
https://doi.org/10.1177/02698811231166463

Journal of Psychopharmacology
﻿1–9

© The Author(s) 2023
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/02698811231166463
journals.sagepub.com/home/jop

Introduction
Dopamine, a major brain neurotransmitter, is crucial for controlling 
human and animal locomotion, cognition, motivation, and reward 
(Girault and Greengard, 2004; Klein et  al., 2019). For example, 
aberrant dopaminergic control of reward circuits is a major cause of 
addiction (Volkow et al., 2011), which is commonly associated with 
altered extracellular dopamine levels (Salimpoor et al., 2011; Wise 
and Robble, 2020), especially in striatum and nucleus accumbens 
(NAcc) (Salimpoor et  al., 2011). In contrast, reduced dopamine 
signaling plays a role in the pathogenesis of mood disorders, under-
lying motor retardation (Masato et al., 2019), anhedonia (Belujon 
and Grace, 2017), and dysthymia (Ishizaki and Mimura, 2011). 
Stress, in turn, can also modulate mesolimbic dopamine reward cir-
cuits, thereby pathogenetically bridging addiction (Sim et al., 2013) 
and affective disorders (Baik, 2020).

Drugs that affect central dopaminergic signaling include dopa-
mine receptors agonists and antagonists, dopamine-releasing 
agents, dopamine precursors, related enzymatic cofactors and 
inhibitors, various toxins, as well as enhancers or inhibitors of its 
reuptake mediated by the dopamine- (DAT) and the vesicular 
monoamine transporters. Dopaminergic drugs are efficient in 
treating a wide range of brain disorders, including Parkinson’s 
disease (dopamine agonists + L-DOPA) (Wachtel, 1991), schizo-
phrenia and bipolar disorder (antipsychotics) (Serafini et  al., 

2022), or epilepsy (e.g., dopamine D1 and D2 receptor agonists) 
(Bozzi and Borrelli, 2013; Brodovskaya and Kapur, 2021). At the 
same time, commonly abused drugs cocaine, amphetamine, meth-
amphetamine, adderall, ritalin, and wellbutrin all promote addic-
tion by inhibiting DAT (Vaughan and Foster, 2013; Verma, 2015) 
and elevating striatal dopamine release (Oleson et al., 2009).

In the search of dopaminergic drugs that increase synaptic 
dopamine but not dopamine release, GBR 12909 (vanoxerine) 
was found to be more affine to DAT than cocaine (Izenwasser 
et al., 1990). Some evidence suggests GBR 12909 as a promising 
antidepressant devoid of adverse cocaine-like behavioral effects 
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in clinical studies (Preti, 2000; Søgaard et al., 1990). However, 
acutely administered GBR 12909 induces hyperactivity and anxi-
ety in mice (Bigot et al., 2022), similarly to conventional DAT 
blockers (Hirate and Kuribara, 1991), whereas other animal stud-
ies show that GBR 12909 attenuates cocaine self-administration 
(Rothman et al., 2008).

Given the potential therapeutic value of GBR 12909 and simi-
lar drugs, but their poorly understood central effects in both 
humans and mammals, other vertebrate model species may be 
beneficial to address this problem further. For example, a small 
freshwater teleost fish, the zebrafish (Danio rerio), is rapidly 
gaining utility in translational neuroscience research and preclin-
ical central nervous system (CNS) drug screening, due to its suf-
ficient genetic, physiological, neurochemical, neuroanatomical, 
and behavioral similarity to mammals (Howe et al., 2013; Kozol 
et al., 2016). Zebrafish also possess well-developed, evolutionar-
ily conserved dopaminergic system (Stewart et al., 2015) and are 
highly sensitive to a wide range of conventional dopaminergic 
drugs, including antipsychotics (e.g., haloperidol, clozapine, 
olanzapine, risperidone, buspirone) (Bruni et al., 2016), cocaine 
(Darland and Dowling, 2001; López-Patiño et al., 2008), D1- and 
D2-like selective agonists (e.g., SKF-38393 and quinpirole) 
(Irons et al., 2013), and substances promoting the loss of dopa-
minergic neurons (e.g., 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine and 6-hydroxydopamine) (Wasel and Freeman, 2020). 
In contrast, GBR 12909 investigated here affects dopamine trans-
mission via inhibiting DAT manifoldly in comparison with other 
DAT blockers (e.g., cocaine) (Izenwasser et al., 1990), along with 
dopamine release suppression (Singh, 2000). Here, we used this 
powerful model organism to characterize the acute effects of 
GBR 12909 on zebrafish behavioral phenotypes. Specifically, we 
evaluated the effects of GBR 12909 in adult zebrafish subjected 
to the novel tank test (NTT) (Haghani et al., 2019), the habitua-
tion-based spatial working memory test (Wong et al., 2010) and 
the shoaling test (ST) (Facciol and Gerlai, 2020), to assess their 
general locomotor, anxiety-like, and social behaviors.

Materials and methods

Animals and housing

A total of 120 adult heterogenous wild-type short-fin outbred 
zebrafish (4–6 months old, ~50:50 male:female ratio) were 
obtained from a commercial distributor (Axolotl, Ltd., St. 
Petersburg, Russia) and acclimated for 3 weeks prior to the 
experiments in two 80-L plastic tanks with filtered oxygenized 
water maintained at 25°C–27°C and pH = 7.2–7.4, treated with 
AquaSafe™ (Tetra, Ltd., Melle, Germany) and methylene blue 
(Medosa, Ltd., Moscow, Russia). Illumination (800–900 lx) was 
provided by ceiling-mounted fluorescent light tubes on a 12-h 
schedule (8 am—lights on, and 8 pm—lights off). Fish were fed 
twice a day with TetraMin commercial flake fish food (Tetra, 
Ltd., Melle, Germany).

All animals used in the present study were experimentally 
naïve, and none of them were excluded from the analyses. 
Husbandry adhered to the guidelines for zebrafish care 
(Westerfield, 2000) as well as the national and institutional 
guidelines and regulations. The study, experimental design, and 
its description here, as well as data analysis and presenting, 
adhered to the Animal Research: Reporting of In Vivo 
Experiments guidelines for reporting animal research, the 3Rs 

(Replacement-Reduction-Refinement) principles of humane ani-
mal experimentation, and the Planning Research and 
Experimental Procedures on Animals: Recommendations for 
Excellence guidelines for planning animal research and testing. 
The outbred strain selection for the present study was based on 
population validity considerations and their relevance for the pre-
sent study. Briefly, although genetically controlled models (e.g., 
inbred zebrafish strains) can be a better reproducible and more 
reliable system for neurogenetics research, modeling CNS disor-
ders, such as in the present study, involves “real” human disor-
ders affecting genetically heterogenous populations. Thus, using 
outbred populations of zebrafish (such as selected here) was 
deemed a more populationally valid and translationally relevant 
approach for the purpose of this study (De Abreu et al., 2021).

Pharmacological manipulations

All fish were exposed acutely to either drug-free water or to 0.25 
(0.1 for ST), 0.5, and 1 mg/L GBR 12909 dihydrochloride (⩾98% 
HPLC grade, Sigma-Aldrich, Merck, USA) for 20 min prior to 
behavioral testing. The drug was dissolved in fresh dechlorinated 
water, and its doses and the duration of treatment were chosen 
based on our own pilot study confirming the absence of non-spe-
cific toxic/sedative effects of this drug. Drug treatment was per-
formed in a 750-mL beaker filled with 350 mL of drug solution at 
desired dose, which was refreshed after every three fish. In ST, 
each 5-fish shoal was exposed to the drug in 1.5-L tanks and 
video-recorded, as described below.

Behavioral assessment

Following acute GBR 12909 exposure, zebrafish general activity, 
novelty-evoked anxiety-like behavior, spatial cognition, and 
social behavior were assessed in the NTT, intrasession habitua-
tion, and ST, similar to previously published studies (Cachat 
et al., 2011b; Facciol and Gerlai, 2020; Wong et al., 2010). Each 
test was performed on a separate cohort of zebrafish, to avoid the 
test battery effect. Prior to experimental manipulations, all fish 
were acclimated for 1.5 h to the testing room. All behavioral par-
adigms used plastic rectangular 1.5-L tanks 
(17 height × 19.5 width × 4.5 length, cm) filled with water. Three 
sidewalls (back and lateral) of these tanks were covered with 
white adhesive paper to increase the contrast. Illumination in 
experimental area was similar to housing conditions (800–
900 lx). Prior to experimental manipulations, all fish were accli-
mated for 1.5 h to the testing room. Behavioral procedures were 
conducted between 11:00 and 16:00 h, and videos were recorded 
using Logitech C270 HD 720p web-cameras (Logitech, Plc., 
Lausanne, Switzerland) at 30 frames/s.

The NTT apparatus was divided by dotted horizontal line into 
two equal top and bottom zones. Prior to testing, all fish were 
experimentally naïve and divided into four groups (n = 15 per 
group), including control and 0.25, 0.5, and 1 mg/L GBR 12909 
groups. Each fish was recorded individually for 5 min, scoring gen-
eral locomotor indices, such as total distance moved (m), mean 
velocity (m/s), maximum velocity (m/s), maximum acceleration 
(m/s2), rotations, not-moving bouts (episodes without directed 
movements, ⩽0.02 m/s) and duration (s), and high-velocity bouts 
(⩾0.1 m/s) and duration (s). The analysis of zone-specific locomo-
tion included distance moved in top (m), maximum velocity in top 
(m/s), distance moved in bottom (m), and maximum velocity in 
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bottom (m), similar to (Suryanto et  al., 2022). Anxiety-related 
behavioral endpoints included meandering (deg/m), cumulative 
turn angle (deg), mean angular velocity (deg, s), top entries (top 
frequency), time spent in top (s), top latency (s), bottom latency 
(s), total activity, and zone (top/bottom)-related activity, as in 
shown by Cachat et al. (2011c). All endpoints were analyzed using 
automated video-tracking EthoVision XT17 software (Noldus IT, 
Wageningen, Gelderland, Netherlands).

Intrasession habituation was analyzed using the 5-min NTT 
data, assessing a single-minute habituation ratio (SHR) by compar-
ing that at the first vs the last (5th) minute, and cumulative habitu-
ation ratio (CHR) by comparing first vs second halves of the test 
(Raymond et al., 2012) for total distance moved (m), top/bottom 
distance moved, high-velocity (not-moving) bouts and duration 
(s), top frequency, top duration (s), and top/bottom activity.

The ST involved a 3-min acclimation period followed a 
10-min video-recording of fish group behavior in a separate 
cohort of experimentally naïve fish with three 5-fish shoal (n = 15 
per group) with 33 screenshots per group (11 screenshots per 
shoal, 1 screenshot per min for minutes 0–10), scoring average 
inter-fish distance (cm), closest and farthest neighbor distances 
(cm) between the fish, shoal area (cm2), and the number of top 
dwelling fish (expressed as % of total) (Pham et al., 2012), using 
the ImageJ software (NIH, Bethesda, MD, USA), similar to (Kim 
et al., 2017). Shoal area was calculated by this software as the 
square of the area formed by consecutive straight lines connect-
ing each fish location on the screenshot, according to Rosa et al. 
(2020). In all the analyses used here, the individual fish location 
was determined computationally as the body center point.

Statistical analyses

Statistical analyses were performed by GraphPad Prism 8 
(GraphPad, San Diego, CA, USA), assessing data normality by a 
combination of Anderson-Darling, D’Agostino-Pearson, 
Shapiro-Wilk, and Kolmogorov-Smirnov tests. Since most of the 
data were not distributed normally, our analyses utilized nonpara-
metric Kruskal–Wallis (KW) test, followed by Dunn’s post-hoc 
testing for significant KW, NTT and ST data. SHR and CHR 
habituation indices were analyzed using the Wilcoxon matched-
pairs signed rank U-test. NTT and ST results are presented as 
median with interquartile range. Habituation results are presented 
as mean ± SEM. A sample size (n = 15) chosen for each behavio-
ral test here was calculated by the G*Power software (Heinrich 
Heine University, Düsseldorf, Germany) by point-biserial corre-
lation (effect size ρ 0.62, statistical power 0.8, and two-tailed 
p = 0.05), and was also based on the results from our own pilot 
studies with GBR 12909, as well as on our previous studies 
screening CNS drugs and novelty-evoked behavior in zebrafish 
(Bozhko et al., 2022; Cachat et al., 2010).

Results

The novel tank test

The NTT experiment revealed overt hypolocomotion in fish 
treated by 1 mg/L GBR 12909, with significant differences in 
several indices, such as total distance moved and mean velocity 
(p < 0.0001 vs control, p < 0.001 vs 0.25 mg/L, and p < 0.01 vs 
0.5 mg/L), maximal velocity (p < 0.01 vs control, p < 0.05 vs 

0.5 mg/L) and maximal acceleration (p < 0.01 vs control, p < 0.05 
vs 0.25 mg/L, and p < 0.01 vs 0.5 mg/L, Figure 1(a)). Fish 
exposed to 1 mg/L GBR 12909 spent longer time without directed 
moving versus other groups (p < 0.0001 vs control, p < 0.001 vs 
0.25 mg/L, and p < 0.01 vs 0.5 mg/L), while the frequency of 
“not moving” was higher only in 0.25 mg/L group (p < 0.05) vs 
controls. The 1 mg/L group had fewer high-velocity bouts and 
shorter high-velocity locomotion time than control (p < 0.01, 
p < 0.001) and 0.5 mg/L groups (p < 0.05 both). Fish exposed to 
0.25 mg/L of the drug did not differ from any other group in high-
velocity measures (Figure 1(a)). Total locomotor activity signifi-
cantly differed at 1 mg/L from control and 0.25 mg/L groups 
(p < 0.0001 both), whereas 0.25 and 0.5 mg/L groups rotated 
more frequently than the 1 mg/L-treated fish (p < 0.05 and 
p < 0.01, respectively), who meandered more than all other 
groups (p < 0.001 vs control, p < 0.01 vs 0.25 and 0.5 mg/L, 
Figure 1(a)). Cumulative turn angle and mean angular velocity 
did not reveal significant differences.

The vertical activity analyses showed increased bottom dwell-
ing in 1 mg/L-treated fish (less top frequency p < 0.0001 and 
duration p < 0.0001, longer top latency p < 0.001) compared to 
controls. While the 0.25 mg/L group entered the top more fre-
quently (p < 0.001) and dwelled there longer (p < 0.01) than fish 
exposed to 1 mg/L (Figure 2), control also swam longer (Figure 
1(b)) and spent more time in the top (Figure 2) than 0.5 mg/L 
group (p < 0.05, p < 0.01). Assessing maximal velocity in the 
top, controls and 0.25 mg/L fish swam faster than 1 mg/L -treated 
zebrafish (p < 0.0001, p < 0.05, Figure 1(b)). Overall, controls 
and 0.25 mg/L fish were more active in the top than the 1 mg/L 
group (p < 0.0001, p < 0.001), while controls were also more 
active in the top than 0.5 mg/L group (p < 0.05, Figure 2).

The per-zone locomotion analyses supported general hypolo-
comotion of 1 mg/L fish and lesser bottom dwelling in control 
fish (Figure 1(b)), while total bottom activity was higher in con-
trol (p < 0.05) and 0.25 mg/L (p < 0.0001) fish than in 1 mg/L 
group (Figure 2). Specifically, 0.25 mg/L (p < 0.05) and 0.5 mg/L 
(p < 0.01) fish covered longer distance in the bottom zone than 
control and 1 mg/L groups. Additionally, control and 0.5 mg/L 
fish showed higher maximal velocity than 1 mg/L-treated fish 
(both p < 0.05, Figure 1(b)).

Intrasession habituation

While GBR 12909 at 1 mg/L significantly reduced zebrafish 
habituation, its smaller doses (0.25 and 0.5 mg/L) unaltered top 
frequency and top total activity SHR and CHR indices 
(Supplemental Table S1), as well as distance moved in the top 
(SHR, CHR p < 0.05; SHR p < 0.01, CHR p < 0.05, respec-
tively), whereas total bottom activity habituated only in control 
fish (SHR p < 0.001, CHR p < 0.05). Habituation test revealed 
significant effect of GBR 12909 on general locomotion, includ-
ing poorer habituation in all drug-treated groups, but not in con-
trols fish (SHR p < 0.0001, CHR p < 0.001). However, a 
time-dependent increase in locomotor activity was observed in 
0.25 mg/L-treated fish by reduced not-moving bouts (SHR 
p < 0.05, CHR p < 0.05), 0.5 mg/L by total distance (SHR, CHR 
p < 0.05), high-velocity duration (SHR p < 0.05), “not-moving” 
duration (SHR, CHR p < 0.05) and frequency (SHR p < 0.05), 
and 1 mg/L by lower not-moving duration (SHR p < 0.05, CHR 
p < 0.05, Supplemental Table S1).
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Shoaling behavior

ST detected tighter shoals at 1 mg/L vs control and 0.1 mg/L groups 
(Figure 3), with shorter inter-fish distance (p < 0.01 vs control, 
p < 0.0001 vs 0.1 mg/L), nearest neighbor distance (p < 0.01 vs 
control, p < 0.001 vs 0.1 mg/L), and smaller shoal area (p < 0.0001 
vs control, p < 0.0001 vs 0.1 mg/L). Fish treated with 0.1 mg/L also 
had longer average inter-fish distance, larger shoals than 0.5 mg/L 
fish (both p < 0.001), and longer farthest neighbor distance than 
0.5 and 1 mg/L (both p < 0.0001) groups. The shoal area was also 
smaller in 1 vs 0.5 mg/L groups (p < 0.01). Finally, the 1 mg/L-
exposed fish did not dwell in the top, whereas the 0.5 mg/L-treated 

fish showed fewer top-dwelling fish compared to control and 
0.1 mg/L groups (both p < 0.0001, Figure 4).

Discussion
Dopamine extracellular levels and signaling are strongly con-
trolled by DAT (Gregory and Bertha, 2005), whose dysregulation 
leads to various brain disorders, including addiction, attention defi-
cit/hyperactivity disorder, bipolar disorder, and Parkinson’s dis-
ease (Gregory and Bertha, 2005; Vaughan and Foster, 2013). 
Well-established animal genetic models often involve DAT 

Figure 1.  Zebrafish locomotion (a) and per-zone activity (b) endpoints assessed following an acute 20-min GBR 12909 treatment in the novel tank 
test; data are presented as median with interquartile range (n = 15 per group); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Kruskal–Wallis 
(KW) test with post-hoc Dunn’s correction.
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knockout rodents (Cinque et al., 2018), the phenotypes of which 
recapitulate dopaminergic neurodegenerative deficits and include 
impulsivity and perceptual and memory deficits (Efimova et al., 
2016; Leo et al., 2018). Furthermore, pharmacological inhibition 
of DAT by amphetamine, cocaine, or GBR 12909 induces similar 
effects in mice with normal DAT function (Salahpour et al., 2008; 
Spielewoy et al., 2001), recapitulating some mania-related features 
(hyperlocomotion and elevated exploratory behavior) in bipolar 
depression patients (Young et al., 2010). The present study is the 
first attempt to explore the role of pharmacological inhibition of 
DAT in adult zebrafish.

Overall, zebrafish displayed overt hypolocomotion at the 
highest GBR 12909 dose tested here (1 mg/L), with a lesser trend 
for high-speed locomotion at the 0.25 mg/L dose vs control and 
the 0.5-mg/L fish groups. Interestingly, similar hypolocomotion 
is also demonstrated in zebrafish Y-maze for chronic treatment 

with another DAT inhibitor, D-amphetamine (Cleal et al., 2021b), 
likely representing an early-onset Parkinson’s phenotype associ-
ated with DAT deficiency (Wang et  al., 2019). Additionally, 
many Parkinsonic patients experience motor score decrease par-
alleling exponential or linear decline of DAT activity (Ikeda 
et al., 2019). Furthermore, clinical observations of PD-patients 
also revealed reduced DAT availability in striatum (right puta-
men) in the subgroup of Parkinsonic patients with elevated anxi-
ety (Erro et al., 2012).

Lower vertical exploration indicates anxiogenic-like effect of 
0.5 and 1 mg/L GBR 12909, since bottom dwelling is often asso-
ciated with increased anxiety in zebrafish (Cachat et al., 2011b). 
Alternatively, lower locomotor and vertical activity at 1 mg/L 
may also reflect sedation in these fish (e.g., as observed with 
acute ethanol (Vossen et al., 2022)). However, fish treated with 
this GBR 12909 dose performed significantly more meandering 

Figure 2.  Zebrafish vertical activity endpoints assessed following an acute 20-min GBR 12909 treatment in the novel tank test; data are presented 
as median with interquartile range (n = 15 per group); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Kruskal–Wallis (KW) test with post-hoc 
Dunn’s correction.

Figure 3.  Representative images showing zebrafish shoals of zebrafish treated acutely for 20 min with GBR 12909, compared to water-treated control fish.
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than other groups (hence likely reflecting fish anxiety (Cachat 
et al., 2011a; Johnson and Hamilton, 2017), rather than sedation). 
Furthermore, 0.5 mg/L also evoked lower vertical activity with-
out hypolocomotion (Figures 1 and 2), further supporting anxi-
ety-like profile of the drug. Interestingly, the zebrafish DAT 
knockout also evokes elevated anxiety with bottom preference 
and thigmotaxis (Kacprzak et al., 2017), further consistent with 
an anxiogenic profile of GBR 12909 in the NTT observed here 
(Figure 1).

In neurobehavioral screening, intrasession habituation to 
novel environments represents an evolutionarily conserved cog-
nitive phenotype (Wong et al., 2010) related to spatial working 
memory (Galani et al., 1998) and basic form of learning (Schmid 
et al., 2015), sometimes mediated by the mesolimbic and meso-
cortical dopaminergic neurotransmission (Lloyd et  al., 2014).  
Assessing habituation is well-established and common in 
zebrafish models and tests, including the NTT-based CNS drug 
screens (Stewart et  al., 2013). Poorer habituation in zebrafish 
treated by 1 mg/L GBR 12909, seen in the present study, strik-
ingly recapitulates reduced spatial working memory reported in 
the DAT knockout mice (Li et  al., 2010). Somewhat similar 
working memory decline is also observed in adult zebrafish with 
reduced DAT expression following a dopamine D1/D5 receptor 
agonist SKF-38393 treatment at young ages (Cleal et al., 2021a). 
Natural rise of zebrafish locomotion in the habituation test was 
reduced by GBR 12909 at all doses used here (Supplemental 
Table S1), paralleling similar effects of a relatively novel DAT 
inhibitor, CE-123, thus attenuating an alcohol-induced hyperac-
tivity in rats (Gibula-Tarlowska et  al., 2021). Furthermore, 

so-called locomotor habituation analyses are  often included in 
the neurobehavioral studies (Brenes et  al., 2009; Spielewoy 
et  al., 2000), especially related to the open field tasks, highly 
relevant to short-term spatial cognition (Typlt et al., 2013; Willi 
et al., 2012).

Although GBR 12909 did not disrupt ST social behavior, the 
drug made zebrafish shoals tighter and increased their bottom 
preference (Figures 3 and 4). Since tighter shoals are common for 
anxiety in zebrafish (Golla et  al., 2020), the effects of 1 mg/L 
GBR 12909 in ST seem to corroborate anxiogenic profile of this 
drug observed in the NTT. Likewise, reduced top dwelling 
(another sign of anxiety (Pham et  al., 2012)) was also seen in 
both 0.5 mg/L and especially 1 mg/L GBR 12909 groups.

Considering potential toxic properties, GBR 12909 induced 
arrhythmogenic effects in halothane-anesthetized dogs via the 
inhibition of rapid potassium channels (IKr) with resulting intra-
cellular Ca2+ overbalance (Hagiwara-Nagasawa et  al., 2021). 
Although GBR 12909 also showed proarrhythmic potential in 
humans, indicating prolonged QTc interval on electrocardiogram 
(Rothman et al., 2008), clinical GBR 12909 safety studies did not 
reveal behavioral alterations in humans, unlike other DAT block-
ers (e.g., cocaine) (Preti, 2000; Tella et al., 1996). However, acute 
GBR 12909 induced overt hypolocomotion in adult zebrafish, a 
profile in line with some genetic (e.g., rodent DAT knockout 
(Cinque et al., 2018; Spielewoy et al., 2001)) or pharmacological 
(e.g., amphetamine-treated rodents (Cinque et  al., 2018; 
Sukhanov et al., 2019) and zebrafish (Cleal et al., 2021b)) models 
of DAT deficits. Furthermore, GBR 12909-induced hypolocomo-
tion in zebrafish is unlikely due to putative cardiotoxicity, as no 

Figure 4.  Behavioral effects of acute 20-min GBR 12909 treatment in adult zebrafish shoaling test; data are presented as median with interquartile 
range (n = 15 per group); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Kruskal–Wallis (KW) test with post-hoc Dunn’s correction.
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data from studying other cardiotoxic agents link hypolocomotion 
and cardiotoxicity (Heideman et al., 2005; Wiprich et al., 2020; 
Yang et  al., 2022). Moreover, no visible signs of ataxia have  
been observed in the 1 mg/L group in high-resolution (hd – 
1280 × 720) videos in the present study.

Unlike D-amphetamine improving spatial cognition in the 
zebrafish Y-maze (Cleal et  al., 2021b), GBR 12909 impaired 
their habituation in the present study (Supplemental Table S1), 
similar to the DAT knockout mice (Efimova et  al., 2016). 
Furthermore, GBR 12909 treatment evokes anxiety-like pheno-
type in zebrafish NTT and ST, again being consistent with data 
on increased anxiety in rodents treated with GBR 12909 (Bigot 
et  al., 2022; Young et  al., 2010). However, the fact that acute 
GBR 12909 evokes hypolocomotion, anxiety, and cognitive defi-
cit in zebrafish here (Figures 1–3), but not clinically (Preti, 2000; 
Rothman et al., 2008; Tella et al., 1996), calls for further clinical 
and preclinical studies of this drug, including both chronic treat-
ment and withdrawal paradigms.

Conclusion
Overall, GBR 12909 evoked unique behavioral phenotype in 
zebrafish previously not observed in rodent models. GBR 12909 at 
a high dose induces hypolocomotion unlikely related to general and 
cardiological toxicity. Although DAT knockout rodents display 
hyperactivity, GBR 12909-induced locomotor decline in zebrafish 
resembles clinical data on reduced locomotion accompanied by 
DAT decrease in Parkinsonism (Ikeda et al., 2019). Moreover, gen-
erally anxiogenic traits observed in NTT and ST in zebrafish groups 
treated with GBR 12909 at 1- and 0.5 mg/L doses parallel clinical 
data on comorbidity of anxiety and Parkinson’s disease (Erro et al., 
2012). Finally, intrasession habituation analysis revealed likely 
impaired spatial cognition and locomotor habituation, evoked by a 
high dose of GBR 12909. 

In general, our findings support the utility of zebrafish in preclini-
cal studies on DAT neuropharmacology and DAT-related neuropsy-
chiatric disorders. However, several limitations of this study include 
its use of only behavioral methods, albeit empowered by sophisti-
cated computational analyses. Likewise, it yet remains to be clarified 
whether the highest GBR 12909 dose used here may induce some 
CNS or general toxicity, especially given clinically observed proar-
rhythmic properties of GBR 12909 (Rothman et al., 2008). The tem-
poral dynamics of GBR 12909 action, its chronic effects, putative 
drug withdrawal responses, addictive potential, as well as the impact 
on dopamine metabolism, monoamine receptors, other neurotrans-
mitter systems, and the expression of key brain genes, warrant further 
studies in both zebrafish and rodent preclinical models.
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