include beta-lactams, sulfonamides, amino-
glycosides, tetracyclines, chloramphenicol, macrolides, glycopeptides, oxazolidinones,
ansamycins, quinolones, streptogramins, and lipopeptides [17]. Typical classes of antifungal
agents include polyenes, azoles, allylamines, echinocandins, and triterpenoids, that alter
membrane permeability and/or inhibit the synthesis of the fungal wall [18]. Antiviral
drugs have different mechanisms of action, inhibiting virus attachment, entry, uncoating,
polymerase, nucleoside and nucleotide reverse transcriptase, integrase, and protease activ-
ity [19]. Antiparasitic drugs mainly include antiprotozoal agents [20]. A diverse array of
other antimicrobial agents, acting via multiple biological mechanisms, includes chlorhexi-
dine, triclosan, alcohols, hydrogen peroxide [21], non-steroidal anti-inflammatory drugs
(NSAIDs) [22], and essential oils (e.g., basil, oregano, thyme, tea tree, coriander, and clove
oils) [23].

The growing use and clinical importance of antimicrobial drugs necessitate our im-
proved understanding of the complete spectrum of their physiological effects, including
their potential effects on CNS at molecular, cellular, and behavioral levels. In addition to
conventional antimicrobial properties that have been extensively tested in vivo and in vitro,
these agents may impact CNS and behavior, both clinically and in animal models [24–27].
Like rodents, zebrafish represent a useful sensitive organism for screening the CNS effects
of various antimicrobial drugs in vivo. Furthermore, antimicrobials can alter the composi-
tion of gut microbiota, and hence affect the gut–microbiota–brain axis, again modulating
brain and behavioral processes. Recognizing the growing potential of zebrafish-based
drug bioscreening, here we critically discuss recent evidence on central nervous effects of
antimicrobial agents in zebrafish, summarize recent successes and challenges in this field,
and outline future lines of research using this aquatic model organism.

2. Reported CNS Effects of Antimicrobial Drugs in Animal Models
2.1. Antibacterial Antibiotic Drugs

Mounting animal evidence demonstrates frequent CNS effects of commonly used an-
timicrobial drugs (also see Table 1). For example, in mice, various antibiotics, such as ampi-
cillin, bacitracin, meropenem, neomycin, and vancomycin, evoke overt cognitive deficits,
increase exploratory behavior, and alter brain expression of signaling molecules [24] and
the permeability of the blood–brain barrier (BBB) [28]. Some antibiotics (e.g., ciprofloxacin,
minocycline, ampicillin, neomycin, and vancomycin) lower systemic antioxidant activ-
ity [26], reduce apoptosis in rat brain [29], and increase rodent anxiety-like and impulsive
behavior [30,31]. At least some of these effects may be indirect, and are probably mediated
by gut microbiota status, since germ-free mice display motor hyperactivity, anxiety-like
behavior [32], social deficit (e.g., social avoidance and diminished preference for social
novelty) [33], as well as working memory deficits [24]. Microbiota can also affect behav-
ioral characteristics in zebrafish, since axenic larvae exhibit hyperlocomotion corrected by
microbiota colonization [34].
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Table 1. Selected examples of CNS effects of antimicrobials on CNS.

Classes of Drugs Representative Drugs Effects in Zebrafish References

Antibacterial

Phenols triclosan
Inhibited acetylcholinesterase and dopaminergic
activity, neuroapoptosis, reduced synaptic density,
axonal length, higher expression of mir-137.

[35,36]

β-diketones oxytetracycline

Decreased deiodinase 2/3, T3 levels, thyroid
receptors, cortisol levels and serotonin synthesis.
Increased exploratory behavior, motor activity,
expression of parkin, pink1 and cd-11b, proliferation
of glial cells, ventriculomegaly, altered (decreased at
low, increased at high doses) anxiety-like behavior,
cognitive deficits, aggression.

[37–42]

enrofloxatine

Increased corticotropin-releasing hormone (CRH),
brain-derived neurotrophic factor (BDNF),
neuropeptide Y, reduced adrenocorticotropic
hormone (ACTH) and cortisol, proliferation of glial
cells, ventriculomegaly, altered (decreased at low,
increased at high doses) anxiety-like behavior,
cognitive deficits, aggression.

[39–44]

Aminoglycosides neomycin,
gentamicin Damaged lateral line hair cells. [45]

Cephalosporins ceftazidime Increased locomotor activity, aggression and
cognitive deficits. [42]

ceftriaxone Corrected exploratory behavior (disrupted by
ethanol withdrawal), increased glutamate uptake. [46]

Sulfonamides sulfamethoxazole Cerebral ischemia, oxidative stress. [47]

Lincosamides lincomycin

Reduced ventricular volume, neuronal loss,
locomotor activity, systemic oxidative stress and
apoptosis, increased whole-body
acetylcholinesterase and ATPase activity.

[48]

Penicillins amoxicillin Decreased locomotor activity, social behavior and
oxidative stress. [49]

Secoiridoids sweroside
Reduced anxiety, improved cognitive performance,
reduced brain acetylcholinesterase activity and
oxidative stress.

[50]

Others

Essential oils extract from
Thymus vulgaris

Decreased anxiety-like behavior, improved cognitive
function and acetylcholine neurotransmission. [51]

Cationic surfactants cetylpyridinium
chloride

Reduced locomotor and social activity, with lower
serotonin, dopamine, and acetylcholine in brains of
adult fish, but higher in juveniles.

[52]

Non-steroidal anti-
inflammatory drugs
(NSAIDS)

aspirin Decreased anxiety, exploratory behavior
and mobility. [53,54]

mTOR inhibitors rapamycin Reduced seizures in epilepsy models. [55,56]

Triclosan, a widely used synthetic antimicrobial agent with poly-target (antibiotic
and antifungal) action, also inhibits dopamine and increases acetylcholine neurotransmis-
sion, promotes neuronal apoptosis, and reduces synaptic density and axonal length in
zebrafish [35]. Furthermore, triclosan downregulates the expression of brain genes that
are important during neurodevelopment, including glial fibrillary acidic protein (GFAP)
and myelin basic protein (MBP) that control myelination and axonal maintenance [57].
In contrast, mir-137, a short non-coding RNA associated with the mitogen-activated protein
kinase (MAPK) pathway, is upregulated in zebrafish by triclosan, eventually impairing
their auditory and visual sensitivity [36]. The neurotranscriptomic effects of triclosan can
be mediated both by the regulation of DNA methylation [58] and by activation of other
regulatory pathways, such as MAPK/ERK (extracellular signal-regulated kinases) [59].
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CNS effects of β-diketone antibiotics, including fluoroquinolones and tetracyclines,
have also been tested in zebrafish (Table 1). For example, a typical tetracycline antibiotic,
oxytetracycline, affects the neuroendocrine system of juvenile zebrafish, such as the thyroid
and adrenocorticotropic axes, as it reduces deiodinase 2 and 3, triiodothyronine T3, recep-
tors of thyroid hormone, and whole-body cortisol levels [37]. In addition, the drug affects
serotonin CNS signaling in the juvenile zebrafish, lowering brain expression of tryptophan
hydroxylase, an enzyme involved in serotonin synthesis [37]. At the behavioral level, this
antibiotic increases exploration and hyperactivity in zebrafish [38], whereas minocycline,
another tetracycline, increased larval expression of parkin, pink1, and cd-11b genes, whose
human orthologs are strongly implicated in Parkinson’s pathogenesis [39]. In line with
this, minocycline evoked neuroprotective effects in a zebrafish larval model of Parkinson’s
disease, preventing locomotor deficits and the loss of dopaminergic neurons [60].

Fluoroquinols exert overt neurotoxic effects in zebrafish, impairing the development
of embryos by hyperactivating the glutamate N-methyl-D-aspartate (NMDA) receptors [43].
In adult fish, exposure to these drugs increases whole-body corticotropin-releasing hor-
mone (CRH) along with CNS levels of brain-derived neurotrophic factor (BDNF) and
neuropeptide Y, but lowers plasma adrenocorticotropic hormone (ACTH) and cortisol [44].
In general, fluoroquinolones and tetracyclines are rather neuroactive in zebrafish (Table 1),
and may cause ventriculomegaly, proliferation of glial cells, and neuronal apoptosis (e.g.,
see [40]), as well as dose-dependently increasing motor activity and altering (at low doses
decreasing, and at high doses increasing) anxiety-like behavior in zebrafish [41]. Likewise,
β-diketones impair zebrafish cognition (e.g., working memory) and promote aggressive
behavior (Figure 1) [42].
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Y-maze) [42]. (B) Exposure to oxytetracycline (10–100 mg/L) for 96 h evokes anxiety-like behavior 
in the novel tank test [61]. (C) Exposure to amoxicillin (100 mg/L) for 7 days reduces distance trav-
elled and social interaction [49]. (D) Chronic exposure to β-diketones (at 6.25 mg/L) increases time 
spent at the top of the test tank (an anxiolytic-like behavior) and alters (increases at 6.25, and de-
creases at 25 mg/L) shoaling behavior [41]. 
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Figure 1. Selected examples of antimicrobial drugs’ effects on zebrafish behavior. (A) Exposure
to chlortetracycline, ciprofloxacin, or ceftazidime for 96 h increases (↑) exploratory activity (more
distance travelled), aggression (more bites in the mirror test), and cognitive deficits (more errors in the
Y-maze) [42]. (B) Exposure to oxytetracycline (10–100 mg/L) for 96 h evokes anxiety-like behavior in
the novel tank test [61]. (C) Exposure to amoxicillin (100 mg/L) for 7 days reduces distance travelled
and social interaction [49]. (D) Chronic exposure to β-diketones (at 6.25 mg/L) increases time spent
at the top of the test tank (an anxiolytic-like behavior) and alters (increases at 6.25, and decreases at
25 mg/L) shoaling behavior [41].

Aminoglycosides neomycin and gentamicin damage the lateral line hair cells in ze-
brafish larvae, impairing locomotion and the startle response [45]. Other antibiotics have
also been studied in zebrafish, including screening the CNS effects of avermectin, sul-
famethoxazole, lincomycin, and amoxicillin. Interestingly, in addition to overt neurotoxi-
city, avermectin also increases brain expression of gamma aminobutyric acid (GABA)-A
receptor in another fish species, Carassius auratus [62]. During zebrafish embryogenesis,
sulfamethoxazole causes cerebral ischemia and brain oxidative stress, activating CNS angio-
genesis, probably mediated by vascular endothelial growth factor (VEGF) signaling, since
its inhibition corrects the deficits [47]. Lincomycin also has neurotoxic effects, reducing
ventricular volume and neuronal numbers, but increasing systemic oxidative stress and
apoptosis in zebrafish larvae, activating their acetylcholinesterase and ATPase, and decreas-
ing locomotor activity [48]. In adult zebrafish, amoxicillin reduces locomotor and social
behavior, and promotes oxidative stress in the brain, strikingly paralleling some clinical
symptoms observed in autistic patients (Figure 1) [49].

Ceftazidime, a cephalosporin antibiotic, increases locomotor activity in zebrafish,
impairs their learning, and promotes aggression (Figure 1) [42]. Another cephalosporin,
ceftriaxone, restores normal patterns of zebrafish exploratory behavior (disrupted by
ethanol withdrawal), accompanied by increased brain glutamate transport [46]. Sweroside,
a secoiridoid glycoside, reduces anxiety-like behavior and improves cognitive performance
in zebrafish Y-maze and novel object-recognition tests, probably due to reduced brain
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acetylcholinesterase activity [50], as muscarinic acetylcholine receptors are involved in both
learning and memory. Furthermore, impaired cognitive status can also be explained by
increased oxidative stress [63].

2.2. Selected Other Antimicrobial Agents

In addition to its antimicrobial effects per se, thyme (Thymus vulgaris) essential oil de-
creases anxiety-like behavior, improves cognitive function and increases acetylcholine
neurotransmission in zebrafish [51]. In contrast, an antimicrobial cationic surfactant
cetylpyridinium chloride negatively impacts CNS, reducing fish locomotor and social
activity, also age-dependently altering neuromediators (e.g., reducing serotonin, dopamine,
and acetylcholine in adults, but increasing in juvenile fish) [52].

Antimicrobial properties have also been shown for NSAIDs [22], which also exert some
CNS effects in zebrafish. For example, aspirin, a typical NSAID, evokes an anxiogenic-like
action in adult zebrafish, likely mediated via the serotonergic system, given its similar
serotonin-modulating effect in rodents (see [53] for discussion). Exposure to high doses
of aspirin markedly inhibits exploratory behavior and mobility in zebrafish, which may
suggest sedative and/or toxic side-effects of this drug [54].

Another atypical antimicrobial antifungal drug, rapamycin, is an important cellu-
lar inhibitor of the mammalian target of rapamycin (mTOR) signaling [64]. Rapamycin
is remarkably neurotropic in both rodents and zebrafish, reducing seizures in various
spontaneous (genetic) and chemically-induced epilepsy models [55]. In addition to in-
activating mTOR in zebrafish larvae with experimental epilepsy, the impairment of fine
branching of GABA-ergic neurons during neurodevelopment in this model is corrected by
rapamycin, suggesting some putative additional mechanisms of its CNS action beyond
directly affecting the mTOR signaling [56].

Furthermore, albeit not the main scope here, mounting evidence suggests that gut
microbiota may impact some CNS functions in zebrafish models, for example, during
morphine addiction. Altered microbiota composition is associated with affected behavior
and brain and gut gene expression in morphine-treated fish, which also show conditioned
place preference (CPP) to the drug. Interestingly, these alterations are corrected by an
alkaloid synenin, whereas antibiotic treatment inhibits this process, hence implicating
antibiotics and gut microbiota in morphine-related behaviors in zebrafish [65]. Again,
while such CNS effects are probably mediated by indirect effects of antibiotics on gut
microflora, rather than by direct action on neuronal processes in vivo, this aspect clearly
merits further scrutiny in future zebrafish studies.

3. Discussion

Antimicrobial drugs, especially antibiotics, are among the most widely prescribed
and used medications, with up to almost 80% of the global population having taken
them in the last 6 months [66]. Such prevalent drug usage represents a serious biomedical
problem, which is further complicated by antimicrobial drug resistance and risks of multiple
systemic side effects. Thus, it becomes important to better understand a fuller spectrum of
physiological effects of antimicrobial agents in vivo–the task that also involves testing their
CNS effects in various experimental animals (including zebrafish).

There are several research aspects to consider in regard to studying CNS effects of an-
timicrobials in aquatic models, such as zebrafish. For example, recent evidence of potential
neuroprotective effects of some antimicrobial drugs (see above) in animal models suggests
an opportunity for their use for drug repurposing. Indeed, amoxicillin reduces ischemia in
mice with cranio-cerebral trauma, a neuroprotective effect associated with lower migration
of T cells into the meninges [67]. Minocycline, a tetracycline antibiotic, displays its putative
neuroprotective properties by reducing cerebral edema during hemorrhage, neuroinflam-
mation, neuronal degeneration, systemic inflammation [68], and neuronal apoptosis in
rodents [29]. Azithromycin, another putative neuroprotective antibiotic, reduces ischemic
brain damage and restores sensorimotor function in rat pups [69], probably due to the
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activation of anti-inflammatory M2-type microglia [70]. Doxycycline is also neuroprotec-
tive, apparently lowering neuroinflammation by activating antioxidant enzymes in rat
brains [71]. Taken together, this evidence suggests that similar effects can also be expected
in zebrafish models (Table 1), and indicates that a better focus is needed on assessing
potential beneficial CNS effects of antimicrobial drugs in zebrafish screenings, in addition
to traditional studies assaying their unwanted side effects on the central nervous system,
both in experimental models and clinically.

Can zebrafish be in principle a valid, suitable aquatic model object for assessing a
wider spectrum of CNS effects of antimicrobial drugs? It seems indeed likely, since ze-
brafish CNS is characterized by generally conserved neuroanatomy and neurotransmission,
including well-developed glutamate-, GABA-, monoamine-, acetylcholine-, histamine-,
glycine- [72], purine-ergic and endocannabinoid systems [73]. Zebrafish have a com-
plex well-developed brain, and despite the lack of cerebral cortex and a clearly defined
hippocampus, show otherwise high functionality of other structures that are neurally
equivalent to those of mammals [74]. Zebrafish also exhibit a wide range of well-described
behaviors, allowing the study of drug effects on locomotor, anxiety- and depression-like,
and social phenotypes [75–77]. Collectively, this enables the use of zebrafish in translational
modeling of neurodegenerative, affective, psychotic, neurodevelopmental, and addictive
disorders [4,78,79].

Another advantage of zebrafish models for CNS drug screening is the economic ben-
efit of such research (relative to that in rodents), given the simplicity of fish husbandry,
handling, and experimental manipulation (e.g., compare adding drugs to fish water vs.
using laborious systemic injections in rodents). Furthermore, these fish are characterized by
external fertilization, allowing the eggs and embryos to be easily manipulated, which, in ad-
dition to optical clarity (including some adult strains, such as casper zebrafish), facilitates
successful application of such aquatic models in assessing drug toxicity [80].

Overall, zebrafish hold a remarkable potential for drug development. For example,
Prohema, a stabilized prostaglandin E2 (PGE2) product that increases regeneration of bone
marrow, has now reached clinical trials [81]. Another relevant example is the ability of
cyclooxygenase inhibitors to suppress the leukemia-like phenotype, first demonstrated
in zebrafish and further validated in other animal models [82,83]. It is likely that such
effects can therefore also be extended to CNS processes. For instance, the beneficial action
of ramipril and quinapril, angiotensin-converting enzyme inhibitors, has been demon-
strated in larval zebrafish, showing therapeutic effects on intracerebral hemorrhage [84].
Neuroprotection in zebrafish is included by PROTO-1, a benzothiophenacarboxamide that
counteracts ototoxic effects of neomycin on fish hair cells [85]. Screening of nearly 400
PROTO-1-like drugs has identified a stable neuroprotective compound that has reached
the clinical trial phase [86]. Thus, zebrafish continue to emerge as a suitable system for
evaluating potential beneficial CNS properties of antimicrobial drugs.

Studying CNS effects in zebrafish has linked specific physiological profile of antimi-
crobials to altered neurotransmission (e.g., the acetylcholine, dopamine, and serotonin sys-
tems), neuroendocrine signaling (e.g., modulating thyroid and corticotropic axes), and other
cellular processes (e.g., decreased or increased CNS oxidative stress, altered BDNF levels,
see Table 1 for details). On the one hand, such studies are important since they are mech-
anistic in nature, and can show which genes are up- or down-regulated by the drug in
question. For example, a new pathway of regulation of the mir-125b gene by triclosan in
zebrafish, showing increased expression of mir-125b (that can be neurotoxic) via a novel,
previously unrecognized signaling pathway [59], reflects a fundamental value of this type
of research in zebrafish. Furthermore, antibiotics can impact DNA methylation, and hence
exert epigenetic effects in the brain [58]. Thus, analyses of the entire spectrum of effects
of antimicrobial agents in zebrafish may help explore the fundamental mechanisms of
regulation of CNS development and functioning.

Nevertheless, multiple questions remain open in regard to assessing CNS effects of
antimicrobial drugs by experimental models in general, and by using zebrafish screens in
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particular (see Table 2 for a summary of selected open questions in this field). For example,
albeit poorly studied, the noradrenergic system in many ways has similar pathways and
targets to the serotonergic system. As the latter is often affected by various antimicrobials
(Table 1), it can be interesting to assess putative drug-induced central noradrenergic effects
as well. Likewise, the reported impact of antimicrobial drugs on the thyroid and corti-
cotropic axes (Table 1) raises the possibility of indirectly affecting other components of the
endocrine system, given extensive horizontal connections within this system.

Table 2. Selected open questions related to screening CNS effects of antimicrobial drugs in zebrafish.

Open Questions

• Is it possible to repurpose antimicrobials (i.e., in order to discover novel neurotropic drugs among already clinically approved
antimicrobial drugs), and how can zebrafish models facilitate this process?

• Do antimicrobial drugs affect other mediator systems, including noradrenaline, histamine, and opioid systems? Do these
agents affect the neuroendocrine axis, and how?

• Can CNS diseases associated with monoamine systems be treated by modulating the microbiome with antibiotics? Can
hormonal disorders be similarly corrected by altering gut microbiome with antibiotics?

• Does the blood–brain barrier permeability in zebrafish change following treatment with antimicrobial drugs?
• Can antimicrobial drugs affect epigenetic mechanisms in zebrafish brain? If yes, how do these responses correlate with those

seen in rodents, and clinically?
• Do antimicrobial drugs have trans-generational CNS effects in zebrafish?
• What are potential neurogenomic effects of antimicrobials in zebrafish models? How do these responses correlate with those

seen in rodents, and clinically?
• Are there common genes in CNS expression responses among all classes of antimicrobial agents?
• What are molecular mechanisms underlying potential sex differences in CNS effects of antimicrobials in zebrafish models?
• What are the effects of various antimicrobials on glial cells in zebrafish, rodents, and humans? Are these effects similar and

consistent across taxa?
• To what extent are the CNS effects of rapamycin mediated via its inhibitory action on the mTOR signaling pathway in

the brain?
• Do antimicrobial drugs affect addiction in general, besides their reported effects on morphine addiction?
• Traditional medicines, including Chinese and American traditional medicines, have been studied in zebrafish models

exploring their CNS effects (e.g., [87]). Can these traditional medicines be used to develop novel antimicrobial drugs and
agents with beneficial neurotropic profiles, and how can zebrafish screens facilitate their development?

• Can zebrafish models be used to assess CNS effects of topical (e.g., skin) antimicrobial drugs?
• Can antimicrobial drugs specifically affect the blood–brain barrier? Are these effects generally similar across taxa?
• Are there strain (e.g., AB vs. Tübingen fish) differences in antimicrobial drug responses and antimicrobial resistance in

zebrafish models? If yes, are there strain differences in CNS responses of zebrafish to antimicrobial agents?
• Are there age-specific aspects of zebrafish CNS responses to antimicrobial drugs?
• Are there individual differences in zebrafish CNS responses to antimicrobial drugs? For example, do shy vs. bold zebrafish

respond differently to the same antimicrobial drug behaviorally, or in terms of CNS biochemistry?
• Can artificial intelligence (AI)-based chemo-phenotypic screening and chemical modeling be used to detect and/or predict

CNS effects of common antimicrobial drugs?
• Can these AI-based tools empower drug repurposing based on CNS screening of antimicrobial drug effects in zebrafish?

Recent data show that antimicrobials can impact both neurons and glial cells. In ze-
brafish, while some antibiotics induce neuronal apoptosis accompanied by glia prolif-
eration [40], the exact effects of these drugs on glial cells remain unexplored. Rodent
studies demonstrate that exposure to particular antibiotics may impact gene expression in
excitatory neurons, microglia, and astrocytes, with reduced efficiency of synaptic neuro-
transmission and cognitive deficits [88,89]. However, such effects on neurons may also be
mediated by microglia. For example, antibiotics can lead to immature microglia unable to
remodel dendritic spines, thereby resulting in cognitive deficits [88]. Some antibiotics, such
as minocycline, inhibit microglial activation in rodents, especially the pro-inflammatory
M1 microglia type [90,91]. Microglia can also induce transformation of astrocytes into
the A1 phenotype, thus providing a neuroprotective effect [92]. Overall, there is likely a
complicated interaction between neurons, microglia, and astrocytes, whose exact interplay
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in mediating CNS responses to antimicrobials is not fully understood in either rodents
or fish.

Furthermore, various antibiotics modify the BBB permeability [93]. Clearly, this aspect
warrants to be studied in zebrafish in a greater depth, as this would be less resource-
consuming than in mammals, and may be fundamentally important, since altered BBB
permeability relates to various brain diseases [94]. The link between antibiotics and neu-
roinflammation is another critical relevant topic for translational research, as modification
of the microbiome composition can reduce neuroinflammation and alleviate Alzheimer’s
symptoms [95]. However, the availability and mechanisms of this putative relationship
in fish, as well as the possibility of using antibiotics to treat CNS diseases associated with
neuroinflammation, merit further scrutiny.

Furthermore, antimicrobial drugs are also known to affect the epigenetic regulation
of DNA expression. Indeed, some antibiotics (e.g., triclosan and minocycline) can alter
DNA methylation both in rats and in zebrafish [58,90,96]. While such effects on some
transcription factors (e.g., Nrf2) exist in zebrafish [59], the impact of antimicrobials on
various other transcription factors, as well as at the level of acetylase and deacetylase
activity, is yet to be studied in rodent or zebrafish models. An additional challenge is
to explore the impact of other major experimental variables (e.g., sex, age, strain) on
the brain–gut microbiota axis. For example, sex not only impacts brain pathogenesis,
including autism, schizophrenia, and depression, but also affects the composition of gut
microbiota [97]. Sex-dependent effects of antibiotics have been demonstrated in a mouse
model of Alzheimer’s disease, affecting only males [98]. However, it remains unclear
whether sex-specific CNS effects of antimicrobials can be found and replicated in fish.
Likewise, the potential role of age, strain, and individual differences in CNS responses to
antimicrobial drugs in zebrafish necessitates further translational studies (Table 2).

4. Concluding Remarks

As already noted, the aquatic zebrafish model is exceptionally well-positioned to serve
as a tool for efficient and high-throughput drug screening. The latter may be highly relevant
to assaying CNS effects of antimicrobial drugs. For example, unlike rodents, zebrafish
larval assays allow a wide range of CNS drugs to be analyzed within minimally required
time [84,99]. Importantly, zebrafish are vertebrate animals, and have a much higher genetic
homology with humans [3] compared with other popular model organisms (e.g., Drosophila
or C. elegans) that are commonly used for rapid drug screening. This enables the evaluation
in zebrafish of a wide spectrum of physiological effects of a single drug, including assaying
multiple CNS [100], cardiovascular [101], digestive [102], immune [103], and endocrine
phenotypes [104].

Furthermore, the ability to perform rapid pharmacological studies enables efficient
evaluation of drug–drug interactions in zebrafish, including testing combinations of a)
several antimicrobial agents and b) an antimicrobial agent with another drug, that may
synergistically or differentially modulate CNS functions. Moreover, it is possible to predict
that studies of drug-induced CNS effects in zebrafish can be empowered by 3D modeling
of their behavior, coupled by the application of artificial intelligence (AI) tools, in order to
detect, recognize and decode neurophenotypic signatures for various antimicrobial drugs.
The AI-based methods are becoming widely used in biomedicine, and their developing
application to zebrafish drug screens clearly warrants further efforts.

Finally, the environmental impact of antimicrobial chemicals must also be consid-
ered in the context of utilizing zebrafish models as sensitive bioscreens for potential CNS
effects of such drugs. Indeed, various antimicrobial drugs are widely used by humans,
contaminating wastewater and leading to their release into the environment (e.g., see data
on environmental pollution by triclosan and triclocarban [105]). From this standpoint,
zebrafish are particularly well-suited for assessing the environmental impact of antimicro-
bial agents, including their acute neurotoxicity and their long-term, delayed, and/or early
developmental effects on these aquatic organisms. For example, zebrafish have already
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been used to evaluate the toxicity of antiviral drugs, such as lopinavir and ritonavir [106],
and their utility can be extended to include screening the CNS effects of multiple other
antimicrobials. The fact that fish can typically be chronically exposed to chemicals (e.g.,
pollutants) via water immersion also more closely recapitulates the continuous aspect of
human exposure to environmental hazards (e.g., compared to a more intermittent nature of
chronic systemic injections of such drugs in rodent models).

In conclusion, mounting evidence summarized here demonstrates overt CNS effects
of multiple antimicrobial drugs in mammals and zebrafish, emphasizing the latter as a
particularly suitable organism for evaluating potential neurotoxic side effects, and rapid
screening of CNS activity, of antimicrobial drugs. As such, a rigorous unbiased search for
negative and positive CNS effects of antimicrobials in zebrafish pharmacological, genetic
and pharmacogenetic models will not only improve the efficiency of preclinical profiling of
these drugs in vivo, but can also facilitate a better translation of these findings into rodent
studies and, eventually, into clinical settings.
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