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Abstract: Depression and schizophrenia are two highly prevalent and severely debilitating neu-
ropsychiatric disorders. Both conventional antidepressant and antipsychotic pharmacotherapies
are often inefficient clinically, causing multiple side effects and serious patient compliance prob-
lems. Collectively, this calls for the development of novel drug targets for treating depressed and
schizophrenic patients. Here, we discuss recent translational advances, research tools and approaches,
aiming to facilitate innovative drug discovery in this field. Providing a comprehensive overview of
current antidepressants and antipsychotic drugs, we also outline potential novel molecular targets for
treating depression and schizophrenia. We also critically evaluate multiple translational challenges
and summarize various open questions, in order to foster further integrative cross-discipline research
into antidepressant and antipsychotic drug development.

Keywords: depression; psychosis; schizophrenia; pathogenesis; novel molecular targets

1. Introduction

Neuropsychiatric disorders, especially schizophrenia and depression, are a major
cause of human disability and a common risk factor of mortality [1]. Conventional antide-
pressant and antipsychotic pharmacotherapies are widely used to treat these two highly
prevalent and severely debilitating disorders [2]. However, despite the growing drug
intake and availability globally, such pharmacotherapies are often inefficient clinically,
causing multiple effects and serious patient compliance problems. With the rise of clinical
prevalence worldwide, depression and schizophrenia, especially their treatment-resistant
forms [3,4], are becoming an urgent unmet biomedical problem, necessitating novel drug
targets and broader, translationally-based pharmacotherapy.
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Depression, a highly prevalent mental illness that affects ~5% of the global population,
is characterized by low mood, anhedonia, fatigue, attention deficits, suicidal thoughts,
motor retardation and neuroendocrine deficits [5,6]. Caused by both genetic and environ-
mental factors [7,8], it often represents a recurrent pathology [9–11] with overt monoamin-
ergic, glutamatergic and gamma aminobutyric acid (GABA)-ergic deficits (Figure 1) [2],
and multiple genetic risk factors, such as polymorphisms in the dopamine transporter
(DAT) [12] and serotonin transporter (SERT) genes [13].
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Schizophrenia (psychosis) is a severe psychiatric disorder that affects ~1% of the
global population [14]. It typically presents as ‘positive’ (delirium and hallucinations),
‘negative’ (anhedonia, abulia and alogia), cognitive (impaired learning and planning skills)
and motor (e.g., dyskinesia, catatonia and hypokinesia) symptoms [15,16]. The patho-
genesis of schizophrenia involves multiple neurochemical deficits, especially within the
glutamate-, GABA- and monoaminergic signaling systems [2,17,18] (Figure 1). Patients with
schizophrenia often have increased levels of dopamine [19] with reduced glutamatergic
N-methyl-D-aspartate (NMDA) receptor and (albeit not always) GABA-ergic activity [20].
Risks of psychosis correlate with higher striatal dopamine D2 receptor occupancy [21],
further linking dopamine dysregulation and psychosis [22]. While glutamatergic deficits
may provoke negative and cognitive symptoms of schizophrenia [23], the disorder is likely
linked to disrupted ontogenesis of the glutamatergic and GABAergic neurons [24], and
aberrant dorsolateral prefrontal cortex glutamatergic circuitry [25].

2. Pharmacotherapy of Depression

The most commonly prescribed conventional antidepressants include selective sero-
tonin reuptake inhibitors (SSRIs), tricyclic antidepressants and monoamine oxidase (MAO)
inhibitors [26–28] (Figure 2). They act via several different mechanisms, modulating the
uptake, reuptake, synthesis and/or metabolism of neurotransmitters [26], as well as the
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activity of neuronal receptors and their expression (e.g., stimulating postsynaptic serotonin
5-HT1A, postsynaptic 5-HT1B, 5-HT2B and 5-HT4 receptors, or inhibiting presynaptic
5-HT1A, 5-HT1B, 5-HT2A, 5-HT3 and 5-HT7 receptors [29]); also see [2] for a recent review.
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Glutamate is the main excitatory neurotransmitter in the brain. Glutamatergic neu-
rons, distributed widely throughout the brain, express ionotropic N-methyl-D-aspartate
(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate
receptors, and metabotropic G-protein coupled (mGlu) receptors [2]. In the pathogenesis of
schizophrenia, NMDA receptors are often downregulated, causing improper glutamate
signaling. To reverse impaired functioning of the NMDA receptors and increase the level
of glutamate in the synaptic cleft, these neurons likely initiate compensatory events. For
instance, while excitatory amino acid transporters (responsible for the reuptake of the
glutamate from the synaptic cleft) are downregulated in schizophrenic patients, they also
show upregulated glutaminase that converts glutamine to glutamate, in the thalamus
and prefrontal cortex [30]. While NMDA antagonists exert antidepressant effects, the
glutamatergic, GABAergic and dopaminergic neuronal connectivity overlap [31], hence
supporting the clinical link between schizophrenia and depression (Figure 1).

Based on their structure, profile and specificity of ligand binding, metabotropic glu-
tamate receptors are classified into three main groups. Group 1 encompasses mGluR1
and mGluR5, representing Gq-associated receptors that activate protein kinase C. Group 1
receptor antagonists prevent glutamate from release to the synaptic cleft, thus indirectly
reducing its corticolimbic levels, particularly in the amygdala [32]. Thus, the group 1 antag-
onists exert their antidepressant effects, similar to those of NMDA antagonists. Moreover,



Int. J. Mol. Sci. 2023, 24, 9482 4 of 23

mGluR5 antagonists are widely used in animal models of acute and chronic stress. Group 2
includes mGluR2 and mGluR3 Gi-coupled receptors. Their activation prevents glutamate
from the release to the synaptic cleft, and agonists promote depressive episodes [33], likely
due to action at the projections to the dorsal raphe nucleus serotoninergic neurons. In
contrast, antagonists of mGlu2 and mGlu3 receptors show antidepressant effects. Finally,
group 3 includes mGluR4, mGluR6, mGluR7 and mGluR8 Gi-coupled receptors that pre-
vent glutamate release to the synaptic cleft, and whose agonists demonstrate antidepressant
effects in animal models [34].

However, no current antidepressants directly target the glutamatergic system except
lamotrigine, a phenyltriazine that inhibits glutamate release [35]. Thus, the glutamatergic
system can represent a potentially promising novel target for the development of antide-
pressant agents. For instance, since reduced signaling of glutamatergic neurons may serve
as a defensive mechanism to mitigate glutamate toxicity, novel pharmaceuticals that lower
glutamate transmission may stabilize plastic changes in the nervous system [36]. Reflecting
an important CNS role of glutamate, antidepressants often lower plasma levels of glutamate
(that are commonly elevated in depressed patients) [37–41].

Paralleling clinical data [42], animal models of depression also present glutamatergic
deficits [31,43] corrected by some antidepressant treatments [44,45]. Disrupted gluta-
matergic signaling [46,47] is further accompanied by aberrant brain-derived neurotrophic
factor (BDNF) and transcription factor cyclic AMP response-binding protein (CREB) sig-
naling [48], with excitatory neurotransmission at ionotropic (AMPA, NMDA) glutamate
receptors [49,50]. The glutamatergic system also plays a role in neuroplasticity and neuroge-
nesis via (AMPA)/kainate (KA) receptors and mGluR5, critical for neuronal survival [51,52].
As mounting evidence links depression to aberrant glutamate receptor functioning, gluta-
matergic drugs (e.g., ketamine and other NMDA receptor antagonists) may be promising
as potential multi-target antidepressants [53].

Moreover, NMDA receptor antagonists show consistent antidepressant effects in ro-
dent models [54]. For example, ketamine reduces depression-like states in both animal [55]
and clinical studies [56–58] while also lowering neuroinflammation, microglia activation
and cytokine release in the hippocampus in rodent stress models relevant to depression [59].
Likewise, ketamine lowers lipopolysaccharide (LPS)-induced proinflammatory cytokines
interleukin (IL) IL-1β and tumor necrosis factor (TNF)-α in microglia [60]. While anti-
inflammatory effects of ketamine are reduced by a colony stimulating factor 1 recep-
tor (CSF1R) antagonist PLX3397, its antidepressant action is modulated by transform-
ing growth factor TGF-β1-dependent mechanisms [61]. Ketamine can also regulate in-
flammation via toll-like receptors and inhibition of extracellular signal-regulated kinases
ERK1/2 [62,63], thus likely modulating affective pathogenesis via neuroimmune mecha-
nisms and circuits (Figure 1). Another mechanism of antidepressant effects of ketamine
is the modulation of receptor-mediated effects, since ketamine administration increases
signal transducer and activator of transcription 3 (STAT3) levels [64] and the expression
of BDNF, synapsin I (SYN1) and postsynaptic density protein 95 (PSD95). Clinical data
show that ketamine increases plasma BDNF levels [65] and can also exert antidepressant
effects through the mammalian target of the rapamycin (mTOR) signaling system [66],
hence impacting neuroplasticity, neuronal survival and synaptogenesis (but see [55]).

GABA is a key inhibitory neurotransmitter [67] acting via GABA-A, GABA-B and
GABA-C (GABA a-rho) receptors [68]. GABA-A receptors are ligand-gated ion channels
regulating the influx of Cl− ions into neurons. They are an incredibly heterogeneous
class of pentameric receptors assembled from multiple subunits (6α, 3β, 3γ, 1δ, 1ε, 1θ,
3ρ) [69]. The hippocampus and cortex receive GABAergic inhibitory inputs that are sig-
nificantly altered in schizophrenia and depression. Reduced signaling of α5 subunits of
GABA-A receptors causes hippocampal hyperexcitation due to insufficient inhibition of
glutamatergic neurons and disinhibition of glutamatergic pyramidal neurons, causing
loss of synchronous cortical activity and impairments in subcortical dopamine production.
Activation of these receptors, in turn, exerts a positive effect on dopaminergic signaling
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and behavioral aspects in schizophrenic patients [70]. Interestingly, altered expression
of various GABA-related genes is observed both in schizophrenia and depression. The
former shows predominantly under-expression of GABA-related genes that significantly
vary (i.e., increase or decrease) with age [71]. In contrast, the latter is mainly associated
with overexpression of GABA-related genes [72], likely with deficient BDNF signaling [73].
Taken together, these findings suggest GABA-A receptors as a promising target for complex
multimodal antidepressant therapy.

Mounting evidence suggests inflammation, especially neuroinflammation, as a com-
mon risk factor for developing depression. Indeed, depressed patients display higher
levels of proinflammatory cytokines [74–76], especially TNF-α and IL-6 [77,78]. Neu-
roinflammation evokes depression-like behavior in rodent models, which is reduced by
antidepressants [79,80]. For example, mice after chronic stress develop infiltration of mi-
croglia, and increased indoleamine-2,3-dioxygenase (a member of the kynurenine pathway)
in the raphe, and TNF-α in the prefrontal cortex [81]. In line with this, the monoclonal anti-
body infliximab, a TNF-α functional antagonist, lowers symptoms of depression in patients
with signs of inflammation, but is ineffective in patients with resistant depression [82].

Moreover, antidepressants can alter the expression of various cytokine genes (e.g., IL-4,
IL-6 and interferon gamma (IFN-γ) genes) [83–85], while some drugs (e.g., imipramine)
downregulate microglia (typically activated in rodent hippocampus after stress) [86]. In
rodent models of depression, these drugs may also reduce inflammation [87] and proin-
flammatory cytokines IFN-γ, IL-6 and TNF-α [88]. Since anti-inflammatory effects of SSRIs
can play a crucial role in therapy [89], such multimodal effects of antidepressants in depres-
sion merit further scrutiny. However, other antidepressants may exert proinflammatory
effects as well. For instance, an SSRI, citalopram, induces TNF-α in brain (corrected by a
non-steroidal anti-inflammatory drug ibuprofen) [90], whereas a MAO inhibitor phenelzine
triggers neuroinflammation through recruitment of NF-kB [91]. Thus, a more comprehen-
sive and nuanced analysis of both anti- and pro-inflammatory effects of antidepressant
drugs is warranted.

Pro-inflammatory cytokines can affect a wide range of neurotransmitter systems
(neuropeptides, monoamines, GABA and glutamate) and neuroplasticity processes [92].
Neuroplasticity is a key factor in both affective and psychotic pathogenesis (Figure 1), and
potent neurotrophins like BDNF have thereby been probed for their putative therapeutic
properties [93–95]. The importance of neuroplasticity and BDNF is particularly critical
in depression treatment [96–98]. For instance, stress may downregulate BDNF in the
hippocampus [99], whereas BDNF levels are decreased by pro-inflammatory cytokines [100–102].
Glial-derived neurotrophic factor (GDNF) is another key regulator of neurogenesis, whose
levels decline in depressed patients [103], but are corrected by antidepressants [104]. The
neuropeptide substance P is an agonist for neurokinin-1 (NK-1) receptors, widely expressed
in brain regions affected by neuroinflammation. Notably, an NK-1 antagonist orvepitant
improves depressive symptoms in clinical trials [105].

Overall, depression is commonly accompanied by brain tissue damage, whereas an-
tidepressant treatment tends to improve neuroplasticity (Figure 1). Moreover, depressed
patients often suffer from insomnia, likely representing a comorbid state. Antidepressant ef-
fects are shown for melatonin, and the melatonin receptor inhibitor agomelatine is the only
antidepressant that corrects the melatoninergic system, also acting as a serotonin 5-HT2C
antagonist [106]. Melatonin agonists generally decrease pro-inflammatory processes and
promote neurotransmission. Furthermore, opioids are also related to the melatoninergic
system, showing striking parallels with the fact that, in animals, the opioid system modula-
tors affect depressive symptomatology, as delta opioid receptor (DOR) agonists [30–48])
and kappa opioid receptor (KOR) antagonists [54–56] exert antidepressant-like effects.
Therefore, the link between the melatoninergic system, opioids, neuroinflammation and
stress becomes more evident, especially since inflammatory processes can be a core neu-
ropathogenetic factor here, and high concentrations of proinflammatory cytokines may
thus diminish concentrations of monoamines and neurotrophins.
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Finally, serotonergic psychedelic drugs, currently strictly regulated as hallucinogens
in most countries, not only show potential in treatment of psychiatric conditions (e.g., psilo-
cybin in depression [107], also see [108,109]), but also exert immune-modulating effects
in vivo as well. Some psychedelic drugs (e.g., psilocybin) have been used to manage
treatment-resistant depression. For instance, psilocybin at a single dose reduces depression
scores more than a much lower dose given chronically for three weeks [110]. Pramipexole
(and, possibly other dopamine agonists) may be useful in treating depression as well,
since nearly 80% of treatment-resistant patients show a clinical response to this agent [111].
Similarly, a nutritional adjunctive L-methylfolate (the biologically active form of folic acid,
vitamin B9) has also been used [112], increasing clinical responses when co-applied with
SSRIs in treatment-resistant depressed patients [113].

3. Approaches to Antipsychotic Therapy

As our understanding of schizophrenia and its molecular biomarkers is rapidly
growing [114], dopaminergic deficits are strongly implicated in psychotic pathogenesis,
especially in its motor, motivation and volition aspects (Figure 1). In general, schizophrenia
is presently treated with neuroleptics and benzodiazepines [115–119] (inhibiting dopamine
receptors and locomotion), without involving non-dopaminergic drugs as a primary ther-
apy (Figure 2). From the early beginning, dopamine D2 receptors have been targeted
in schizophrenia [120], showing higher density in post-mortem brain samples [121] and
increased occupancy in patients with higher risks of psychosis [21,122,123]. Additionally,
the D2 receptor-adenosine A2A receptor heterodimers seen in basal ganglia, represent
a potential target for novel treatment of schizophrenia [121]. Interestingly, cognitive im-
pairments in schizophrenia are associated with hypofunction of the prefrontal cortex, and
transgenic mice overexpressing D2 receptors in the striatum show poorer motivation and
cognition (e.g., impaired conditioned associative learning) [124], whereas such aberrant
phenotypes are rescued by the D2 receptor gene downregulation [125].

As D2 receptors act via both canonical (G-protein-) and non-canonical (beta-arrestin2
βarr2-dependent) pathways, blocking the β-arrestin signaling may evoke antipsychotic
effects [126]. The D2/β-arrestin-biased ligands (e.g., UNC9994) are effective in preclinical
studies, having an antagonistic influence on D2-βarr2 in prefrontal cortex GABAergic
fast-spiking interneurons, yet antagonizing D2-βarr2 in striatal D2 medium spiny neurons,
with a dual action likely to prevent hyperdopaminergia [127]. Such ‘dual’ activity is not
limited to D2-, but can involve other (e.g., D3 and A2A) receptors as well. Accordingly,
additional mechanisms need to be considered for CNS drug development, as they may
affect receptors indirectly (e.g., via endocytosis, due to the fact that D2 agonism can induce
endocytosis and mediate ligand-based signaling) [128]. Thus, using the β-arrestin-based
antagonism with G protein-dependent signaling may hypothetically help reduce positive
psychotic symptoms and/or mitigate antipsychotic drugs’ side effects [129].

While NMDA receptors and aberrant glutamate neurotransmission are strongly impli-
cated in schizophrenia [130], some of its deficits may be caused by epigenetic modifications
as well. For instance, RELN and GAD1 genes, as well as NR3B promotors, are epigenetically
modified in schizophrenia [131–133], whereas the gene responsible for epigenetic genome
modifications (DNMT1) is over-expressed in brains of schizophrenic patients [134]. Fur-
thermore, NMDA receptors are downregulated in depressed patients [135], whose positive,
cognitive and negative symptoms of schizophrenia are mimicked in healthy volunteers by
NMDA antagonists (e.g., phencyclidine) [136], cognitive-impairing effects of which parallel
those seen in schizophrenia clinically [137].

Interestingly, NMDA antagonists may decrease the GABA-ergic inhibition and thus
lead to the release of glutamate and acetylcholine, which in turn induces schizophrenic
symptomology [138]. Moreover, modulating the glutamatergic system by the glycine
modulatory site (GMS) of the NMDA receptor may help reduce psychotic and cognitive
symptoms of schizophrenia, especially by indirect modulation of GMS. For instance, in-
direct enhancement of synaptic D-serine via the modulation of D-amino acid oxidase
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consequently normalizes NMDA receptor hypofunction and reduces cognitive impair-
ments [139]. Likewise, an FDA-approved antipsychotic lumateperone is an antagonist for
5-HT2A receptors that also modulates dopamine and glutamate receptors [140,141].

Another promising target group for the treatment of schizophrenia is a family of trace
amine-associated receptors (TAARs). For example, TAAR1 agonists modulate presynaptic
pathways and regulate dopamine- and glutamatergic neurotransmission in schizophre-
nia, also reducing negative symptoms and improving cognitive functions in rodent and
primate models of this disorder [142]. Specifically, TAAR1 agonists inhibit the dopamin-
ergic pathways in midbrain, enhance glutamatergic circuits in the prefrontal cortex, and
also regulate central serotonergic system [142]. Notably, TAAR1 agonists not only treat
positive symptoms of schizophrenia, but also ease its negative symptoms and cognitive
impairments [143]. For instance, SEP-363856 (a serotonin 5-HT1A receptor and TAAR1
modulator) shows promising results decreasing schizophrenic symptoms clinically [144].

The interplay between the monoaminergic and the cholinergic systems in schizophre-
nia is also observed, since schizophrenic patients show a loss of 75% of muscarinic M1
receptors [145]. Drugs binding to M1 receptors improve cognitive functions in rodents,
and some of them show promise in clinical practice (e.g., KarXT, acting via muscarinic
receptors, reduces cognitive and positive symptoms) [146]. Furthermore, serotonergic
5-HT2A hyperactivity [147] caused by stress, especially in the anterior cingulate cortex
and dorsolateral frontal lobe, leads to synaptic atrophy and loss of the gray matter. A
novel atypical antipsychotic, pimavanserin, is an agonist at 5-HT2A receptors that reduces
psychotic symptoms, especially in Alzheimer patients [148]. Likewise, pharmacogenetic
factors also contribute to the pathogenesis and development of personalized medicines for
schizophrenia. For example, since inhibitory GABA interneurons contribute to pathogene-
sis of schizophrenia [149], the glutamate decarboxylase (GAD) and the GABA membrane
transporter-1 (GAT) genes are downregulated in schizophrenic patients [150].

As with depression, neuroimmune mechanisms play a key role in pathogenesis of
psychoses. For example, microglia promote the degradation of gray matter in schizophrenic
patients and reduce neuroprotection by BDNF [151]. In turn, activated microglia (via proin-
flammatory cytokines) induce neuronal apoptosis [152] and neuroinflammation [153], as,
for example, is often seen in postmortem brain samples from schizophrenic patients [154].
Moreover, while LPS induces morphological changes and activates microglia and macrophages
in the brain [155], immune-based therapeutics have been tested in clinical trials, targeting
p38 MAP kinase (losmapimod) [156], COX2 (celecoxib), adjunctive to reboxetine [157] and
TNF (infliximab) [82]. Likewise, while stress activates glucocorticoids and consequently
reactivates microglia [158], schizophrenic patients display a hyper-functioning neuroen-
docrine hypothalamo-pituitary-adrenal (HPA) axis [159–161] those deficits may precede the
first-episode psychosis [160,162,163]. Furthermore, calprotectin, a neuroinflammatory glial
marker, is increased in schizophrenic patients [164]. Finally, some patients with schizophre-
nia display elevated levels of proline and the proline dehydrogenase (PRODH) gene
over-expression [165], hence implicating abnormal proline metabolism in schizophrenia. In
line with this, administration of proline to zebrafish (Danio rerio) triggers schizophrenia-like
states in this aquatic model, whereas a neuroleptic sulpiride (but not haloperidol) protects
from them [166].

Another interesting candidate novel antipsychotic drug is ulotaront, a mixed TAAR1 and
5-HT1A receptor agonist that is chronically efficient in patients with acute schizophrenia [145].
MK-8189 is a potent and highly selective inhibitor of PDE10A (an important regulator
of striatal signaling that, when inhibited, can normalize dysfunctional activity) currently
being developed as a novel therapeutic for schizophrenia [167]. Furthermore, cannabidiol
(CBD) has been tested as an adjunct treatment to antipsychotics. For example, individuals
with schizophrenia receiving CBD (1000 mg) for six weeks have fewer positive psychotic
symptoms than placebo [168], thus implying some beneficial effects of CBD in patients
with schizophrenia.
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4. In Silico-Driven Search for Novel Therapeutic Agents

Modern drug development actively employs computer-aided drug design (CADD)
methods in the search for novel therapeutic agents and drug targets. CADD-based ap-
proaches are traditionally divided into target- and ligand-based drug designs [169]. Target-
based drug design (e.g., docking) utilizes 3D structures of drug targets related to the
treatment of respective disorders. Ligand-based drug design, based on the knowledge of
structures and experimental data on ligands tested in interactions with the drug targets,
most commonly includes the similarity estimation and structure–activity relationships
((Q)SAR) models. Since both CADD methods require knowing molecular targets for their
respective disorders, the discovery of novel drug targets is a necessary prerequisite for
the search for new effective drugs, typically performed using bioinformatics and systems
biology (e.g., OMICS) data [169,170].

Over the last decade, there has been a rapid increase in CADD-based studies of de-
pression, including docking studies of ligands for serotonin reuptake [171,172], MAO A
and MAO B [173,174], dual action on MAO-B/AChE [175], glycogen synthase kinase [176],
sodium hNaV1.2 or hNaV1.7 channels [177], serotonin receptors (5HT1A, 5-HT2A, 5-HT2C
and 5-HT4) [171,178–181], adenosine A1/A2A receptors [182], T-type calcium channels [183],
tryptophan 2,3-dioxygenase [184] and sigma receptor [185]. Similarly, application of dock-
ing in psychoses involved ligands for serotonin 5HT2 and dopamine D2 receptors [186],
α4β2 and α7 nicotinic acetylcholine receptors [187,188], phosphodiesterase 10A [189],
MAO A and B [190], a syntaxin-binding protein (STXBP1) [191], NMDA type subunit 1
(GRIN1) [192], fatty acid binding protein 7 (FABP7) [193,194], metabotropic glutamate
mGluR5 receptor [195], ionotropic GABA-A receptor [196], glycine transporter type 1
(GlyT1) [197] and kynurenine aminotransferase II (KATII) [198].

CADD strategy may also involve natural compounds and probing pharmacological ef-
fects of their extracts, combining a network pharmacology approach and docking. In general,
network pharmacology utilizes the systems biology methods to analyze biological networks
(e.g., metabolic or signaling pathways, protein–protein interactions) in order to infer drug
actions and interactions with various targets [199]. Multiple recent studies have revealed
drug targets of phytocomponents from extracts with antidepressant effects [193,194,200–202],
and a similar approach has been used to search for drug targets related to the treat-
ment of schizophrenia by known schizophrenia drugs [203]. Some studies also combine
docking with (Q)SAR methods, e.g., identifying monoamine neurotransmitters reuptake
inhibitors as antidepressants [204] or a selective positive allosteric modulation of α1-
containing GABA-A receptors [196]. The use of only QSAR models, albeit less common
than docking studies, has linked antidepressant effects to MAO A [205], serotonin 5-HT2A
receptor [206] and norepinephrine/dopamine reuptake activity [207], and antipsychotic
effects - to 5-HT6 [208], D2, 5-HT2A [209] and sigma-2 receptors [210].

There are freely available web services and applications that facilitate the search for
possible ligand–target interactions based on the structural formula of compounds. These
useful tools are based on similarity estimation (e.g., SwissTargetPrediction [211]), SAR
models (e.g., PASS Online [212,213], Super-PRED [214]) and docking (e.g., [215], 1-Click
Docking [216]); also see [217] for details. For example, the PASS Online database can
predict not only the action on molecular targets, but also the associated pharmacological
effects. Briefly, if there is a simultaneous prediction of molecular mechanisms of action of
the compound and the corresponding pharmacological effect, the chance to corroborate
this effect in the experiment increases significantly, since this confirms the action of the
substance at different (molecular, cellular, tissue/organ, and the whole organism) levels of
biological organization.

Such knowledge of mechanism–effect relationships, extracted from the literature, is
implemented in the PharmaExpert software developed for interpreting the PASS prediction
results and containing >15,000 such relationships [169]. The PASS and PASS Online (version
2022) databases predict antidepressant effects with the invariant accuracy of prediction (IAP,
equivalent to an area-under-the-curve/AUC value and calculated by the leave-one-out
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cross-validation (LOO CV) procedure) of 0.897, yielding 90 related mechanisms of actions
with the mean accuracy of prediction of ~0.977 (Supplementary Table S1). Evaluation
by the PASS software of pharmacological potential of phytocomponents from St John’s
wort (Hypericum perforatum) and chaff-flower (Achyranthes aspera), the two well-known
medicinal plants with established antidepressant effect, has also been performed [218,219].
Computational analyses of St John’s wort extract activity assessed the predicted biological
activity spectra for 93 phytocomponents, revealing several likely phytocomponents that
may be responsible for its pharmacological (e.g., antidepressant) effects [210]. Studying
eight phytocomponents from chaff-flower predicts their likely antidepressant profile, with
estimated probabilities exceeding those of conventional antidepressants. Notably, such
simultaneous prediction of both antidepressant effects and the putative mechanisms of
action markedly facilitates CNS drug screening, as for the chaff-flower extract that was
experimentally tested in animal models and did show antidepressant-like effects [211].

Antipsychotic profile is predicted with the accuracy of 0.910, and 69 related mech-
anisms of actions are predicted with mean accuracy of prediction 0.983 (Supplementary
Table S2). Because the accuracy of prediction of pharmacological effects is less than that for
molecular mechanisms of action, simultaneous prediction of the pharmacological effect and
the associated mechanisms of action is important for experimental validation. The latest
version of PASS Online (http://way2drug.com/all/, accessed on 1 April 2023) enables
selecting pharmacological effects and appropriate mechanisms of action based on Phar-
maExpert data, as seen for key activities predicted by the PASS Online database related to
antidepressant and antipsychotic activity (Tables 1 and 2).

Table 1. Selected active compounds and their invariant accuracy of prediction (IAP) for antidepressant
profile and related key mechanisms of action, as predicted by the PASS Online 2022 database.

No The Number of Active Compounds
with the Respective Activity

IAP Based on Leave-One-Out
Cross-Validation * Predicted Activity Profile

1 19,174 0.897 Antidepressant
2 3101 0.989 Serotonin (5 Hydroxytryptamine) 1 agonist
3 1701 0.991 5 Hydroxytryptamine 1A agonist
4 5764 0.984 5 Hydroxytryptamine 1A antagonist
5 135 0.989 5 Hydroxytryptamine 1B agonist
6 7461 0.968 5 Hydroxytryptamine 2 antagonist
7 5262 0.979 5 Hydroxytryptamine 2A antagonist
8 2548 0.988 5 Hydroxytryptamine 6 antagonist
9 1272 0.985 5 Hydroxytryptamine 7 antagonist
10 6367 0.984 5 Hydroxytryptamine agonist
11 18,747 0.967 5 Hydroxytryptamine antagonist
12 7398 0.985 5 Hydroxytryptamine uptake inhibitor
13 244 0.997 AMPA receptor agonist
14 4131 0.983 Adrenaline uptake inhibitor
15 2759 0.973 Alpha 2 adrenoreceptor antagonist
16 2896 0.983 Dopamine agonist
17 3932 0.985 Dopamine uptake inhibitor
18 1112 0.966 GABA receptor agonist
19 1212 0.996 Glutamate (mGluR2) antagonist
20 312 0.993 Glutamate (mGluR3) antagonist
21 2623 0.972 MAO A inhibitor
22 3993 0.977 MAO B inhibitor
23 5366 0.964 MAO inhibitor
24 593 0.994 Melatonin agonist
25 929 0.987 NMDA 2B receptor antagonist
26 27 0.999 NMDA receptor glycine site B antagonist
27 731 0.997 NMDA receptor glycine site antagonist
28 434 0.983 Nicotinic alpha4beta2 receptor antagonist
29 3884 0.970 Opioid kappa receptor antagonist

* equivalent of an area under the curve (AUC) value.

http://way2drug.com/all/
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Table 2. Selected active compounds and their invariant accuracy of prediction (IAP) for antipsychotic
profile and related key mechanisms of action, as predicted by the PASS Online 2022 database.

No The Number of Active Compounds
with the Respective Activity

IAP Based on Leave-One-Out
Cross-Validation * Predicted Activity Profile

1 48 0.910 Antischizophrenic
2 7461 0.968 Serotonin (5 Hydroxytryptamine) 2 antagonist
3 5262 0.979 5 Hydroxytryptamine 2A antagonist
4 2432 0.986 5 Hydroxytryptamine 3 antagonist
5 2548 0.988 5 Hydroxytryptamine 6 antagonist
6 1272 0.985 5 Hydroxytryptamine 7 antagonist
7 1835 0.992 Acetylcholine M1 receptor agonist
8 411 0.997 Acetylcholine M4 receptor agonist
9 1604 0.979 Acetylcholine nicotinic agonist
10 591 0.997 Dopamine D1 agonist
11 8375 0.983 Dopamine D2 antagonist
12 3789 0.984 Dopamine D3 antagonist
13 2387 0.986 Dopamine D4 antagonist
14 10,756 0.980 Dopamine antagonist
15 588 0.996 Estrogen receptor beta agonist
16 885 0.994 Glutamate (mGluR2) agonist
17 114 0.993 Glutamate (mGluR3) agonist
18 1999 0.996 Glycine transporter 1 inhibitor
19 6006 0.977 Glutamate NMDA receptor antagonist
20 975 0.988 Nicotinic alpha7 receptor agonist
21 5287 0.992 Phosphodiesterase 10A inhibitor
22 629 0.970 Trace amine-associated receptor 1 agonist

* equivalent of an area under the curve (AUC) value.

Furthermore, predicting biological activity spectra for substances and the knowledge
of mechanism–effect relationships for antidepressant and antipsychotic effects provide an
opportunity to study not only individual drugs but also drug combinations and complex
phytocomponents. This may help reveal the most promising candidates that act via distinct
pathogenetic mechanisms, hence leading to synergistic therapeutic effects with, possibly,
fewer side effects.

5. Conclusions

Complementing traditional targets for pharmacological treatment of depression and
schizophrenia (Figure 1), novel putative drug targets continue to emerge, implicating a
wide range of CNS mechanisms and molecular circuits (Figure 2). However, in addition
to numerous questions that remain open in this field (Table 3), other challenges continue
to factor in. For example, comorbidity states and poorly identified, often overlapping
clinical and preclinical symptoms markedly complicate the development of new drugs
and their practical use for the treatment of depression and schizophrenia. Likewise, as
already mentioned, there seem to be several common, overlapping molecular targets for
both antidepressants and antipsychotics (Figure 1). As such, it is logical to expect that
novel CNS drugs can be developed that target both disorders simultaneously via those
common ‘shared’ molecular targets (Table 3). For example, from a conceptual standpoint,
it is plausible that novel ‘combined action’ antidepressant or antipsychotic drugs may be
developed based on simultaneous targeting of more than one aberrant signaling system
(e.g., GABA + serotonin, TAAR + serotonin, dopamine + glutamate). However, if they do
this, potential risks and benefits of using such a pharmacotherapeutic strategy are not fully
understood, warranting further pre-clinical (and, eventually, clinical) testing.
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Table 3. Selected potential open questions related to developing novel antidepressant and antipsy-
chotic therapies.

General conceptual questions:

• Are there common, overlapping molecular targets for both antidepressants and antipsychotics? (also see Figure 1). Can novel central nervous system (CNS)
drugs be developed that target both disorders simultaneously?

• Can novel antidepressant or antipsychotic drugs be developed based on simultaneous targeting of more than one aberrant signaling system
(e.g., GABA + serotonin, dopamine + glutamate)? What are potential risks and benefits from such approaches?

• Environmental factors play a role in shaping clinical, including genetically determined, depression and schizophrenia (i.e., the gene x environment interactions).
Similarly, environmental enrichment alleviates depression- and schizophrenia-like behaviors in animal models [220–222]. Can such environmental factors
influence the efficacy of novel antidepressant and antipsychotic drugs, and how can this be assessed in pre-clinical and clinical studies?

• Epigenetic factors play an important role in CNS pathogenesis, including both affective and psychotic illnesses. Can novel CNS drugs be developed (and,
eventually, introduced and approved) based on targeting epigenetic mechanisms in the brain?

• What is the exact role of neuronal vs. neuroglial (and also microglial vs. astrocytic) mechanisms in depression and schizophrenia? Can novel drugs be
developed based on specific targeting of such cell type-specific processes?

• Are there common and disorder-specific contributions from glial cells in depression and schizophrenia? Can novel CNS drugs be developed based on targeting
those putative common (shared) and disorder-specific processes?

• Are there common and disorder-specific neurogenomic, neuroproteomic and neurometabolomic signatures of depression and schizophrenia? Can novel drugs be
developed based on this omics information?

Selected specific biomedical questions:

• What is the exact role of brain-derived neurotrophic factor (BDNF) and its signaling pathways in modulating depression and schizophrenia? Can novel
antidepressant and antipsychotic drugs, and potentially ‘combined action’ CNS drugs, be developed based on targeting BDNF and other brain neurotrophins?

• What is the role of neuronal and neuroglial apoptosis in depression and schizophrenia? Can novel CNS drugs be developed for these two disorders based on
targeting apoptosis?

• Inflammatory cytokines can induce aberrant mTOR activity (e.g., interleukins (IL) IL-1β, IL-17A and TNF-α strongly activate the mTOR kinase PRAS40 and the
downstream targets of mTOR activity, 4E-BP1 and the ribosomal protein S6). Can drugs that modulate such cytokines be used for the treatment of depression
and psychoses (e.g., by normalizing glutamate signaling indirectly, via the mTOR-dependent processes)?

• Central trace amines and their receptors (TAARs) have been linked to both depression and psychoses clinically, as well as in animal models. Can novel CNS
drugs be developed based on targeting various TAARs?

• Sex differences have been reported for pharmacological treatment of both depression and schizophrenia [223,224]. How can novel drugs address this clinical
aspect, to more precisely target these respective CNS disorders in clinical and pre-clinical studies? For example, can novel steroid-based drugs be novel putative
antidepressant and antipsychotics?

• Certain pro-psychotic drugs (e.g., a deliriant hallucinogenic agent scopolamine) may evoke antidepressant effects [225]. Is there a potential therapeutic value of
cross-disorder overlap between drugs modulating depression and schizophrenia?

• Vitamin D is a potent neurosteroid hormone whose deficiency has been linked to both depression and psychoses clinically, as well as in various animal models.
Can novel CNS drugs be developed based on targeting the vitamin D signaling system in the brain? What is the role of nuclear vitamin D receptors (VDRs) in
clinical and preclinical depression and schizophrenia? Can novel CNS drugs be developed based on targeting the VDRs?

Selected translational questions:

• Are there potential reliable peripheral biochemical biomarkers of depression and schizophrenia in animal models and/or clinical studies that can be used for
fostering CNS drug discovery?

• How much do non-pharmacological interventions (e.g., diet, physical exercise, cognitive behavioral therapy) contribute to better performance of
pharmacological therapy in patients with depressive and schizophrenic patients? How can animal models contribute to our better understanding of this
particular aspect?

• Real-world evidence and real-world data have been used to support clinical trial designs and observational studies to generate new treatment approaches. How
do such data facilitate the development of novel antidepressant and antipsychotic drugs? How can animal models contribute to increasing the reliability of
these data?

Methodological, technical and practical questions:

• There are well-reported overt strain differences in animal (e.g., mouse) models of depression and schizophrenia. Can meaningful biological information be
gathered from such differences that may inform CNS drug search (e.g., can genomic or neurochemical strain differences be translated in pathway differences for
these two disorders)?

• Can novel antidepressant and antipsychotic drugs be developed based on drug repurposing?
• How does gut microbiota influence depression or schizophrenia states? Can novel probiotics be developed (and, eventually, introduced and approved) as

potential antidepressants and antipsychotics?
• How do various dietary factors (e.g., Mediterranean vs. Western diets) influence depression and schizophrenia? Can novel food supplements be developed

(and, eventually, introduced and approved) as potential antidepressants and antipsychotics?
• How does diet (e.g., high-carbohydrate diet) that predisposes to inflammation impact depression and schizophrenia? Can novel CNS drugs be developed based

on reducing diet-promoted inflammation?
• How can novel computer technologies (e.g., artificial intelligence) accelerate the development of novel antidepressants and antipsychotics? How can data

obtained from animal models contribute to increasing the reliability and applicability of these technologies in CNS drug discovery?
• How can novel alternative model organisms (e.g., zebrafish, Danio rerio) be used to promote innovative CNS drug screening for novel antidepressant and

antipsychotic drugs?

Other related open questions:

• Regulatory agencies have sought to reduce the use of animals in the development of novel drugs (e.g., US FDA has recently approved the non-mandatory use of
animals before human drug trials). How can these trends and policy shifts impact the development of new antidepressants and antipsychotics immediately, and
in the long run?

• What are specific molecular mechanisms for CNS drug resistance? Can novel antidepressant or antipsychotic drugs be developed based on specific targeting of
such ‘drug resistance’ targets? In other words, can such putative new group of drugs be used to specifically prevent or manage treatment-resistant forms of
CNS disorders?

Because neuroplasticity plays an increasingly recognized role in the pathogenesis of
depression and schizophrenia (Figure 1), modulation of CNS remodeling may become a
promising target for CNS drug discovery. Likewise, given a key role of neuroinflammation
in depression, novel antidepressant drug candidates may emerge that can exert ‘combined’
(e.g., neurotropic + anti-neuroinflammatory, or antidepressant + antipsychotic) activity
(Table 3), consistent with the idea of complex, polytarget neuropharmacotherapy for CNS
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pathogenesis. However, again, if they do exert such effects, their potential risks and benefits
for CNS pharmacotherapy warrant further studies.

Moreover, neuroimmune factors may also determine drug resistance, as a separate
but related trait, as well. For example, high levels of cytokines TNF-α and IL-6 correlate
with resistance to SSRIs [226]. However, neuroinflammation can also be a side effect of
CNS drugs, for instance, as some antidepressants may trigger neuroinflammation and
activate microglia [227]. Pro-inflammatory cytokines, in turn, may modulate central glu-
tamatergic and monoaminergic systems, neurotrophins, neurohormones, and cellular
immune cascades [92,228,229]. Thus, the link between the immune and the nervous sys-
tems emerges as an important potential target for novel CNS drugs. Immunological bases
of depression are actively investigated both clinically and in animal models [230], showing
marked symptomatic similarity between species [231–238].

Likewise, the melanocortin system, stress resilience and sleep/wake patterns are also
important for normal brain functioning, and their deficits can trigger both depression and
psychoses. As oxidative stress triggers neuroinflammation, developing novel antioxidants
may also be promising for treating psychiatric disorders. Mitochondrial deficits cause
neuronal network damage and, hence, trigger affective and schizophrenic symptoms [239].
Apoptosis is also observed in some brain areas in schizophrenic patients [240], necessitating
further studies of antipsychotic (and, possibly, antidepressant) potential of antiapoptotic
drugs (Table 3).

Lentivirus and adeno-associated viruses are another strategy for probing antide-
pressant and antipsychotic mechanisms in the brain via targeted activation or inactiva-
tion of gene expression of specific drug receptors, transporters [227–229] or nanocarriers
(e.g., clozapine targeting 5-HT1A and D2 receptors due to its low selectivity) [241]. Con-
sidering individual characteristics of patients is also critically important for the success of
psychopharmacotherapy. For example, sex differences (Table 3) are widely discussed in the
context of psychiatric diseases [242,243], and some antipsychotics and antidepressants show
sex differences in clinical pharmacokinetics [226,244] as well as in animal models [245,246].

Further broadening the spectrum of potential molecular drug targets beyond ob-
vious well-established neurochemical systems is becoming critically important as well.
For instance, in addition to its well-established physiological role as a regulator of Ca++

metabolism and bone growth, vitamin D has emerged as a potent neurosteroid hor-
mone (Table 3) whose deficiency and aberrant signaling via nuclear vitamin D receptors
(VDRs) have been linked to both depression and psychoses clinically, as well as in ani-
mal models [247–249]. This raises the possibility that novel CNS drugs can possibly be
developed based on targeting the CNS vitamin D/VDR signaling system.

Finally, further broadening the spectrum of model organisms beyond traditional
(e.g., rodent) models is necessary for innovating antidepressant and antipsychotic drug
discovery (Table 3). For example, mounting evidence shows that relatively novel ‘alter-
native’ model organisms like zebrafish can be used in neuroscience not only to generate
genetic, pharmacological or other experimental models of human CNS disorders, but to
screen for a wide spectrum of CNS drugs as well, including both antidepressants [5,6]
and antipsychotics [166]. Characterized by robust face, predictive and construct validity,
such models offer genetic tractability, high genetic and physiological homology and an
unparalleled high-throughput drug screening capacity [5] that can collectively foster the
search and development of novel antidepressant and antipsychotic drugs. Addressing this
and other remaining problems and questions (Table 3) can be expected to advance innova-
tive antidepressant and antipsychotic drug discovery and promote further personalizing
pharmacotherapy for depression and schizophrenia.
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