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ABSTRACT The features of light refraction in liquid crystal cells with a continuously changing director distri-
bution are studied. The theoretical description is constructed within the framework of the geometrical optics
approximation. The neighborhoods of the turning points are considered, where due to the variable refractive
index the ray smoothly changes the direction of propagation to the opposite one. It is shown that the applied
electric field changes the nature of the extraordinary ray refraction. Electrically controlled refraction of light
in cells with a planar and hybrid director orientation for incident angles exceeding the angle of total internal
reflection is experimentally studied. The dependencies of the turn on and turn off times of the optical response
on the applied voltage and the incident angles on the glass – liquid crystal boundary are obtained.
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1. Introduction

The wide practical application of liquid crystals (LC) explaines the great interest in the study of their optical properties
and behavior in external fields. This is due to the simplicity of controlling the optical properties of thin LC layers using
an electric field: under the action of an electric field, the LC director is reoriented, which makes it possible to control
the intensity of light passing through the LC layer. The unique electro-optical properties of LCs are used in display
technology, information transmission systems and various optical devices [1–3].

The complexity of describing LC systems in external fields is due to the fact that the distribution of the director and,
consequently, the optical characteristics are not constant, but vary over the thickness of the sample. The study of the
trajectories of rays passing through such systems makes it possible to study the change in the local structure of an LC
depending on the applied external field. The presence of a spatial helicoidal structure makes the problem of describing
the transition in external fields mathematically more complex. The Fréedericksz transition in cholesteric liquid crystals
(CLC) was first considered by Leslie [4]. Note that there is a significant difference between the descriptions of the
Fréedericksz effect in electric and magnetic fields. The reason is that the electric field in LC is not uniform. This problem
was considered in detail in [5–7].

Theoretically, the problem of the propagation of light obliquely incident on an anisotropic medium with an arbitrary
direction of the optical axes was solved by various methods. Numerical methods [8–13] are intensively used. Much
attention is paid to exact and approximate analytical methods [14–17], the method of interacting modes [18, 19] and
methods of geometric optics [20, 21].

In this paper, cells are considered in which significant changes of the director orientation occur at distances much
larger than the light wavelength. When describing the light propagation in such systems, the so-called Mouguin adiabatic
regime is used. The properties of such media change smoothly on a scale of the order of the light wavelength, and it
turns out to be possible to use the WKB method. Light propagates in the adiabatic regime. There are two normal waves,
locally ordinary and locally extraordinary, whose polarization vectors are determined by the local directions of the optical
axis and the wave vector at a given point. When an extraordinary ray is incident on an LC layer at angles greater than a
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certain minimum angle, the extraordinary ray turns (reflects) inside the medium and leaves the medium [22]. Note that
the turning occurs inside the cell at a certain depth of penetration, and not on the surface of the sample.

To describe the optical properties of an LC cell, it is necessary to know the distribution of the director in the volume.
In this paper, we obtain this distribution using the method of direct minimization of free energy [17, 23, 24].

Associated with the director reorientation, the light transmission turn on and turn off times are one of the most
important performance characteristics of liquid crystal devices. The research of the LC director reorientation dynamics at
different distances from the LC layer boundary is of particular interest.

In this paper, we study the dependencies of the turn on and turn off times of the optical response on the angle of
incidence of the ray on the LC layer. This makes it possible to study the dynamics of the electro-optical response for
different depths of ray penetration into the layer. One of the aims of this work is to experimentally study electrically
controlled refraction in LC cells by varying the thickness of the LC layer, the incident angle of light, and the applied
voltage. The study of various cell geometries and comparison of their characteristics is of great interest in terms of
determining the optimal cell properties for various applications.

2. Free energy of the liquid crystal

We consider a thin layer of liquid crystal confined between two plane-parallel plates. The area of the plates and the
thickness of LC layer are assumed to be equal S⊥ and L respectively. Such LC cell can be placed in the external electric
E or magnetic H field. The field is applied in a direction perpendicular to the plates. So we suppose that the director n(r)
has a homogeneous distribution in every plane parallel the plates.

Let us introduce Cartesian coordinate system in the following way. The axis Oz is along the direction which is
perpendicular to the cell’s plates (the electric and magnetic fields have the same direction) and the axes Ox and Oy are
directed along the short and long edges of the plate respectively. The plane z = 0 coincides with the lower substrate. So
the director is the function of z-coordinate, n(r) = n(z).

The total free energy of the system includes three terms:

Ftot = Fe + Ff + Fsf . (1)

The first term represents Frank free energy and describes a volume distortion [25]:

Fe =
1

2

∫
V

[K11(divn(r))2 +K22(n(r) · rotn(r) + q0)2 +K33(n(r) × rotn(r))2]dV, (2)

where K11,K22,K33 are elastic Frank constants, p0 = 2π/q0 is the pitch, V is the volume, V = S⊥L.
The second component is the contribution of the external field:

Ff = −
∫
V

B ·H
2

dV , (3)

for magnetic field and

Ff = −
∫
V

D ·E
8π

dV , (4)

for electric field. Here B is the magnetic induction, B = (1 + 4πχ⊥)H + χa(H · n)n, χa = χ‖ − χ⊥ is the anisotropy
of the magnetic susceptibility, where χ‖ and χ⊥ are the magnetic susceptibilities along and perpendicular to n; D =
ε̃⊥E+ ε̃a(E ·n)n is the electric displacement vector, ε̃a = ε̃‖− ε̃⊥ is the anisotropy of the dielectric permittivity; ε̃‖, ε̃⊥
are the dielectric permittivities along and perpendicular to n at the electric field frequency.

The last term in Eq. (1) is the surface energy of anchoring

Fsf =
S⊥
2

∑
j=1,2

wj(n(zj),n0(j)), (5)

where n(zj) (j = 1, 2, the terms with indexes 1 and 2 relate to up and down substrates of the cell, respectively) are
directors in the planes of the plates, vectors n0(j) are easy orientation axes, wj are scalar functions of two unit vectors.
They take minimal values if n(zj) = n0(j).

The director in every point of the cell’s space can be represented by the polar θ and the azimuthal φ angles: n(z) =
(sin θ(z) cosφ(z), sin θ(z) sinφ(z), cos θ(z)). The angle θ is counted from the axisOz and the angle φ from the axisOx.
The elastic energy (2) in these terms has the form [26]:

Fe =
V

2
K22q

2
0 +

S⊥
2

L∫
0

[A(θ)(θ′)2 +B(θ)(φ′)2 − 2C(θ)φ′]dz, (6)

where
A(θ) = K11 sin2 θ +K33 cos2 θ, (7)
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B(θ) = sin2 θ(K22 sin2 θ +K33 cos2 θ), (8)

C(θ) = q0K22 sin2 θ. (9)

The contributions of the external fields are

Ff = −S⊥
2

L∫
0

D2
z

4π(ε̃⊥ + ε̃a cos2 θ)
dz (10)

or

Ff = −S⊥
2

L∫
0

χaH
2 cos2 θdz. (11)

Note that the electric field has the inhomogeneity induced by the nonuniform director distribution. For the further calcula-
tions and comparison with the experimental data it is convenient to represent the electric field contribution by the voltage
U . The voltage is applied to the lower and upper plates of the LC cell.

U =

L∫
0

Ez(z)dz = Dz

L∫
0

(ε̃⊥ + ε̃a cos2 θ)−1dz. (12)

Then the second term can be written as

Ff = − S⊥U
2

8π
L∫
0

(ε̃⊥ + ε̃a cos2 θ)−1dz

. (13)

For the last term the Rapini–Papoular potential is usually used

Fsf =
S⊥
2

∑
j=1,2

(w
(j)
θ sin2(θ(zj) − θ0(j)) + w

(j)
φ sin2(φ(zj) − φ0(j))). (14)

The angles θ0(j) and φ0(j) describe the vectors of the easy orientation axes n0(j).
We will calculate director configuration for different LC cells by the direct minimizing the free energy. For this

purpose one can use director representation within the finite elements method or the Fourier transform by the polar and
the azimuthal angles.

Within this model we can also calculate a capacity C of the LC cell. It depends on the director distribution

C =
q

U
=

S⊥

4π
L∫
0

(ε̃⊥ + ε̃a cos2 θ)−1dz

. (15)

Here we suppose that S⊥ � L and the boundary effects are neglected.

3. Light propagation in the LC cells within the geometrical optics approximation

In this section, we consider the light propagation in the anisotropic medium within the geometrical optics approxi-
mation. Note that the dielectric permittivity tensor ε̂ is taken at the optical frequency and describes the medium optical
properties. Further the medium is supposed to be nonmagnetic i.e. the magnetic permeability tensor is µαβ = δαβ . We
are interested in the wave equation solution. In our problem the ray is incident to the plane z = 0. Let p is a typical scale
of the director variation and its value is p ∼ (dn/dz)

−1. We assume in the framework of geometrical optics that p � λ.
So Ω = p/λ is the large parameter. The presence of the large parameter makes it possible to solve the wave equation
using the WKB method. We consider only the first two orders in the Ω parameter within this method. Then the electric
field of the wave can be written as [27]:

E
(j)
± (r) = A

(j)
± (k⊥; z, z0) e

(j)
± (k⊥, z) exp

ik⊥ · r⊥ + i

z∫
z0

k
(j)
z±(k⊥, z

′)dz′

 , (16)

where (j) is the type of the wave ((o) is ordinary and (e) is extraordinary), A(j)
± is the wave amplitude, z0 = 0, e(j)± are

the polarization vectors, the wave vector k takes the form k = (k⊥, kz), k⊥ is the two-dimensional vector, its magnitude
is determined only by the incident angle δ and the refractive index of medium ngl. In the introduced coordinate system
k⊥ = (0, k⊥), where k⊥ = k0ngl sin δ. The longitudinal component of the wave vector kz has enough complicated form.
It can be derived from the eikonal equation [28]:

k
(o)
z± = ±

√
k20ε⊥ − k2⊥, (17)
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k
(e)
z± =

k0
ε⊥ + εa cos2 θ

(
k⊥
k0
εa sin θ cos θ sinφ± ε⊥

√
D(k⊥, θ, φ)

)
, (18)

where

D(k⊥, θ, φ) = ε‖

(
1 − k2⊥

k20ε⊥
+
εa
ε⊥

cos2 θ

)
+
k2⊥εa
k20ε⊥

sin2 θ cos2 φ, (19)

k0 = 2π/λ. The expression (16) describes the four possible solutions of the wave equation. Here ± means the propagation
direction in relation to the axis Oz: along the axis or the reverse one, respectively.

In the present system, the extraordinary wave can propagate in the direction along which the refractive index de-
creases. In this case the effect of total internal reflection is possible i.e. the wave vector change the propagation direction
gradually to the reverse one. In the certain medium point z = zt the function

D(k⊥, θ(zt), φ(zt)) = 0 (20)

and then becomes less than zero. This means the appearance of the complex additive in the k(e)z expression. The wave
partially reflects from the layer z = zt and partially continues to propagate with the exponential damping. The first effect
is very similar to the total internal reflection within the LC volume (the wave partially reflects from some layer inside the
medium and then begins to propagate in the direction reversed to the axis Oz).

In the differential equation theory the points satisfying Eq. (20) are called the turning points. The electric field
expansion is a complex task and the WKB method is not applicable in the vicinity of these points. The turning points
presence and location have an important role in the investigation of the light propagation in the LC cells [22].

The wave vectors surfaces are derived from the equations (17) and (18) for ordinary and extraordinary waves, re-
spectively. This surface is a sphere in the ordinary wave case. So for the certain incident angle i.e. for the certain k⊥
the longitudinal component k(o)z does not depend on z and the wave propagates in the medium in a straight line. In the
extraordinary wave case the wave vectors surface takes the oblique ellipsoid form. Its orientation is determined by the
angles θ(z) and φ(z). The Fig. 1 shows the cross-section of this ellipsoid by the plane formed by k⊥ and the axis Oz for
the certain value z. The magnitude of the wave vector transverse component k⊥ is determined by the incident angle, the
medium refractive index and the incident wave length.

kz

k

1 2 3

O

O'

θ

k1z

3k1 k2k

k1z+

k2z
k2

k1+

k1

FIG. 1. The cross-section of the extraordinary wave vector surface by the plane formed by the vector
k⊥ and the axis Oz for the certain value z. Case 1 corresponds to two solutions k1z+ and k1z− for the
z-component of the wave vector. The wave can propagate in this point of medium. Case 2 conforms
to the solution degeneration, kz takes only the value k2z . If this situation takes place then in this point
of the LC layer the wave has partial refraction. In case 3 the extraordinary wave vector takes complex
value so the wave propagates with exponential damping in this point of the medium

If the ellipsoid cross-section and the straight line k⊥ = k1⊥ have two intersection points (i.e. D(k⊥, θ(z), φ(z)) > 0

for every value of z) then the wave equation has two solutions for k(e)z and the extraordinary wave propagates in the whole
LC cell volume. If only one value zt corresponds to the equation (20) and D(k⊥, θ(z), φ(z)) > 0 for other values of
z then the wave partially reflects from the LC layer z = zt and partially continues to propagate in the cell. There is a
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solution degeneration of k(e)z in this point zt. On Fig. 1 the solution degeneration of k(e)z is observed in the case when
the ellipsoid cross-section intersects the straight line k⊥ = k2⊥ at a single point. If there is a value zt corresponding to
D(k⊥, θ(zt), φ(zt)) = 0 and in this point the function D(k⊥, θ(z), φ(z)) changes the sign then the wave partially reflects
from the layer z = zt and partially continues to propagate with the exponential damping. There is a band gap in the
medium. In this case the ellipsoid section and the straight line k⊥ = k3⊥ do not intersect. The presence of a few turning
points and band gaps in LC cell is possible.

Since the functions θ(z) and φ(z) determine the ellipsoid orientation the long semi-axis changes with the parameter z.
Also the external field influences the ellipsoid inclination angle.

The turning points zt derived from Eq. (20) determine the ray penetration length in the LC layer. The director
configuration and the angle of incidence of the extraordinary wave define the solution of the equation for the turning
points.

4. Experimental setup

The experimental cells for studying the refraction in LC layers were composed of two glass trapezoidal prisms (1)
and (2) with the base size of 52 × 24 mm and the height of 18 mm (Fig. 2). The inclination of the entrance faces to the
base was 68◦. Required LC layer thickness was set by Teflon spacers. The base surfaces were covered with transparent
conducting electrodes. Thin polymer layers were deposited on the top of electrodes by spin coating at the prism-rotation
speed of 3000 rpm. A ZhK-1466 nematic mixture (NIOPIK) with the refractive indices for the ordinary and extraordinary
rays n(o) = 1.511 and n(e) = 1.691, respectively, at λ = 632.8 nm and temperature T = 20◦C was used. The mixture
had positive dielectric anisotropy ε̃a = 12.3, ε̃⊥ = 6.9 in the frequency range of 1–100 kHz and the elastic constants
K11 = 11 pN, K22 = 3.8 pN and K33 = 0.99K11. Surface planar alignment of the liquid crystal with strong anchoring
was created by rubbing the polymer layers with cotton cloth.

FIG. 2. Liquid crystal cell and trajectories of the extraordinary ray: (1, 2) glass prisms; (3) liquid crystal
layer; (4) extraordinary ray reflected inside the liquid crystal layer; and (5) extraordinary ray transmitted
through the layer

For the twisted nematic (TN) cell with the twist angle of 90◦ (cell-1) the positions of director at both surfaces were
perpendicular to each other. For the super-twisted nematic (STN) cell with the twist angle of 180◦ (cell-2) the positions
of director at both surfaces were the same and perpendicular to the figure plane. For cells 1 and 2 chiral dopant VICH-3
(Vilnius State University, Lithuania) was solved in nematic liquid crystal ZhK-1466. The refractive index of the prisms
for these cells is ngl = 1.7002 for the wavelength λ = 632.8 nm.

In the hybrid cell (cell-3) one electrode was coated with a homeotropically aligning layer obtained from a solution of
chromium stearyl chloride in isopropyl alcohol while a planar orientation of director was created at the second electrode.
The planar director orientation was achieved by rubbing of the polymer layer along the long axis of the prism base. The
refractive index of the prisms for cell-3 is ngl = 1.7125 for the wavelength λ = 632.8 nm.

The scheme of the experimental setup is shown on Fig. 3. The ray of light from a helium-neon laser with the
wavelength λ = 632.8 nm and the diameter of 1 mm was incident at the studied LC cell through the half-wave plate
λ/2. With the half-wave plate the polarization vector of the incident ray was parallel to the director at the interface glass-
LC (for cell-1 and cell-2) and was oriented orthogonally to the figure plane. For the cell-3 the polarization vector was
oriented in figure plane as it shown on Fig. 2. Next, the light fell on the photodetector Ph, whose signal was recorded
with the digital oscilloscope Osc (ASK-3106) and the computer. As a source of control signal, we used following voltage
generator: G3-33 for cell-1, ANR-3122 for cell-2, Agilent 33522A for cell-3. The control voltage from generators was
applied to the electrodes of the cells and the oscilloscope. In order to change the incident angle δ to the liquid crystal
layer, the cell was mounted on the rotary stage with the angle-reading device with the accuracy of 1 minute.
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FIG. 3. Experimental setup. (L) laser; (λ/2) half-wave plate; (Ph) photodetector; (SWG): voltage
generator; (Osc) digital oscilloscope; (PC) computer. N shows normal to the LC layer.

5. Experimental results

5.1. Twisted nematic cell (cell-1)

The first LC cell we consider is filled with the chiral LC. Its thickness L is 8 µm. The natural LC pitch is p0 = 56 µm.
When the external field is absent director lies within the planes parallel to the plates. On the bottom plate (in our Cartesian
coordinates this plate corresponds to the plane z = 0) the director has direction along the axis Ox and on the top plate
(plane z = L) the director is along the axis Oy. In that case the twist angle is 90◦. Note the pitch formed in this
cell (p = 4L) and the natural pitch are different. The surface anchoring was strong on each boundary and the director
orientation coincides with the easy orientation direction n(zj) = n0(j), j = 1, 2. Strong boundary conditions give the
fixed polar and azimuthal angles:

θ(0) = θ(L) = π/2, φ(0) = 0, φ(L) = π/2. (21)

If the external field is not applied the penetration depth expression can be obtained analytically. The director has form
n(z) = (cos qz, sin qz, 0), here q = π/2L. In this case, the wave vectors surface, which is ellipsoid, is not oblique i.e. its
major semi-axis is perpendicular to Oz. So the wave vector is parallel to the plates in the turning point. One can find it
by means of the Snell’s law:

zt =
L

π
arccos

(
(ε⊥ + ε‖)n

2
gl sin

2 δ − 2ε⊥ε‖

εan2gl sin
2 δ

)
. (22)

To obtain the turning points in the presence of external field, we should minimize the total free energy (1). For this
purpose, the sample is divided into N layers along the axis Oz. We suppose the director is homogeneous in every layer
and it is defined by the angles θ and φ. Then the framework of θi = θ(zi), φi = φ(zi), zi = iL/N , i = 0, 1, ..., N is
constructed. Now these values describe the director configuration in the volume. The total free energy can be expressed
within θi and φi. The direct minimization of the total free energy on these parameters gives the director distribution for
different values of the applied voltage. After this procedure the turning point is found by means of Eq. (20). For more
convenient calculations here the incident angle is changed while the director configuration is fixed. A set of the penetration
depth curves versus the incident angle is plotted for the different applied voltages (Fig. 4).

In experiment with the cell-1 the angles of the ray incidence on the layer varied within the range 62.8◦ to 79.7◦,
whereby the depth of the ray penetration into the layer varied from 7.6 to 1.6 µm.

We studied the reorientation of the LC director upon switching off the electric field for different angles of light
incidence on the LC layer, and hence for the penetration depths zt. The magnitude of the control voltage was the U =
8 Vrms for all the incident angles. The recovery time of the optical transmission of the cell τoff was determined using
the oscillograms of the optical response on the electric field (Fig. 5).

The dependence of τoff on the depth of the ray penetration into the layer zt for U = 8 Vrms is shown in Fig. 6.
Figure 6 shows that the time τoff of the optical transmission decreases with decreasing of zt. Qualitatively, such

dependence can be explained by the fact that the recovery rate of the LC initial orientation is proportional to the magnitude
of the elastic torque that affects the LC director. This elastic torque has maximum on the boundary of the LC layer, where
there is a maximum orientation gradient of the director, when the electric field is off [29].

5.2. Super-twisted nematic cell (cell-2)

The second LC cell has thickness L = 18 µm. When the external field is absent director lies within the planes parallel
to the plates. The director has direction along the axis Ox both on the bottom (z = 0) and on the top (z = L) plates. In
that way the twist angle is 180◦. The surface anchoring is strong at each boundary:

θ(0) = θ(L) = π/2, φ(0) = φ(L) = 0. (23)
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FIG. 4. Depth of the extraordinary ray penetration zt into the TN cell as a function of the incident angle
δ. (1) no external field, (2) U = 1.2 V, (3) U = 1.35 V, (4) U = 1.5 V, (5) U = 2.0 V

FIG. 5. Optical response of the cell-1 control voltage pulse U = 8.0 Vrms, f = 1000 Hz. (a) control
voltage, (b) optical response: δ = 63.0◦, zt = 7.3 µm.

FIG. 6. Turn off time τoff for the cell-1 as a function of zt.
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The expression of the penetration depth for the cell-2 is completely analogous to the expression (22) in the absence of
the external field. Here we only need to change L to L/2. This is due to the fact that the director distribution in the cell-2
at z < L/2 coincides, to within a helix pitch, with the distribution of the director in the cell-1. Therefore, the penetration
depth for the cell-2 in the absence of the external field is similar to the line (1) in Fig. 4 for the cell-1.

In experiment with the cell-2 [28], the angles of the ray incidence on the LC layer varied within the range 62.8◦ to
79.7◦, whereby the depth of the ray penetration into the layer varied from 8.7 to 1.7 µm.

When the control electric voltage was applied to the LC layer, the profile of the director was changed. This resulted in
the violation of conditions necessary for the turn of the extraordinary ray in the layer and leaded to the propagation of light
through the cell (see Fig. 2). The local dynamics of the director reorientation at various zt was studied by the acquisition
of the cell’s optical responses. The control voltage was varied within 3.0 to 6.0 Vrms. For this range of voltages the
cell-2 transmits light and there is no turning points. Here and below in this section we consider the penetration depths
zt obtained for the cell-2 in the absence of the external field. Oscillograms of the optical responses of the cell-2 as the
functions of the depth of the ray penetration into the LC layer at the applied voltage U = 5.0 Vrms are shown in Fig. 7
(for the electric field switched on) and Fig. 8 (for the electric field switched off).

FIG. 7. Optical responses of the cell-2 after the electric field was switched on, U = 5.0 Vrms, f =
1000 Hz. a — control voltage pulse, b, c, d, e, f — optical responses for zt = 8.7, 7.4, 5.1, 3.0, 1.7 µm.

It should be noted that the intensity variation curves for the field switched on and off undergo clearly exhibited
oscillations. The intensity oscillations can be explained by the fact that the extraordinary wave passing through the
cell partially reflects from the glass-LC interfaces, the reflected waves interfere, and the phase difference between them
changes during reorientation of the director. Moreover, the monotonic behavior of the phase difference in the interfering
waves breaks down (arrow in Fig. 8). This can be explained by the arising LC backflow [29]. The delay time τdr of the
effect optical signal rise can be readily determined from the oscillograms (Fig. 7). These times for several values of the
control voltage are shown in Fig. 9.

It can be seen from Fig. 9 that at the same voltage the delay time τdr decreases as the depth of the ray penetration zt
into the layer increases. In order to the light transmittance through the cell-2 takes place when the external field is applied
to the cell, it is necessary to reorient the director in the layer [zt, L−zt]. This layer forms the band gap for the cell-2 in the
absence of the external field. Note that director reorientation near the cell boundary is difficult due to the strong anchoring
with the orienting surface [29]. Therefore, the delay time τdr for small zt will be longer than in the case when zt is close
to L/2. This effect is also related to the fact that, at small zt it is necessary to reorient a sufficiently large volume inside
the cell, while at zt close to L/2, reorientation is required inside the thin layer at the center of the cell.
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FIG. 8. Optical responses of the cell-2 after the electric field was switched off, U = 5.0 Vrms, f =
1000 Hz. a — control voltage pulse, b, c, d, e, f — optical responses for zt = 8.7, 7.4, 5.1, 3.0, 1.7 µm.

FIG. 9. Delay time of the signal rise, τdr as a function of the penetration depth zt for different control
voltages U = 3.0 Vrms; U = 4.0 Vrms; U = 5.0 Vrms; U = 6.0 Vrms. Here the penetration depths
zt were obtained for the cell-2 in the absence of the external field.

The turn off time τoff was determined from the optical responses obtained for the various depths of the ray penetration
into the layer (Fig. 9). The time τoff can be interpreted as a recovery time of the initial configuration of the director.
Figure 10 shows τoff as a function of the penetration depth zt.

It can be seen from Fig. 10 that τoff decreases as zt decreases. This dependence can be qualitatively explained by the
fact that the rate of the recovery of the initial configuration is proportional to the elastic torque acting on the director [30],
which is larger near the surface.

5.3. Hybrid liquid crystal cell (cell-3)

This LC cell is filled in with the nematic LC. Its thickness is L = 14 µm. On the bottom plate the director is aligned
along the axis Oz and on the top plate the director is along the axis Oy. The director lies within the planes parallel to the
yOz plane and the azimuthal angle φ is fixed even in the external field presence. As before, the surface anchoring was
enough strong on each boundary. So the angles on the bottom and top plates take the form

θ(0) = 0, θ(L) = π/2, φ(0) = φ(L) = π/2 (24)
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FIG. 10. Turn off time τoff as a function of the penetration depth zt for the various incident angles δ,
U = 5.0 Vrms
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FIG. 11. Penetration depth zt of the extraordinary ray into hybrid LC cell versus the incident angle δ.
(1) no external field, (2) U = 0.5 V, (3) U = 1.0 V, (4) U = 2.5 V

FIG. 12. Optical responses of the hybrid LC cell. (a) control voltage pulses (schematically) and (b)
optical response for the incident angle 68.0◦ (zt = 7.0 µm); (c) control pulse and (d) optical response
for the normal incidence of light
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FIG. 13. (1) turn on τon and (2) turn off τoff times for the hybrid cell-3 versus the penetration depth
of the extraordinary ray into LC layer. The inset shows the same dependencies in the range of zt = 4.3–
8.8 µm

and the director is expressed as n = (0, sin θ(z), cos θ(z)). In this case, when the external field is not applied, one also
can derive the analytical form for the turning points:

zt =
L

π
arccos

2n2gl sin
2 δ − (ε⊥ + ε‖)

εa
. (25)

This equation is obtained subject to equality K11 = K33.
For the hybrid cell-3 the penetration depth of the extraordinary ray into the LC layer versus the incident angle is

shown in Fig. 11. The effect of the electric field on refraction was studied for the incident angle of light in the range of
62.7◦ to 73.8◦.

Oscillograms of control bipolar electric pulses (meander) with a duration of 5 ms, a filling frequency of 100 kHz, and
a repetition frequency of 100 Hz at the amplitude U = 10 Vrms are represented in Fig. 12(a). The optical responses of
the cell under study for the incident angle 68.0◦ (zt = 7.0 µm) are shown in Fig. 12(b).

The results show that the turn off time of the optical response of the cell-3 for the inclined incidence of the ray is
three orders of magnitude smaller than the relaxation time of the optical response in the case of the normal incidence of
the ray. It is seen in Fig. 12(d) that the total recovery time of the initial configuration of the director in the cell-3 after
the termination of the electric field is about 1 s. The times τon and τoff for the optical response were obtained for the
penetration depths into LC layer from 4.3 to 11.5 µm (Fig. 13).

It follows from Fig. 13 that values τon vary in the range of 1–2 ms at the increase in the penetration depth from 4.3
to 11.5 µm. In the range zt = 4.3–8.0 µm, the time τoff also varies from 1 to 2 ms. Apparently, small τoff values for
electrically controlled refraction are related to the fast recovery of the director orientation in thin near-surface LC layers.

6. Conclusion

The experimental study with cell-1 and cell-2 showed that the longest recovery time corresponds to the maximum
depth of the extraordinary ray penetration into the LC layer, regardless of the boundary conditions on the surfaces of
the LC layer and the ray turning point in the middle of the layer (the twist angle is 180◦), or at the far boundary of the
layer (the twist angle is 90◦). The revealed electro-optical properties of the hybrid cell operating on the refraction effect
showed that minimal values of τon and τoff were observed at large angles of ray incidence. The discovered electro-optical
properties of a hybrid cell operating on the refraction effect can be used, for example, in promising technologies for liquid
crystal displays and optical switches for planar waveguides.

The method presented in this paper for describing the optical properties of LCs can be applied to a wide class of
cells. The only significant limitation imposed on the system is the condition for the applicability of geometrical optics
(the WKB method).

The combined theoretical and experimental research of the light refraction in the liquid crystal cells with continuously
changing orientation of director and the effect of electric field on the refraction will allow studying the process of local
director reorientation at different distances from the interfaces between liquid crystals and glass.
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87, P. 022508.
[18] Rokushima K., Yamakita J. Analysis of anisotropic dielectric gratings. J. Opt. Soc. Am., 1983, 73(7), P. 901–908.
[19] Wang F., Lakhtakia A. Response of slanted chiral sculptured thin films to dipolar sources. Opt. Commun, 2004, 235, P. 133–151.
[20] Avendano-Alejo M. Analysis of the refraction of the extraordinary ray in a plane-parallel uniaxial plate with an arbitrary orientation of the optical

axis. Optics Express, 2005, 13, P. 2549–2555.
[21] Panasyuk G., Kelly J., Gartland E.C., Allender D.W. Geometrical optics approach in liquid crystal films with three-dimensional director variations.

Phys.Rev. E, 2003, 67, P. 041702.
[22] Aksenova E.V., Karetnikov A.A., Kovshik A.P., Romanov V.P., Val’kov A.Yu. Return back of the extraordinary beam for oblique incidence in

helical liquid crystals with large pitch. Europhys. Lett., 2005, 69(1), P. 68–74.
[23] Tenishchev S.S., Kiselev A.D., Ivanov A.V., Uzdin V.M. Multiple minimum-energy paths and scenarios of unwinding transitions in chiral nematic

liquid crystals. Phys. Rev. E, 2019, 100, P. 062704.
[24] Tenishchev S.S., Tambovtcev I.M., Kiselev A.D., Uzdin V.M. Hysteresis and Fréedericksz thresholds for twisted states in chiral nematic liquid
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