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Abstract: Generalized relativistic pseudopotentials (GRPP) of atomic cores implying the use of
different potentials for atomic electronic shells with different principal quantum numbers give rise
to accurate and reliable relativistic electronic structure models of atoms, molecules, clusters, and
solids. These models readily incorporate the effects of Breit electron–electron interactions and one-
loop quantum electrodynamics effects. Here, we report the computational procedure for evaluating
one-electron integrals of GRPP over contracted Gaussian functions. This procedure was implemented
in a library of routines named LIBGRPP, which can be integrated into existing quantum chemistry
software, thus enabling the application of various methods to solve the many-electron problem with
GRPPs. Pilot applications to electronic transitions in the ThO and UO2 molecules using the new
library and intermediate-Hamiltonian Fock space relativistic coupled cluster method are presented.
Deviations of excitation energies obtained within the GRPP approach from their all-electron Dirac–
Coulomb–Gaunt counterparts do not exceed 50 cm−1 for the 31 lowest-energy states of ThO and
110 cm−1 for the 79 states of UO2. The results clearly demonstrate that rather economical tiny-core
GRPP models can exceed in accuracy relativistic all-electron models defined by Dirac–Coulomb and
Dirac–Coulomb–Gaunt Hamiltonians.

Keywords: generalized relativistic pseudopotentials; molecular integrals; Gaussian basis functions;
relativistic coupled cluster theory; excited states; heavy-element compounds; high-precision electronic
structure modeling; thorium oxide; uranium dioxide

1. Introduction

The experience of computational quantum chemistry has clearly demonstrated the
great importance of accounting for relativistic effects in applied ab initio modeling, espe-
cially when considering systems containing heavy atoms [1–4]. A series of approximate
relativistic Hamiltonians with increasing accuracy was proposed (for review, see [5–7]) and
implemented in general-purpose electronic structure programs, first for the special case of
atomic problems [8–12], and then for molecular ones [13–17]. The latest developments in
this field include models consistently accounting for frequency-dependent Breit interactions
as well as the one-loop quantum electrodynamic (QED) effects [18–25]. Despite the signifi-
cant progress in hardware and algorithms, such calculations based on a four-component
methodology are still very demanding. They thus can be applied only to atoms and few-
atomic molecular systems. The most time- and memory-consuming step in such models is
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accounting for magnetic (Gaunt) or total Breit two-electron interactions, which contribute,
for instance, up to several hundreds of wavenumbers to electronic excitation energies
even for the systems containing six-row elements, and thus cannot be omitted [2,20,26–28].
Either the Dirac–Coulomb Hamiltonian or its effective two-component counterparts ([6,29]
and references therein) widely used in modern relativistic molecular calculations suffer
from the lack of these spin-dependent two-electron interactions.

In parallel with the evolution of “genuine” relativistic Hamiltonians, the so-called
pseudopotential (PP) (or, more generally, effective core potential, ECP [30]) approach
was developed [31–37]. Originally proposed as an approximation aimed at reducing
the computational cost of conventional non-relativistic calculations by removing core
electrons, the pseudopotential approach was found to be an excellent alternative to scalar-
relativistic Hamiltonians [38]. Further, it was modified to treat spin-dependent interactions
as well [39,40]. The amazing success of the relativistic pseudopotential (RPP) approximation
was due to its relatively low computational cost and the development of general purpose
codes allowing one to use RPPs in routine electronic structure calculations. Another critical
factor was the appearance of publicly available sets of pre-tabulated RPPs supplied by basis
sets explicitly designed for pseudopotential calculations. Among such pseudopotentials,
the most widely used in molecular calculations nowadays are the energy-adjusted PPs
of Dolg et al. (see [35] and references therein), shape-consistent PPs of Christiansen,
Ermler, Pacios, et al. [32,41–49], Cundari and Stevens [50], and Hay and Wadt ([51] and
references therein).

However, all these RPPs were represented by semilocal operators, implying the use of
a sole effective potential for each partial wave with definite spatial (l) and total (j) electronic
angular momenta without discerning shells by their principal quantum numbers. Such
an approximation seems to be quite reasonable when only outermost (valence) shells of
atoms are treated explicitly (large core RPPs), but it becomes questionable when leaving
a relatively small number of electrons in a core simulated by RPP and treating explicitly
at least subvalence electrons (small core RPPs) [33,35,52,53]. The failure of semilocal RPPs
occurs when valence and subvalence shells are not well separated spatially; thus, the
valence–subvalence correlation effects are especially large. A typical example of such a
situation is the case of processes changing the number of f -electrons in lanthanide and
actinide compounds [33,36,54]. It is thus desirable to apply different potentials to the shells
with the same l and j, but different principal quantum numbers. This extension of the RPP
model called the generalized (or Gatchina) relativistic pseudopotential model (GRPP); it
is the most widely used form of generalized relativistic effective core potential (GRECP)
developed by Mosyagin, Titov and co-workers in the series of papers [33,36,37,53–58]. The
latest generation of GRPPs effectively includes the Breit interaction [26,59], the effect of
the finite nuclear charge distribution [37,53] and one-loop QED contributions (vacuum
polarization and electron self-energy) [28]. All these effects are considered explicitly only at
the GRPP generation step and then included into an electronic structure model completely
at “no charge”.

In order to access the full range of features of the GRPP model in high-level ab initio
calculations, one has to implement integrals of the GRPP operator for basis sets of atom-
centered Gaussian functions commonly used in modern electronic structure codes. At
the moment, calculations involving GRPPs can be carried out only for atomic systems
using the modified version [55] of the HFD program [8] and for molecular systems using
the MOLGEP program [57,60]. The latter code operates with spin-orbitals rather than
two-component molecular (pseudo)spinors and thus does not allow one to treat spin-
orbit interaction at the SCF level. The contributions from the effective spin-orbit operator
are added at the stage of correlation calculation. The loss of accuracy due to a strongly
non-optimal starting approximation for wave functions becomes significant already for
the sixth row elements of the periodic table; furthermore, the opportunity to freeze the
innermost explicitly treated shells after the molecular SCF step is lost. Moreover, MOLGEP
is restricted to Gaussian basis functions with angular momenta only up to l = 6 (i functions),
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whereas l > 6 functions are also indispensable for the quantitative treatment of angular
correlations in the states of heavy atoms with open d and/or f shells [27,28]. Other RPP
integrating codes used in electronic structure simulation software can work only with
conventional semilocal pseudopotentials. Among the most successful and widely used
integral programs of this type allowing the use of the effective spin-orbit interaction
operator are ARGOS [40,61,62] and the code written by Mitin and van Wüllen [63]. Thus, it
seems reasonable to design a new modern integral code allowing the use of GRPPs and
possessing no limitations arising from using a legacy code base. The interface of such
a library should allow relatively simple incorporation into any widely used relativistic
quantum chemistry software (e.g., DIRAC [16]).

In the present article, we report the new program implementation of molecular inte-
grals of the GRPP operator over contracted Gaussian functions. The paper is organized
as follows. In Section 2.1, the basic theory of the generalized relativistic pseudopotential
model is described. The following Sections 2.2–2.5 outline the computational procedure
used to evaluate three-center GRPP integrals over contracted Gaussian functions (including
integrals over non-local terms of a pseudopotential). Section 3 describes in detail the
LIBGRPP library implementing GRPP integrals. Pilot applications of the newly developed
integral library are presented in Section 4. The final section discusses further possible
improvements of LIBGRPP, and the prospects of its applications and provides some conclu-
sive remarks. Appendices contain the discussion on problems closely related to the GRPP
integral evaluation algorithm. Appendix A describes formulas for analytic differentiation
of GRPP integrals, while Appendix B presents the Obara–Saika-type recurrence relations for
integrals over the local part of the GRPP operator. Appendix C gives analytic expressions
for one-center pseudopotential integrals.

2. Theory
2.1. Generalized Relativistic Pseudopotentials

The pseudopotential model implies the description of an explicitly treated subset of
electrons with the Hamiltonian comprising the non-relativistic kinetic energy and instanta-
neous Coulomb electron–electron interactions,

ĤRPP = ∑
i

(
−∆i

2
+ ∑

γ

(
−

zc
γ

rγi
+ Ûγ(i)

))
+ ∑

i>k

1
rik

. (1)

Here, γ and i, k run over the indices of atomic nuclei and electrons, respectively,
zc

γ stands for the effective core charge (nuclear charge minus the number of excluded
electrons), rγi (rik) is the distance between a nuclear center and an electron (between two
electrons); atomic units are used throughout. It should be noted that if some of the atoms
γa can be described in the conventional all-electron nonrelativistic way (i.e., without a
pseudopotential), then it is obvious that Ûγa(i) = 0 and zc

γa is just the nuclear charge. The
one-electron field-independent pseudopotential operator Ûγ(i) along with the long-range
term −zc

γ/rγi simulates the effect of nuclear charge and excluded electronic shells of the
atom γ on the remainder electrons. The operators Ûγ should bear all information on the
effects of relativity. The Hamiltonian (1) is not well suited for taking into account core polar-
ization and correlations between the excluded and explicitly treated electrons. Therefore, to
achieve high accuracy in electronic structure modeling, the number of excluded electronic
shells should be smaller than the number of core shells in the ordinary “chemical” sense
(small-core RPP models); at least subvalence electrons are to be treated explicitly along
with valence ones. Further development of this idea has led to the concept of tiny-core
pseudopotentials implying an explicit treatment of several (more than one) subvalence
atomic shells.

We restrict our attention to shape-consistent RPPs designed to fit the behavior of
eigenfunctions of ĤRPP (pseudo wavefunctions) outside of the inner core region to that of
true two-component wavefunctions or large components of four-component wavefunctions.
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Note that pseudo wavefunctions within the inner core region are smooth and have no
radial nodes. The conventional shape-consistent semilocal RPP model [38,39] assumes that
an atomic contribution to molecular pseudopotential is described by the same functions
(partial potentials) Ul j(r) of the distance r from the center of the atomic nucleus (we shall
omit the indices γ, i for brevity) for all spinors with spatial angular momentum l and total
angular momentum j with respect of the center of this nucleus so that the overall atomic
contribution is given by [31]

Ûsemi−loc = ∑
l j

Ul j(r)Pl j, (2)

where Pl j projects onto the subspace of spinors with definite l and j values.
An accurate description of several electronic shells of an atom with different principal

quantum numbers (at least valence and subvalence ones) simultaneously, i.e., the use of tiny-
core RPPs seems to be hardly compatible with the Ansatz (2). The choice of Ul j ensuring
a perfect reproduction of the shape of valence pseudospinors with angular momenta l
and j within the Hartree–Fock approximation for an isolated atom normally leads to a less
satisfactory description of subvalence spinors with the same l and j values. This restricts
the accuracy of semilocal small-core and tiny-core RPPs, especially for describing electronic
structures of f -element atoms and compounds where valence and subvalence shells are not
well-separated spatially. An efficient and general way to remove this restriction within the
shape-consistent RPP framework is based on the use of different partial potentials Unlj(r)
for different atomic shells (labeled by their principal quantum numbers n) [33,55]. The
action of such a generalized RPP ÛGRPP on an atomic pseudospinor ψ̃nljm (m stands for the
projection of j) centered on the same nucleus and is characterized by its angular momenta l
and j and principal quantum number n should be equivalent to that of the corresponding
partial potential Unlj optimized to reproduce exactly this pseudospinor:

ÛGRPP = ∑l j Ûl jPl j (3)

Ûl jψ̃nljm = Unlj(r)ψ̃nljm (4)

The problem of constructing a Hermitian operator Ûl j in terms of partial potentials
Unlj and projectors Pnlj onto the subspaces of pseudospinors with the same l, j, and n is
non-trivial since Pnlj and Unlj do not commute. Provided that atomic pseudospinors are
solutions of an atomic Hartree–Fock problem with pseudopotentials, one can demonstrate
that the Hermitian operator

Ûl j = ∑
n

[
Unlj(r)Pnlj + PnljUnlj(r)

]
− 1

2 ∑
nn′

Pnlj

[
Unlj(r) + Un′ l j(r)

]
Pn′ l j (5)

satisfies exactly the basic requirement (4) [33].
It is normally assumed that the partial potentials for atomic virtual pseudospinors

coincide with that for valence subshells, Un′ l j = Unv l j for n′ > nv = nv(l). Furthermore,
in a strict analogy with conventional semilocal RPPs, partial semilocal components Unv l j
for large l are assumed l- and j-independent, Unv l j(r) = UL(r) for all l > L, where L at
least should be greater than the maximum spatial angular momentum value for excluded
inner-core shells. This stratagem allows one to replace the infinite summation in (3) by a
finite sum [38,39].

The representation of GRPP in terms of projectors onto eigenfunctions of the total
electronic angular momentum (j) is not convenient for molecular integral evaluation since
the Gaussian basis functions routinely used in quantum chemistry calculations cannot be
classified by the j quantum number. Therefore, for practical applications, this formula
should be transformed into the spin-orbital form [39,56]. The GRPP operator can be
represented as the sum of the scalar-relativistic potential (the first, second, and fourth
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terms in the right-hand side of Equation (6) below) and the effective spin-orbit interaction
operator (the third and fifth terms):

ÛGRPP = UL(r) +
L−1

∑
l=0

[Ul(r)−UL(r)] Pl +
L

∑
l=1

USO
l (r) Pl ls

+
L

∑
l=0

∑
nc

ÛAREP
nc l Pl +

L

∑
l=1

∑
nc

ÛSO
nc l Pl ls, (6)

where Pl = ∑
m
|lm〉 〈lm| and ÛAREP

nc l and ÛSO
nc l are non-local operators defined as

ÛAREP
nc l =

l + 1
2l + 1

V̂nc ,l,l+1/2 +
l

2l + 1
V̂nc ,l,l−1/2 (7)

ÛSO
nc l =

2
2l + 1

[
V̂nc ,l,l+1/2 − V̂nc ,l,l−1/2

]
(8)

V̂nc ,l,j =
[
Unc l j(r)−Unv l j(r)

]
Pnc l j + Pnc l j

[
Unc l j(r)−Unv l j(r)

]
−∑

n′c

Pnc l j

[
Unc l j(r) + Un′c l j(r)

2
−Unv l j(r)

]
Pn′c l j, (9)

where Pnc l j(r) is a projector onto subvalence pseudospinors.
The accuracy of the GRPP model is restricted mainly by

• An approximate nature of the many-electron Hamiltonian used to evaluate atomic
spinors, which in turn define the potentials Unlj(r). The construction of modern GRPPs
is based on atomic four-component all-electron calculations with the Dirac–Coulomb–
Breit Hamiltonian, employing Fermi nuclear charge distribution, and accounting
for the quantum electrodynamic correction [28] by means of the Lamb shift model
potential [18,64];

• The neglect of correlations between excluded and explicitly treated electrons and
inner core polarization and smoothing of pseudo wavefunctions in the inner core area.
The corresponding errors naturally decrease while reducing the number of excluded
electronic shells (so-called tiny-core and empty-core versions of GRPPs [28,58]);

• A roughly approximate mean-field-like simulation of Breit interactions between the
explicitly treated electrons by the corresponding contributions to one-electron GRPPs.
In principle, this factor can limit the feasibility of core size reduction for heavy atoms.

For further use in molecular applications radial parts of GRPP components are expressed
as linear combinations of radial Gaussian functions,

U(r) = ∑
k

dkrnk−2e−ζkr2
, (10)

where r stands for the distance from the point C at which the RPP is centered, r = |r− C|.
The GRPPs for chemical elements from hydrogen to element 123 were derived from
Dirac–Fock(–Breit) atomic calculations in 1995–2022 and reported in the series of pa-
pers [26,33,36,37,53–58]. The parameters nk, dk and ζk were tabulated and can be found
in [65].

To make use of the GRPP model, one has to evaluate the integrals of the GRPP operator
(6) over some appropriate basis functions. Atom-centered Gaussian basis functions are the
most widely used in modern molecular electronic structure theory; a detailed discussion
can be found in the monograph [66]. Here, we will discuss only Cartesian basis sets;
transformation to the spherical basis can be easily performed if necessary. Contracted basis
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function centered at point A is constructed from normalized Cartesian primitive Gaussians
with exponential parameters αAi:

φA(r) = ∑
i

ci Ni xnA
A ylA

A zmA
A e−αAi(r−A)2

, (11)

where xA = x− Ax (the same for yA and zA), ci stands for the contraction coefficients and
the normalization constants are given by

Ni =
2αAi

π

3/4 (4αAi)
(nA+lA+mA)/2

(2nA − 1)!!(2lA − 1)!!(2mA − 1)!!
. (12)

The orbital angular momentum of such a contracted function is formally equal to
LA = nA + lA + mA. Similarly, another Gaussian function φB(r) centered at the point B can
be introduced. The pseudopotential operator is bound to some origin C, thus RPP integrals
are in general three-center ones (see Figure 1).

Figure 1. Coordinate system used to evaluate pseudopotential integrals. Gaussian basis functions φA

and φB are re-expanded at the point C, where the center of a pseudopotential is located.

One can formally define five types of molecular integrals, corresponding to each of the
terms in the formula (6). However, only for the first three terms, special algorithms should
be designed. These algorithms will be briefly discussed below in Sections 2.2 (the local
term), Section 2.3 (the semilocal scalar term), Section 2.4 (the semilocal spin-orbit term).
Additional types of integrals arising from the last two non-local terms in (6) can be reduced
to combinations of integrals of the first type and overlap integrals (see Section 2.5).

2.2. Scalar-Relativistic Part: Integrals over the Local Potential

Integrals 〈φA|UL(r)|φB〉 over the first (local) term in Equation (6) are usually referred
to as type 1 integrals. The most widely used algorithm for calculation of these integrals
was proposed in [61] and is based on the re-expansion of Gaussian functions φA and φB
at the origin C where the RPP operator is centered (see Figure 1). This approach heavily
suffers from numerical instabilities for the case of large exponential parameters and large
angular momenta of basis functions [67]. At the same time, such basis functions have to be
used in calculations with small-core and tiny-core pseudopotentials. Thus, an alternative
approach is highly desirable.
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The type 1 integral can be expressed in terms of integrals over unnormalized primitive
Gaussian functions:

〈φA|UL(rC)|φB〉 = ∑
i

∑
j

∑
k

cicjNi Njdk 〈χAi|r
nk−2
C e−ζkr2

C |χBj〉 , (13)

〈χAi|r
nk−2
C e−ζkr2

C |χBj〉 =
∫

xnA
A ylA

A zmA
A e−αAi × rn−2

C e−ζkr2
C × xnB

B ylB
B zmB

B e−αBj dr, (14)

rC = |r − C|. In the rest of this section, we will discuss only integrals over primitive
functions χ and thus will use for brevity the notation αA, αB, ζ, n instead of αAi, αBj,
ζk, nk. For the overwhelming majority of pseudopotentials used nowadays (including
GRPPs) the power parameter n = 0, 1, 2. Moreover, since a product of Gaussian functions
is again a Gaussian function, one can try to adopt the classical recurrence McMurchie–
Davidson algorithm [68] (should not be confused with the McMurchie–Davidson algorithm
for pseudopotential integrals proposed in [61]) for overlap integrals (the case of n = 2)
and integrals over the 1

rC
(n = 1) [68] and 1

r2
C

(n = 2) [69,70] operators to calculate desired

pseudopotential integrals. The corresponding recurrence relations have to be slightly

modified to integrate the “exponentially scaled” analogs of these operators, e−ζr2
C , e−ζr2

C
rC

and e−ζr2
C

r2
C

. To the authors’ best knowledge, such an approach was not reported in the

literature before.
The main idea of the McMurchie–Davidson algorithm [66,68] for non-PP integrals

consists in the re-expansion of Gaussian overlap distributions Ωx
nAnB

on the basis of Hermite
Gaussian functions Λt:

Ωx
nAnB

= xnA
A xnB

B e−αAx2
A e−αBx2

B =
nA+nB

∑
t=0

EnAnB
t Λt, (15)

Λt(x) =
(

∂

∂Px

)t
e−px2

P , (16)

where p = αA + αB is the total exponent and P = {Px, Py, Pz} stands for the weighted
center of two primitive Gaussians, P = αA A+αBB

p . The re-expansion coefficients EnAnB
t are

obtained using upward recurrence relations [66,68] starting from the base value E00
0 = Kx

AB,
where Kx

AB is defined as:

Kx
AB = e−µX2

AB , µ =
αAαB

αA + αB
, XAB = Ax − Bx. (17)

The same relations are obviously held for the y and z components of the integrand
in (14). If one introduces the exponential factor e−ζr2

C related to the third center C then the
basic expansion (15) is rewritten as:

Ω̃x
nAnB

= xnA
A xnB

B e−αAx2
A e−ζx2

C e−αBx2
B =

nA+nB

∑
t=0

ẼnAnB
t Λt. (18)

There is a product of three Gaussian functions on the right-hand side. It can be shown
that the functional form of all the McMurchie–Davidson relations remains the same, but one
must replace the p, P and Kx

AB parameters with their counterparts for the three-center case:

p→ q = αA + αB + ζ, (19)

P→ Q =
αA A + αBB + ζC

αA + αB + ζ
, (20)
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Kx
AB → Kx

ABC = e−µABX2
AB e−µBCX2

BC e−µACX2
AC , (21)

where µAB = αAαB
αA+αB

, etc. The base of recurrence relation should be modified accordingly:

E00
0 → Ẽ00

0 = Kx
ABC. (22)

Pseudopotential integrals with n = 2 are in fact simply three-center overlap integrals,
and the working formula for them is the most compact one:

〈χA|e−ζr2
C |χB〉 = ẼnAnB

0 ẼlA lB
0 ẼmAmB

0

(
π

q

)3/2
. (23)

The expressions for the n = 0, 1 cases are more complicated:

〈χA|
e−ζr2

C

rn
C
|χB〉 = ∑

tuv
ẼnAnB

t ẼlA lB
u ẼmAmB

v R0
tuv, (24)

R0
tuv =

∫
rn−2

C Λt(x)Λu(y)Λv(z)dr (25)

Auxiliary integrals R0
tuv can also be calculated via recurrence relations depending on

the value of n. For n = 1, one actually has the expressions that are identical (except for the
P→ Q, p→ q substitution) to those for ordinary nuclear-attraction integrals [66,68]:

RN
t+1,uv = tRN+1

t−1,uv + XQCRN+1
tuv , (26)

RN
000 = (−2q)N · FN(qR2

QC), (27)

where Fn(x) stands for the Boys function, FN(x) =
1∫

0
e−xt2

t2Ndt (relations for the u and v

indices are similar).
For the n = 0 case, the recurrence relations are similar to those previously published

for the inverse square potential 1
r2

C
[69,70]:

RN
t+1,uv = tRN+1

t−1,uv + XQCRN+1
tuv − 2q(tRN

t−1,uv + XQCRN
tuv), (28)

RN
000 = (2q)N · GN(qR2

QC), (29)

where the function GN(x) is defined as:

GN(x) =
1∫

0

e−x(1−t2)t2Ndt, (30)

and relations for the u and v indices are similar.
Equations (14) and (23)–(29) completely define the computational algorithm used to

evaluate integrals over the local part of GRPP. It is beneficial to calculate the ẼnAnB
t and RN

tuv
entities simultaneously for all the Cartesian components (nA, lA, mA) and (nB, lB, mB) in
the shell pair and store them in multidimensional arrays. Even for the quite large values
of angular momenta of basis functions, the amount of memory required is moderate. It is
worth noting that alternative recurrence relations (Obara–Saika-like) can be obtained (their
derivation is given in Appendix B), but they are less convenient for programming since all
six indices denoting powers of Cartesian components are not decoupled from each other in
the upward recursion formula (A29).
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Approaches to stable evaluation of the FN(x) and GN(x) special functions are well-
established and their description can be found elsewhere [66,68–70]. Unlike the paper [70]
in the actual program implementation to calculate the G0(x) values at x > 12, we use the
relation employing the Dawson function D+:

G0(x) =
D+(
√

x)√
x

(31)

instead of Padé approximants to achieve an accuracy of the order 10−15 − 10−16. At the
same time, the GN(x) values for N > 0 are still obtained within the upward recurrence
relation (which is completely stable in this range of arguments).

2.3. Scalar-Relativistic Part: Integrals with Angular Projectors

The semilocal scalar term with angular projector Pl gives more complicated type 2
integrals 〈φA|∆Ul(r)Pl |φB〉 (here and below we use for brevity ∆Ul to denote the difference
potential Ul(r)−UL(r)). The scheme of evaluation of type 2 integrals employed in the
present work reproduces in general the half-numerical approach presented in [71,72]. It
is based on the classical algorithm of McMurchie and Davidson for PP integrals [61], but
radial integrals are evaluated numerically on a grid in order to overcome the well-known
problem of numerical instabilities in the analytical approach.

The general idea of the algorithm consists in the re-expansion of Gaussian functions
φA and φB at the origin C where the pseudopotential operator is centered (see Figure 1).
Then, the integration is performed over angular and radial variables separately [61]. The
re-expansion yields:

〈φA|∆Ul(r)Pl |φB〉 =
∞∫

0

∑
m
〈φA|Slm〉Ω · ∆Ul(r) ·∑

m′
〈φB|Slm′〉Ω′ r

2dr =

= 16π2
nA

∑
a=0

lA

∑
b=0

mA

∑
c=0

nB

∑
d=0

lB

∑
e=0

mB

∑
f=0

(
nA
a

)(
lA
b

)(
mA

c

)(
nB
d

)(
lB
e

)(
mB

f

)
×

× CAnA−a
x CAlA−b

y CAmA−c
z CBnB−d

x CBlB−e
y CBmB− f

z ×

×
λ1,max

∑
λ1

λ2,max

∑
λ2

Ta+b+c+d+e+ f
λ1λ2

(φA, φB) ·
+l

∑
m=−l

Ωabc
λ1lm(k̂A) Ωde f

λ2lm(k̂B), (32)

λ1,max = l + a + b + c, λ2,max = l + d + e + f

k̂A =
CA
|CA| , k̂B =

CB
|CB|

where CA = C − A, etc., and Mλ(x) stands for the modified spherical Bessel function.
Ωabc

λlm stands for angular integrals defined via real spherical harmonics Slm by the equation

Ωabc
λlm(k̂) =

λ

∑
µ=−λ

Sλµ(k̂)
∫ dΩC

4π
x̂aŷb ẑcSλµ(ΩC)Slm(ΩC). (33)

The radial integral TN
λ1λ2

is given by

TN
λ1λ2

(φA, φB) =

∞∫
0

rN+2 ∆Ul(r) Fλ1
A (r)Fλ2

B (r) dr (34)

where Fλ
A(r) and Fλ

B (r) are auxiliary functions absorbing contraction coefficients of φA and
φB, respectively:

Fλ
A(r) = ∑

i
ci Nie−αi |CA|2−kAir2

Mλ(kAir), (35)
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kAi = −2αAi · CA, kAi = |kAi|. (36)

The evaluation of angular integrals (33) is rather straightforward, and the details of
the procedure can be found elsewhere [61,72]. The key step in their evaluation is to expand
real spherical harmonics involved in the basis of Cartesian unitary sphere polynomials
(USPs):

Slm(r̂) = ∑
r+s+t=l

ylm
rst x̂r ŷs ẑt, r̂ =

r
|r| (37)

and then evaluate the integrals over USPs analytically. We obtain:

Ωabc
λlm(k̂) =

+λ

∑
µ=−λ

Sλµ(k̂)× ∑
r+s+t=λ
u+v+w=l

yλµ
rst ylm

uvw ×
∫

x̂a+r+uŷb+s+v ẑc+t+w dr̂. (38)

Integrals over unitary sphere polynomials are given by

∫
x̂i ŷj ẑkdr̂ =

{
4π

(i−1)!! (j−1)!! (k−1)!!
(i+j+k+1)!! even i, j, k,

0 otherwise.
(39)

Explicit expression for the ylm
rst expansion coefficients can be found in [72]. Evaluation

of radial integrals (34) is the most expensive step of RPP integration. However, radial
integrals do not depend on powers in Cartesian multipliers of contracted Gaussian func-
tions (11). Thus, the set of radial integrals is the same for all functions belonging to a given
shell and can be pre-tabulated as the first step of the RPP integration algorithm. Angular
integrals can in principle also be pre-tabulated, but practical experience shows that a large
fraction of these integrals is not actually used in contractions with radial integrals. Thus, it
is more computationally beneficial to calculate them “on the fly”.

In the present work, radial integrals are evaluated numerically on a grid using the
Log3 scheme of Mura et al. [73]. This radial quadrature is widely used in density functional
theory for integration of exchange-correlation potentials [74] and was successfully applied
for evaluation of pseudopotential integrals [71]. Within this approach, the radial integral is
approximated by the finite sum

+∞∫
0

f (r)r2dr ≈
nr

∑
i=1

wi f (ri). (40)

Explicit expressions for the grid points ri and weights wi can be found elsewhere [71,73].
The most notable and useful feature of the Log3 quadrature (and similar schemes like the
Gauss–Chebyshev quadrature [72]) is the possibility of expanding the integration grid without
recalculation of the integrand values. While expanding the grid from nr to 2nr + 1 points to
refine the integral I one has to calculate only nr + 1 integrand values f (ri):

I′ =
I
2
+

2nr+1

∑
i=1,3,5,...

wi f (ri) (41)

This scheme allows one to evaluate radial integrals with controllable accuracy.
The success and stability of the numerical integration using the quadrature formula

imply the stability of the evaluation of the integrand function in the whole range of
r ∈ (0,+∞). Modified spherical Bessel functions are monotonically increasing at r → +∞,
and grow very fast (see Figure 2a). This is an obstacle to the direct use of the expression in
the quadrature formula. To avoid numerical instabilities it was proposed [72] to switch to
the scaled modified spherical Bessel function Kλ(x) = e−x Mλ(x) with the restricted value



Symmetry 2023, 15, 197 11 of 30

range [0, 1] (see Figure 2b). Thus, the expression for the auxuliary function Fλ
A(r) (and also

Fλ
B (r)) absorbing contraction coefficients of basis functions (Equation (35)) is modified as:

Fλ
A(r) = ∑

i
ci Ni · e−αAi |CA|2−kAir2+kAirKλ(kAir). (42)

One can readily show that the exponential parameter in (42) is always negative at
large values of r, and thus the whole integrand function tends to zero at r → +∞.

0 2 4 6 8 10
x

0

200

400

600

800

1000

Mn(x) = /(2x) In + 1/2(x)

M0(x)
M1(x)
M2(x)
M3(x)
M4(x)

modified spherical Bessel function

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6
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1.0

Kn(x) = e x Mn(x)

K0(x)
K1(x)
K2(x)
K3(x)
K4(x)

modified spherical scaled Bessel function(a) (b)

K
n(x
)

M
n(x
)

Figure 2. Plots of modified spherical Bessel function (a) and its exponentially scaled counterpart (b).
In+1/2(x) stands for a modified Bessel function of the first kind.

The flowchart of the algorithm used to evaluate type 2 integrals (Equation (32)) is
shown on Figure 3. The first approximation to radial integrals is obtained using the grid
with nr = 31 points. Then, the arrays containing values of the rNUl(r) and Fλ(r) functions
at grid points with corresponding quadrature weights wi are pre-tabulated. Radial integrals
TN

λ1λ2
are assembled from these arrays using the formula

TN
λ1λ2
≈

nr

∑
i=1

rN
i ∆Ul(ri) Fλ1

A (ri)Fλ2
B (ri)wi (43)

for N ≤ LA + LB, λ1 ≤ LA + l, λ2 ≤ LB + l and packed into the three-dimensional array
for further use in Equation (32). Then, the grid is expanded and the next approximation to
the set of radial integrals is calculated using the relation (41).

It also seems advantageous to carry out a prescreening of radial integrals before their
exact evaluation. Different screening schemes were proposed in the literature [75–78]. In
the present work, we have employed the quite accurate scheme proposed by Shaw and
coworkers [77].

For the fast and stable evaluation of the Bessel function values, the computational
scheme from [72] was adopted. The recurrence relation for the (n + 1)-th order derivative
of the Kλ(x) function is:

K(n+1)
λ (x) =

λ

2λ + 1
K(n)

λ−1(x) +
λ + 1

2λ + 1
K(n)

λ+1(x)− K(n)
λ (x).

The implementation of the scaled modified spherical Bessel function from the GSL
library [79] was used to pre-tabulate reference values of Kλ(x) and its first four derivatives
further used in the Taylor expansion.
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contraction with angular integrals

construction of radial grid of nr points

converged?

yes

no
expand radial grid

Figure 3. Flowchart of the algorithm used for integration of the semilocal scalar part (type 2 integrals).

2.4. Integrals over the Effective Spin-Orbit Interaction Operator

The third term in the expression (6) representing the effective spin-orbit operator is
quite similar to the second one. Thus, one can expect that the evaluation of corresponding
molecular integrals should be only slightly more difficult than for the semilocal scalar term.
Employing the relation s = 1

2 σ, we find that one should calculate integrals, which include
Cartesian components of the orbital momentum operator l = {lx, ly, lz}:

〈φA|USO
l (r)Pl lη |φB〉 , η = x, y, z. (44)

and then combine these integrals with the Pauli matrices to construct the final molecular
Hamiltonian matrix (a comprehensive discussion can be found in [15]). Integrals (44)
are sometimes referred to as the type 3 integrals [40]. Using the idempotence property
P2

l = Pl , the fact that Pl commutes with the angular momentum operator l, and the explicit
expression for Pl , one obtain the general relation for the integrals (44):

〈φA|USO
l (r)Pll|φB〉 =

∞∫
0

∑
m
〈φA|Slm〉Ω USO

l (r)∑
m′
〈Slm|l|Slm′〉 〈φB|Slm′〉Ω′ r

2dr. (45)

Following the logic of the McMurchie–Davidson approach (see Section 2.3), one arrives
at the expression generally reproducing Equation (32) for type 2 integrals except for the
angular part, which is transformed in the following way:

+l

∑
m=−l

Ωabc
λ1lm(k̂A) Ωde f

λ2lm(k̂B)⇒
+l

∑
m=−l

+l

∑
m′=−l

Ωabc
λ1lm(k̂A) 〈Slm|l|Slm′〉 Ωde f

λ2lm′(k̂B) (46)

This formula seems to be more obvious and suitable for further programming than the
expression for SO integrals given in [40]. The angular momentum operator matrix elements
〈Slm|l|Slm′〉 in the basis of real spherical harmonics can be readily evaluated using simple
textbook formulas. In the actual implementation, we construct the l matrices in the basis
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of complex spherical harmonics Ylm and then transform it to the basis of Slm using the
relations [66]:

Slm =


i√
2

(
Ylm − (−1)|m|Yl,−m

)
m < 0,

Yl0 m = 0,
1√
2
(Yl,−m + (−1)mYl,m) m > 0.

(47)

Matrix elements 〈Slm|lη |Slm′〉 are purely imaginary. Therefore, the final SO integrals
are purely imaginary for the x and z Cartesian components and purely real for the y Carte-
sian component, since in (6) the imaginary integral over the ly-component is multiplied by
the σy Pauli matrix, which is imaginary.

2.5. Integrals over Non-Local Terms of GRPP

The radial non-locality of the last two terms of (6) is due to the presence of projectors
onto the outercore shells Pnc l j. It is clear from Equations (7) and (8) that the integrals
over these last terms should be assembled from the integrals over the auxiliary non-local
operator V̂nc l j:

〈φA|V̂nc l j|φB〉 and 〈φA|V̂nc l jPl l|φB〉 (48)

Substituting the definition of V̂nc l j (Equation (9)) into (48) and taking into the consider-
ation that projectors Pnc l j do not commute with the Unlj(r) potentials, we formally arrive at
six new types of integrals. However, they can be reduced to integrals over a local operator
(type 1 integrals) discussed above in Section 2.2. The reduction is possible due to the fact
that Pnc l j, Pl , and orbital angular momentum operator l commute with each other; at the
same time, Pl and l commute with the partial (local) potential U(r). Furthermore, we have
an obvious relation Pnc l jPl = Pnc l j. Outercore pseudospinors φ̃nc l j used to construct the Pnc l j
projectors are given simply by Gaussian expansions, therefore the evaluation of overlap
integrals 〈φA|φ̃nc l j〉 and 〈φ̃nc l j|φB〉 presents no problem (in the LIBGRPP library the Obara–
Saika algorithm [80] is used for fast analytical evaluation of these overlap integrals). The
final expressions for the non-local terms constituting scalar-relativistic integrals in (48) are:

〈φA|
(

Unc l j −Unv l j

)
Pnc l jPl |φB〉 =

+l

∑
m=−l

〈φA|Unc l j −Unv l j|φ̃nc l jm〉︸ ︷︷ ︸
type 1 integral

〈φ̃nc l jm|φB〉 , (49)

〈φA|Pnc l j

(
Unc l j −Unv l j

)
Pl |φB〉 =

+l

∑
m=−l

〈φA|φ̃nc l jm〉 〈φ̃nc l jm|Unc l j −Unv l j|φB〉︸ ︷︷ ︸
type 1 integral

, (50)

〈φA|Pnc l j

(Unc l j + Un′c l j

2
−Unv l j

)
Pn′c l jPl |φB〉 =

+l

∑
m=−l

〈φA|φ̃nc l jm〉 〈φ̃nc l jm|
Unc l j + Un′c l j

2
−Unv l j|φ̃n′c l jm〉︸ ︷︷ ︸

purely radial integral

〈φ̃n′c l jm|φB〉 , (51)

and for the spin-orbit part:

〈φA|
(

Unc l j −Unv l j

)
Pnc l jPll|φB〉 =

+l

∑
m=−l

〈φA|Unc l j −Unv l j|φ̃nc l jm〉︸ ︷︷ ︸
type 1 integral

+l

∑
m′=−l

〈Slm|l|Slm′〉 〈φ̃nc l jm′ |φB〉 , (52)

〈φA|Pnc l j

(
Unc l j −Unv l j

)
Pll|φB〉 =

+l

∑
m=−l

〈φA|φ̃nc l jm〉
+l

∑
m′=−l

〈Slm|l|Slm′〉 〈φ̃nc l jm′ |Unc l j −Unv l j|φB〉︸ ︷︷ ︸
type 1 integral

, (53)
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〈φA|Pnc l j

(Unc l j + Un′c l j

2
−Unv l j

)
Pn′c l jPll|φB〉 =

+l

∑
m=−l

〈φA|φ̃nc l jm〉 〈φ̃nc l jm|
Unc l j + Un′c l j

2
−Unv l j|φ̃n′c l jm〉︸ ︷︷ ︸

purely radial integral

×

×
+l

∑
m′=−l

〈Slm|l|Slm′〉 〈φ̃n′c l jm|φB〉 . (54)

The integral arising in the right-hand side of formulas (51) and (54) is purely radial:

〈φ̃nc l jm|
Unc l j + Un′c l j

2
−Unv l j|φ̃n′c l jm〉 =

+∞∫
0

(Unc l j + Un′c l j

2
−Unv l j

)
Rnc l j(r) Rn′c l j(r) r2dr, (55)

where Rnc l j(r) stand for radial parts of subvalence (outercore) atomic pseudospinors φ̃nc l jm
expressed as linear combinations of Gaussians. This integral is obviously independent
on m and can be taken out of the summation, leaving only the multiplication of overlap
matrices in (51) or two consecutive multiplications involving overlap and angular mo-
mentum operator matrices in (54). Note that in the reference implementation of GRPP
integrals (MOLGEP package) matrix elements (51) and (54), which are off-diagonal in the nc
quantum number are omitted. However, they can be of the same magnitude as the diagonal
elements (for example, this occurs for the uranium GRPP from [65]). Integrals (55) are
evaluated analytically (see Appendix C). Gaussian expansions of radial functions Rnc l j(r)
are obtained only once at the GRPP generation stage and are listed in GRPP data files
published online [56,65].

Similarly to local and semilocal terms of GRPP, all integrals over non-local terms are
also calculated in batches for all pairs of Cartesian Gaussians in a shell pair simultane-
ously. In practice, the integration of non-local terms is even faster than the integration
of the “conventional” semilocal RPP operator due to the use of type 1 integrals in all
working formulas. These formulas are very simple and can be readily coded in any other
quantum chemistry software provided that the code for evaluation of scalar-relativistic
pseudopotential integrals is available.

3. The LIBGRPP Library

Subroutines for evaluating the molecular integrals of the generalized relativistic pseu-
dopotential operator over contracted Gaussian functions based on the algorithms described
in Sections 2.2–2.5 were implemented and collected into a library named LIBGRPP. We
used earlier implementations of RPP integrals to check the validity of the developed codes,
namely, the RECP module of the DIRAC software [16,62] (semilocal RPP integrals) and
the MOLGEP program [60] (generalized RPP, but without cross-terms between shells with
different nc quantum numbers in Equation (6)). The general structure of the LIBGRPP
library is presented on Figure 4. The LIBGRPP library is written from scratch in the C99
programming language, but the Fortran 90 interface is provided to simplify access to its
subroutines from projects written in Fortran. Moreover, two sample programs in C99
and Fortran 90 demonstrating invocation of LIBGRPP subroutines are included into the
LIBGRPP distributive. Some subroutines from the open-source GNU Scientific Library
(GSL) [79] are employed to calculate values of scaled modified spherical Bessel functions
Kλ(x), the Dawson function D+(x) and the incomplete gamma function Γ(n, x). GSL is
distributed together with LIBGRPP and thus does not introduce any new external depen-
dencies complicating the building of the library.
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C interface
libgrpp.h

implementation
core of the library:

high-level routines: AREP, SO, nonlocal integrals
McMurchie-Davidson scheme for type 1 integrals

radial and angular (type 2) integrals
overlap integrals
radial quadrature

GNU Scientific Library
high-performance implementation

of scaled modified spherical
Bessel functions

Fortran interface
libgrpp.f90

sample programs
in C and Fortran:

test_libgrpp_c
test_libgrpp_f90

tests

Figure 4. The general structure of the LIBGRPP library.

The C interface to the integration routines provides tools for the evaluation of integrals
between pairs of shells. A shell with angular momentum l contains (l+1)(l+2)

2 Cartesian
basis functions; an order of Cartesian components within a particular shell can be selected
by the user, the order adopted in DIRAC is implied by default. Shells are represented by C
structures of the libgrpp_shell_t type (see Figure 5a). Each shell is attached to some point
in space, normally coinciding with the atom to which this batch of basis functions belongs.
Quite a similar data structure libgrpp_potential_t is provided to represent components
of a pseudopotential (see Figure 5b). LIBGRPP also contains “constructor” and “destructor”
routines to simplify, respectively, construction and deallocation of objects of these two basic
data types. All data structures and subroutines of LIBGRPP start with the libgrpp_ prefix.
After the objects representing atom-centered shells of basis functions and a pseudopotential
operator have been created, integrals for a given shell pair are to be calculated. For this
purpose, special subroutines representing different terms in Equation (6) are provided. The
resulting integrals between Cartesian components are packed into a one-dimensional array,
which is assumed to be pre-allocated (see Figure 6).

Figure 5. (a) Data structure representing a shell of contracted Gaussian basis functions. The
cart_list field contains a pointer to an array in which all possible Cartesian combinations with the
given angular momentum L are stored. (b) Data structure representing the component Unlj(r) of
the GRPP operator. The field J is not used for local and semilocal terms of GRPP; L is not used for
local terms.
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[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

[10] [11] [12] [13] [14] [15] [16] [17] [18] [19]

[20] [21] [22] [23] [24] [25] [26] [27] [28] [29]

[30] [31] [32] [33] [34] [35] [36] [37] [38] [39]

[40] [41] [42] [43] [44] [45] [46] [47] [48] [49]

[50] [51] [52] [53] [54] [55] [56] [57] [58] [59]

matrix:(a) (b)

Figure 6. (a) Declaration of the LIBGRPP subroutine designed to evaluate type 1 integrals (over the
local part of RPP). Other LIBGRPP subroutines have essentially the same interface. Matrix elements
between primitive Gaussians with different Cartesian parts are packed into a one-dimensional array
matrix of type double (linear indices of each matrix element are given inside the cells). (b) The array
of calculated RPP matrix elements exemplified for the case of the d- f shell pair.

The newly developed LIBGRPP library was interfaced into the DIRAC19 program
package [81].

4. Pilot Applications

The pilot applications reported in this section were designed to compare the accuracy
of the GRPP approach with its semilocal counterpart and all-electron relativistic calculations.
The analysis of the accuracy of GRPPs in atomic calculations accounting for electronic
correlation was carried out in [37] (and references therein). Some molecular applications
were also reported previously, e.g., relativistic coupled cluster calculations of the HgH,
HgH+ [57], TlF− [82], HI+ [83], CnH, CnH+ [84], Yb2, Ca2 [54], TlF, PbO, RaO and RaF
molecules (see [85] and references therein), but no applications to molecular electronic
transitions involving f electrons were described. Thus, the benchmark calculations for such
molecules seem to be essential to shed light on the accuracy of the GRPP method supplied
with the high-level correlation treatment. Here, we present the results of such benchmarks
for the two actinide molecules, ThO and UO2.

The direct comparison of the results of calculations employing RPPs and the all-
electron Dirac–Coulomb–Gaunt model as implemented in the DIRAC program suite
[6,16,81] offers the possibility to separate the errors arising from the pseudopotential
approximation per se. Two variants of GRPP for thorium and uranium, both replacing the
inner core shells with principal quantum numbers n ≤ 3, were constructed. The first one,
which we shall denote as GRPP/Gaunt, was generated using the reference atomic data
obtained within the four-component Dirac–Coulomb–Gaunt approximation and Gaussian
nuclear charge distribution (to be fully consistent with the electronic structure model avail-
able in DIRAC). The second variant accounts for the full zero-frequency Breit interactions
and one-loop QED effects within the model Lamb shift operator approximation [18,64]; it
also assumes the Fermi approximation for nuclear charge distribution. The detailed scheme
of generating the latter GRPPs, which will be further denoted as GRPP/QED is described
in Ref. [28].

All coupled cluster calculations reported below were carried out within the EXP-T
program package [86–88]. Molecular integrals over the GRPP operators were calculated
using the LIBGRPP library interfaced to the DIRAC19 program package [16,81]. Solution
of a relativistic SCF problem and further transformation of molecular integrals were also
performed using DIRAC19.

4.1. Electronic States of the ThO Molecule

The vertical excitation spectrum of the ThO molecule was calculated at the experi-
mental ground-state internuclear separation, Re = 1.840 Å [89], using the intermediate-
Hamiltonian Fock space relativistic coupled cluster method (IH-FS-RCC) [28] within the
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singles-and-doubles approximation (CCSD) to solve the many-electron problem. All elec-
trons except for those of Th shells with n ≤ 4 and 1s-shell of O were correlated. The
vacuum state and one-electron spinors were defined by the solutions of the Hartree–Fock
problem for the ground state of the closed-shell ThO2+ ion whereas the target states of the
neutral ThO molecule were treated within the two-particle (0h2p) Fock space sector. All-
electron Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations were performed using
the non-contracted s, p, d and f components of Dyall’s thorium quadruple-zeta basis [90]
augmented with a single f -function manifold (exponential parameter 0.050404710) and
(7g6h5i)/[5g4h3i] scalar-relativistic averaged atomic natural orbitals (see Supplementary
Materials). For the oxygen atom, a relativistic recontraction [91] of the aug-cc-pVQZ basis
sets [92,93] was employed. The GRPP-adapted equivalent of the all-electron Th basis set
was obtained by rejecting the most compact and reoptimizing several largest exponential
parameters of the remainder spd f functions, keeping untouched high-angular-momentum
components (all parameters are provided in Supplementary Materials); the same basis
for oxygen was used along with the empty-core GRPP [58] for this atom. The complete
model space at the FS-RCC stage was defined by 24 Kramers pairs of lowest-energy vir-
tual spinors of ThO2+; the incomplete main model space [28] for the (0h2p) sector was
spanned by all distributions of two active electrons among 6 lowest-energy pairs (roughly
corresponding to 7s and 6d atomic spinors of Th) and all determinants with orbital energy
sums in the same range. The algorithm defining the intermediate-state shift parameters
was described in detail previously for the Ra atom and Tl+, Lu+ atomic ions in Ref. [28].
For 31 lowest-energy eigenvectors of the intermediate Hamiltonian (excitation energies
up to ca. 25,000 cm−1), the fractions within the main model space exceed 95%, indicat-
ing the adequacy of the chosen intermediate-Hamiltonian scheme for the corresponding
electronic states.

The resulting vertical excitation energies Tv evaluated with different relativistic Hamil-
tonians are compared in Figure 7. The deviation of Tv values obtained with GRPP/Gaunt
from the corresponding results of all-electron calculations with Dirac–Coulomb–Gaunt
Hamiltonian employing the X2C MMF transformation [6] (Tv(AE DCG)) are always less
than 50 cm−1 (rms deviation 29 cm−1). This deviation is significantly smaller than the
contribution of retardation and QED effects to excitation energies (∆(R+QED)) estimated
as the difference between the results of calculations with GRPP/QED and GRPP/Gaunt
(104–212 cm−1; note that the contribution arising from the use of different finite nuclear
models in GRPP/QED and GRPP/Gaunt is negligibly small, less than one wavenumber).
It is thus clear that the use of the tiny-core GRPP/QED approach should be preferred to the
all-electron Dirac–Coulomb–Gaunt model not only because of significant computational
savings, but also for reasons of accuracy. As follows from the magnitudes of contributions
from Gaunt interactions (Figure 7, bottom), one can make an even stronger statement
concerning the reliability of the GRPP/QED model versus the Dirac–Coulomb one. The
replacement of the full GRPP/Gaunt by its valence semilocal component (v-RPP) leads to a
significant deterioration of results (the deviation of v-RPP/Gaunt excitation energies from
their all-electron counterparts can exceed 300 cm−1), so that the incorporation of interac-
tions beyond the Dirac–Coulomb–Gaunt approximations into semilocal pseudopotentials
hardly seems reasonable, except for the cases of s and p block elements.

4.2. Electronic States of the UO2 Molecule

The UO2 molecule is an example of a heavy polyatomic molecule with a quite diverse
set of electronic states. It was extensively studied both theoretically and experimentally in
the last two decades (see [94–98] and references therein).

In the present work, the vertical excitation spectrum of UO2 was calculated for the
linear geometry and at the experimental ground-state internuclear separation Re(U−O) =
1.790 Å [98]. Low-lying electronic states of UO2 can be accessed in the (0h2p) Fock space
sector. The IH-FS-RCCSD method with single and double excitations was used [28]. The
complete model space was defined by 24 Kramers pairs of lowest-energy virtual spinors
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of the closed-shell UO2+
2 ion. The thorough analysis [95] of the composition of electronic

states below 30,000 cm−1 shows that all these states can be obtained within the incomplete
main model space intermediate-Hamiltonian technique. For this purpose, we split the
manifold of virtual active spinors of UO2+

2 into three groups (the notation is adopted
from [95], see this paper for the detailed picture of one-electron states): (a) 7sσ

1/2g, 5 f φ
5/2u,

6dδ
3/2g, 5 f δ

3/2u, 6dδ
5/2g, 5 f φ

7/2u, 5 f δ
5/2u spinors; (b) 5 f π

1/2u, 5 f π
3/2u, 7pπ

1/2u, 7pπ
3/2u, 6dπ

1/2g, 6dπ
3/2g,

5 f σ
1/2u, 7pσ

1/2u spinors; and (c) the remaining set of virtual active spinors are used as buffer
ones. Wavefunctions of target states are dominated either by determinants with two
electrons distributed over spinors from the first group or by determinants with one electron
on the first group spinor and the other electron on the second group spinor. The adequacy of
the chosen IH model is confirmed by the fact that for 79 electronic states below 30,000 cm−1

fractions of main model space determinants exceed 94%. All-electron Dirac–Coulomb
and Dirac–Coulomb–Gaunt calculations were performed within the exact two-component
molecular mean field (X2C MMF) approximation [6]. The basis set for U was derived
from the exponents from the Dyall’s quadruple-zeta basis set [90] for the s, p, d, and f
functions and then augmented with (7g6h4i)/[5g4h3i] scalar-relativistic atomic natural
orbitals (see Supplementary Materials). For the pseudopotential calculations, the most
compact primitive Gaussian functions were rejected, keeping untouched high-angular-
momentum (g, h, i) functions. For the O atom, the aug-cc-pVQZ-DK basis set [91] was
used in both all-electron and RPP calculations; in the latter case, the empty-core (no core
electrons) pseudopotential of Mosyagin et al. [58] was also used. Shells of U with the
principal quantum number n ≤ 4 as well as the 1s shell of O were frozen at the IH-FS-
RCC stage.
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Figure 7. Top: Deviations of IH-FS-RCC vertical excitation energies (Tv) in ThO computed within
the GRPP/Gaunt model and its semilocal “valence” component (v-RPP) from their counterparts
obtained with all-electron Dirac–Coulomb–Gaunt Hamiltonian, Tv(AE DCG). Bottom: contributions
of Gaunt interactions (∆(Gaunt)) and retardation plus QED effects (∆(R+QED)) to Tv.

The resulting vertical excitation energies evaluated with different relativistic Hamilto-
nians are compared in Figure 8. The patterns are pretty similar to those obtained for the
ThO molecule (Section 4.1). The deviation of GRPP/Gaunt excitation energies from the ref-
erence DCG values does not exceed 110 cm−1 (rms deviation 51 cm−1, mean absolute error
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45 cm−1). This is larger than for ThO, but is fully consistent with estimates at the SCF level.
One can see from Tables S1 and S2 in the Supplementary materials that the GRPP errors are
naturally arranged according to the changes in the occupation number of the 5 f shell. Thus,
in the case of uranium and its ions these errors are of the order of +50 cm−1 for the transi-
tions with the decrease of this occupation number by one (and the rough proportionality
holds for the other transitions), whereas they are within 10 cm−1 for the transitions without
the change in this occupation number. Similarly to the case of ThO, the error introduced by
the GRPP approximation is smaller than the contribution of retardation and QED effects
(up to 140 cm−1). It is worth noting that the ∆(R+QED) contribution strongly depends on
the fraction of configurations involving the 7sσ

1/2g spinor (∼ +120 cm−1 per one electron).

In particular, the dropdown value of ∆(R+QED)= +102 cm−1 corresponds to the (2)0g
state dominated by the (7sσ

1/2g)
2 configuration. It should be emphasized that Gaunt contri-

butions to the excitation energies considered (reaching 767 cm−1, rms deviation 316 cm−1)
exceed the GRPP error by an order of magnitude (Figure 8, bottom). This clearly indicates
that the use of the four-component Dirac–Coulomb approximation does not make sense for
this system and should not be preferred over the tiny-core pseudopotential approach. Note
that even for the conventional semilocal (valence) RPP maximal deviation is twice smaller
(345 cm−1) than for the DC Hamiltonian.
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Figure 8. Top: Deviations of IH-FS-RCC vertical excitation energies (Tv) in UO2 computed within
the GRPP/Gaunt model and its semilocal “valence” component (v-RPP) from their counterparts
obtained with all-electron Dirac–Coulomb–Gaunt Hamiltonian, Tv(AE DCG). Bottom: contributions
of Gaunt interactions (∆(Gaunt)) and retardation plus QED effects (∆(R+QED)) to Tv.

5. Conclusions

The version of the LIBGRPP library presented in this paper provides universal tools for
the evaluation of all types of molecular integrals arising within the generalized relativistic
pseudopotential (GRPP) model.
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The numerical scheme for integrals over the local term of the pseudopotential based on
the one-center re-expansion of basis functions is not recommended due to severe numerical
instabilities arising for large values of exponential parameters in Gaussian basis functions.
This problem can be overcome by switching to other computational scheme based on
numerically stable recurrence relations analogous to the McMurchie–Davidson relations
for nuclear attraction integrals.

It should be pointed out that the semi-numerical scheme used in the present work
to evaluate integrals with projectors after some modifications can be used to calculate
molecular integrals over any arbitrary atom-centered potential. An important example
of such an operator is the electrostatic potential generated by some finite nuclear charge
distribution, e.g., the Fermi distribution [99,100], which is not currently available for
molecular calculations due to the absence of corresponding nuclear attraction integrals
in electronic structure packages. Such a feature will be demanded in the framework of
four-component relativistic calculations on superheavy element compounds. The other
example of such a non-local potential is the model Lamb shift operator [18,64].

Pilot applications of the developed LIBGRPP library in conjunction with the relativis-
tic coupled cluster theory to electronic transitions in the ThO and UO2 molecules clearly
demonstrate that the rather economical tiny-core pseudopotential model can exceed in
accuracy relativistic all-electron models defined by Dirac–Coulomb Hamiltonian in de-
scribing electronic excitations in f -block element compounds. Deviations of excitation
energies obtained within the GRPP approach from their all-electron Dirac–Coulomb–Gaunt
counterparts do not exceed 50 cm−1 (rms deviation 29 cm−1) for the 31 lowest-energy
states of ThO and 110 cm−1 (rms deviation 51 cm−1) for the 79 states of UO2. Generalized
pseudopotentials also provide an attractive opportunity to include QED and Breit effects
into the relativistic electronic structure model completely at no cost. Further experiences
with the GRPP model are desirable to elucidate its capabilities in molecular problems and
its scope of applicability.

There could be some possible future developments that are expected to improve the
code of the library and extend the scope of its applicability. In particular, the use of more
efficient radial quadratures and more robust schemes for pre-screening of radial integrals
(like that developed in [75,76]) appears to be the most promising direction for further devel-
opments. It also seems reasonable to provide the Python interface to LIBGRPP routines to
increase interoperability with modern electronic structure packages like PySCF [101]. The
other possible direction of future work will address further integration with solid-matter
quantum chemistry codes in order to explore the power of the generalized relativistic
pseudopotential model not only in atomic and molecular, but also in solid state prob-
lems [102–104]. We finally note that the computational scheme of evaluation of integrals
over GRPP-specific non-local terms presented in the paper does not actually introduce any
fundamentally new types of RPP integrals. Thus, it can be readily implemented within any
existing code for pseudopotential integration (given that the code for overlap integrals is
naturally presented in almost every quantum chemistry package). This paves the way to
routine calculations with one of the most comprehensive relativistic Hamiltonians at the
moment, completely bypassing any complicated four-component calculations.
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//www.mdpi.com/article/10.3390/sym15010197/s1, Table S1: Excitation energies derived from
all-electron numerical SCF calculations for the states averaged over nonrelativistic configurations of
the Th+ cation with DCB Hamiltonian and accounting for the finite nuclear size and QED effects;
Table S2: SCF excitation energies for the U2+ cation; Table S3: Basis set for Th (adapted for all-electron
calculations); Table S4: Basis set for Th (adapted for GRPP calculations); Table S5: Basis set for U
(adapted for all-electron calculations); Table S6: Basis set for U (adapted for GRPP calculations).
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Abbreviations
The following abbreviations are used in this manuscript:

FS-RCCSD Fock space relativistic coupled cluster method with single and double excitations
GRPP Generalized relativistic pseudopotential
IH Intermediate Hamiltonian
QED Quantum electrodynamics
SO Spin-orbit
v-RPP valence (semilocal) part of GRPP

Appendix A. Analytic Gradients of GRPP Integrals

To investigate potential energy surfaces of large objects composed of several dozens of
atoms, including a cluster model of defects in solids [102–104], one has to apply techniques
based on analytic rather than numerical evaluation of energy derivatives with respect to
nuclear coordinates, e.g., gradients and Hessians. Thus, the recipe for differentiating GRPP
integrals analytically is highly desirable.

Although the GRPP operator (6) is more complicated than its semilocal counterpart,
all one-electron integrals are still three-center ones. The approach to analytic differentiation
of such integrals based on the translational invariance of AO integrals is well-known since
the 1970s [105] and was successfully applied to calculate gradients and Hessians of scalar-
relativistic PP integrals [75,106–110]. The most comprehensive discussion can be found
in [108].

Without any loss of generality, consider the scalar-relativistic part of GRPP (6) (all
expressions for gradients of spin-orbit integrals are completely the same). We differentiate
the integral

IACB = 〈φA|ÛC|φB〉 , (A1)

with respect to the coordinates of nuclei A and B on which the basis functions φA and φB
are centered, respectively, and with respect to the coordinates C of the nucleus at which the

https://github.com/aoleynichenko
http://www.qchem.pnpi.spb.ru/recp
http://ckp.nrcki.ru/
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GRPP operator Û is placed. Obviously, if one performs differentiation with respect to some
other point D, and one obtains zero since the integral doesn’t depend on D:

∂IACB
∂D

= 0, D 6= A, B, C. (A2)

Differentiation with respect to the coordinates of the nuclei A and B presents no diffi-
culties since the derivative of the Gaussian function (Equation (11)) is a linear combination
of two other Gaussians with lowered and raised total angular momentum:

∂φA
∂Ax

= −nAφ
nA−1,l,m
A + φ

nA+1,l,m
A

φ
nA−1,l,m
A = ∑

i
ci Nix

nA−1
A ylA

A zmA
A e−αAi(r−A)2

φ
nA+1,l,m
A = ∑

i
(2αi)ci Nix

nA+1
A ylA

A zmA
A e−αAi(r−A)2

(A3)

(and the similar expressions for the y and z directions). Thus, the ∂IACB
∂A and ∂IACB

∂B gradients
can be constructed for all GRPP integrals in the shell pair simultaneously using the relation:

∂IACB
∂Ax

= 〈 ∂φA
∂Ax
|ÛC|φB〉 = −nA 〈φnA−1,l,m

A |ÛC|φB〉+ 〈φnA+1,l,m
A |ÛC|φB〉 . (A4)

Note that numerical differentiation using the second-order symmetric difference
quotient formula will require evaluation of six GRPP integrals instead of two in (A4). Thus,
one can argue that analytic differentiation of GRPP integrals is not only numerically stable,
but also much faster than the numerical one.

The challenging point is the differentiation with respect to the coordinates C at which
the GRPP operator is centered. The straightforward differentiation of GRPP will inevitably
lead to very cumbersome expressions, which is clearly an impractical way. Fortunately,
GRPP integrals possess the property of translational invariance, i.e., they don’t change
when shifting all the three centers A, B and C in the same direction. This means that

∂IACB
∂A

+
∂IACB

∂C
+

∂IACB
∂B

= 0, (A5)

and, hence, the gradient with respect to the center C can be expressed in terms of derivatives
of basis functions with respect to the other centers (A4):

∂IACB
∂C

= −∂IACB
∂A

− ∂IACB
∂B

. (A6)

If some centers coincide with each other, we have two-center IACA, IACC, ICCB and
one-center ICCC integrals. The derivatives of the latter integrals are always zero due to the
translational invariance. For the former, we need to reformulate the relation (A5) as

∂IACA
∂A

+
∂IACA

∂C
= 0. (A7)
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Now, the expressions for gradients for the remaining types of integrals are readily
obtained:

∂IACA
∂A

= 〈∂φA
∂A
|ÛC|φA〉+ 〈φA|ÛC|∂φA

∂A
〉 , (A8)

∂IACA
∂C

= −∂IACA
∂A

, (A9)

∂IACC
∂A

= 〈∂φA
∂A
|ÛC|φA〉 (A10)

∂IACC
∂C

= −∂IACC
∂A

, (A11)

(and the analogous relation for ICCB).
Since no fundamentally new types of integrals emerge, the program implementation

of the described scheme presents no difficulty. The subroutines for calculation of gradients
of GRPP integrals are also included into the LIBGRPP library. Their correctness was
verified by comparison with results of numerical differentiation using the second-order
finite-difference formula.

The extension of the differentiation scheme described here to the case of second
derivatives of GRPP integrals is quite straightforward [107,109,110]. Note that the overall
angular momentum of Gaussians involved will rise by 2 according to the formula (A3)
(for example, evaluation of Hessians of a GRPP integral involving i-functions will require
integration of l-functions, and so on). However, this presents no problem for the LIBGRPP
library since it does not imply any restrictions on the maximum value of angular momentum
of basis functions.

Appendix B. Obara-Saika Recurrence Relations for the Local Part of the GRPP
Operator

The McMurchie–Davidson-type recurrence relations for the integrals (14) were pre-
sented in Section 2.2. Here, we present the Obara–Saika-type relations which also can be
used to evaluate integrals over the local part of the GRPP operator.

As it was mentioned previously in Section 2.2, integrals corresponding to the case of
n = 2 are actually three-center overlap ones, for which the Obara–Saika recurrence relations
can be obtained directly from the property of translational invariance [80]. Such an integral
is assembled from one-dimensional overlap integrals along the x, y, z-directions:

〈χA|e−ζr2
C |χB〉 = Sx

nAnB
Sy

lA lB
Sz

mAmB
, (A12)

Sx
nAnB

=

+∞∫
−∞

xnA
A xnB

B · e
−αAx2

A e−αBx2
B e−ζx2

C dx (A13)

(the same for the y, z directions). These one-dimensional overlap integrals can be obtained
using the upward recurrence relations (for example, for the x direction):

Sx
i+1,j = XQASij +

1
2q
(
iSi−1,j + jSi,j−1

)
, (A14)

Sx
i,j+1 = XQBSij +

1
2q
(
iSi−1,j + jSi,j−1

)
, (A15)

(0 ≤ i ≤ nA, 0 ≤ j ≤ nB). The base of recursion is given by the expression:

S00 =

√
π

q
· Kx

ABC. (A16)
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If the power in the pseudopotential primitive is equal to 1, the integral will closely
resemble the integral over 1

rC
:

〈χA|
e−ζr2

C

rC
|χB〉

def
= Θ0

nAnB lA lBmAmB
. (A17)

The derivation of the Obara–Saika recurrence relations for the 1
rC

operator was dis-

cussed in details in the monograph [66]. For the case of e−ζr2
C

rc
, one should modify these rela-

tions according to the considerations for the McMurchie–Davidson scheme (see Section 2.2):

ΘN
i+1,jklmn = XQAΘN

ijklmn +
1
2q

(
iΩN

i−1,jklmn + jΩN
i,j−1,klmn

)
− XQCΘN+1

ijklmn +
1
2q

(
iΩN+1

i−1,jklmn + jΩN+1
i,j−1,klmn

)
, (A18)

(and five analogous relations for the j,k,l,m,n indices).

ΘN
000000 =

2π

q
Kx

ABCKy
ABCKz

ABCFN(qR2
QC). (A19)

The remaining type of local terms of GRPP arise if n = 0:

〈χA|
e−ζr2

C

r2
C
|χB〉

def
= Ξ0

nAnB lA lBmAmB
. (A20)

To derive Obara–Saika-type recurrence relations, one can follow step-by-step the
scheme described in details in [66] for nuclear-attraction integrals. It is based on results of
the McMurchie–Davidson scheme [68] rather than the translational invariance property.

We start from the definition of auxiliary integrals:

ΞN
ijklmn =

2π3/2
√

q
(2q)−N ∑

tuv
Eij

t Ekl
u Emn

v RN
tuv, (A21)

Obviously, for the base of recursion we have:

ΞN
000000 =

2π3/2
√

q
Kx

ABCKy
ABCKz

ABCGN(qR2
QC). (A22)

Let us increase the first index in (A21) by one, i→ i + 1:

ΞN
i+1,jklmn =

2π3/2
√

q
(2q)−N ∑

tuv
Ei+1,j

t Ekl
u Emn

v RN
tuv. (A23)

Then, we use the upward recurrence relation for the Ei+1,j
t coefficient (see Equation 9.5.20

in [66]):

Ei+1,j
t = XQAEij

t +
1
2q

(iEi−1,j
t + jEi,j−1

t + Eij
t−1), (A24)

ΞN
i+1,jklmn = XQA ΞN

ijklmn +
1
2q

(i ΞN
i−1,jklmn + j ΞN

i,j−1,klmn) +
1
2q

2π3/2
√

q
(2q)−N ∑

tuv
Eij

t−1Ekl
u Emn

v RN
tuv. (A25)

By substitution t→ t + 1, we obtain:

ΞN
i+1,jklmn = XQA ΞN

ijklmn +
1
2q

(i ΞN
i−1,jklmn + j ΞN

i,j−1,klmn) +
2π3/2
√

q
(2q)−N−1 ∑

tuv
Eij

t Ekl
u Emn

v RN
t+1,uv. (A26)
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Let us focus on the last term of this expression. We use the relation (28) to decrease the
index t in RN

t+1,uv:

2π3/2
√

q
(2q)−N−1 ∑

tuv
Eij

t Ekl
u Emn

v RN
t+1,uv =

=
2π3/2
√

q
(2q)−N−1 ∑

tuv
(tEij

t )Ekl
u Emn

v RN+1
t−1,uv + XQC

2π3/2
√

q
(2q)−N−1 ∑

tuv
Eij

t Ekl
u Emn

v RN+1
tuv

+
2π3/2
√

q
(2q)−N−1 ∑

tuv
(−2qt · Eij

t )Ekl
u Emn

v RN
t−1,uv − 2qXQC

2π3/2
√

q
(2q)−N−1 ∑

tuv
Eij

t Ekl
u Emn

v RN
tuv. (A27)

Each of these four terms can be further simplified. For the first and the third term, one
should use the other recurrence relation for the Eij

t coefficient (see Equation (9.5.14) in [66]):

2qtEij
t = iEi−1,j

t−1 + jEi,j−1
t−1 (t > 0). (A28)

Accounting for the obvious relation XQA − XQC = XCA, one arrives at the desired
recurrence relation:

ΞN
i+1,jklmn = XCA ΞN

ijklmn + XQC ΞN+1
ijklmn +

1
2q

(i ΞN+1
i−1,jklmn + j ΞN+1

i,j−1,klmn). (A29)

(and five analogous relations for the j,k,l,m,n indices). It is interesting that this relation is

more simple that its counterpart (A18) for the operator e−ζr2
C

rC
. It is worth noting that this

result closely resembles the relation (3.5) reported in the recent PhD thesis of McKenzie [78].

Appendix C. Analytic Evaluation of One-Center RPP Integrals

Working expressions (51) and (54) for integrals over non-local GRPP terms include
radial integrals of type (see Equation (55)):

∆ncn′c =

+∞∫
0

(
Unc l j(r) + Un′c l j(r)

2
−Unv l j(r)

)
Rnc l j(r) Rn′c l j(r) r2dr, (A30)

where Rnc l j, Rn′c l j are radial parts of atomic outercore pseudospinors with principal quan-
tum numbers nc, n′c, respectively, and angular quantum numbers l and j. These radial
functions are represented by contracted radial Gaussians [66]:

Rnc l j(r) = ∑
i

ci Ni rle−αir2
, (A31)

Ni =
2(2αi)

3/4

π1/4

√
2l

(2l + 1)!!

(√
2αi

)l
. (A32)

Provided that pseudopotential multiplier in (A30) is represented by the functional
form (10) we arrive at the relation

∆ncn′c = ∑
ijk

cicj Ni Nj dk ·
+∞∫
0

r2l+nk e−(αi+αj+ζk)r2
dr. (A33)

The latter integral is a generalization of the Gaussian integral and can be evaluated
analytically using the well-known formula [111]:

+∞∫
0

rNe−ar2
dr =


(2k−1)!!
2k+1ak

√
π
a , N = 2k (even N),

k!
2ak+1 , N = 2k + 1 (odd N).

(A34)
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