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Abstract: The article discusses various aspects of the interaction of vortices with the barotropic flow.
Vortex interaction with a flow results in rotation variants, nutational oscillations, and unlimited
stretching of its core. The vortex remains in a localized formation, with the semi-axes of the
ellipse experiencing fluctuations near an average value in the first two cases. In the third case,
the vortex is significantly elongated, and its shape in the horizontal plane changes as follows:
one axis of the ellipse increases, and the other decreases. In this case, the vortex, when viewed
from above, stretches into a thread, while remaining ellipsoidal. These vortex formations are
called filaments. The latter arise from initially almost circular vortices in the horizontal plane and
represent structures with non-zero vorticity elongated in one direction. Here, we aim to study
the energy transformation of a vortex during its evolution process, mainly due to changes in
its shape by stretching. The energy evolution of a mesoscale vortex located in the Norwegian
Sea is analyzed using GLORYS12V1 ocean reanalysis data to verify the theoretical conclusions.
During the evolution, the vortex is found to transform from a round shape and becomes elongated,
and after three weeks its longitudinal scale becomes 4 times larger than the transverse one.
During the transformation of a vortex, the kinetic energy and available potential energy decrease
respectively by 3 times and 1.7 times. Concurrently, the total energy of the vortex is found to
decrease by 2.3 times. We argue that the stretching of vortices results in a loss of energy as well as
its redistribution from mesoscale to submesoscale. The lost part of the energy returns to the flow
and results in the occurrence of the reverse energy cascade phenomenon.

Keywords: vortex; stretching; kinetic energy; available potential energy; GLORYS12V1; the
Norwegian Sea

1. Introduction

Mesoscale vortices transfer heat, salt, mass, kinetic energy, and biogeochemical char-
acteristics to thousands of km from the region of their formation. Although mesoscale
vortices are formed almost everywhere in the world ocean except for the so-called “vortex
deserts” [1], higher vortex activity is confined to areas of large-scale ocean currents. This is
primarily due to the presence of baroclinic and barotropic instabilities of the current, which
is the main reason for the generation of vortices. Nowadays, convincing evidence has been
obtained that mesoscale vortices make a great contribution to the low-frequency variability
in the sea level [1–5].
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Geophysicists’ interest in mesoscale variability in the world ocean is growing ev-
ery year, but until recently, theoretical conclusions were ahead of empirical ideas. The
availability of continuous satellite-derived sea level data and the development of new
methodologies have revolutionized the studies focusing on the mesoscale variability in the
ocean. Satellite altimeters allow you to measure the sea level with an accuracy of 1–2 cm
relative to the reference Earth ellipsoid [6,7]. In recent years, many algorithms for tracking
vortices using altimetric fields have been widely developed, which make it possible to
establish various characteristics of vortices, such as size, polarity, western distribution, and
lifetime. They showed that there is no steady connection between the polarities of vortices,
their sizes, and propagation velocity [4].

With the development of computer technologies, it became possible to build global
models of oceanic circulation and create various databases based on hydrodynamic model-
ing. For physical oceanographers, reanalysis products that are based on modeling with data
assimilation are of great interest. Models assimilate altimeter data; other remote sensing
observations such as sea surface salinity, in situ observations, as well as data from drifting
buoys; ARGO buoy systems; etc. One of these products is GLORYS12V1 (Global Ocean
Physics Reanalysis), which is used in this study.

Ocean mesoscale vortices are vortex currents with typical horizontal scales, usually
exceeding the baroclinic radius of Rossby deformation, rotation speeds of 10–80 cm/s, and
displacement speeds of 1–10 cm/s. According to their generation mechanism, mesoscale
vortices in the ocean can be divided into four categories: (a) Frontal vortices (or rings),
formed by cutting off meanders from large-scale jet currents; (b) Free vortices generated by
baroclinic instability of currents; (c) Topographic vortices formed when flowing around
the bottom relief; (d) Vortices induced by atmospheric influences. According to the sign of
particle rotation, vortices are divided into cyclonic and anticyclonic.

Our work is devoted to a better understanding of the vortex cores’ deformation, i.e.,
the so-called internal dynamics of vortices. Potential vorticity conservation for particles
is valid for ocean vortices with horizontal scales of the order of the Rossby deformation
radius or larger (e.g., see [8]). In other words, every particle that moves retains in time its
potential vorticity. The potential vorticity conservation is equivalent to the conservation
of the angular momentum of a liquid particle in a stratified rotating ocean [8]. If we set a
stepwise distribution of the potential vorticity of particles outside and inside the core and
make some reasonable simplifying assumptions, the problem of calculating the current
function of the flow induced by the vortex will mathematically be equivalent to the problem
of the gravitational potential of a body with the same shape as the vortex core [9]. Notably,
unlike the gravitational potential problem at the core boundary, additional conditions
associated with hydrodynamics must be met. These conditions, formulated mathematically,
will lead to an integro-differential equation for estimating the evolution of the vortex core
boundary. This approach known as the contour dynamics method in the 2D version allows
us to numerically investigate the vortex core boundary behavior [10]. In the 3D version, it
is called the surface dynamics method. Still, this problem is solved numerically because it
is too complex for analytical approaches. However, if we choose an ellipsoid as the shape
of the vortex core, and consider background flows that have a linear dependence on the
flow velocity, then the integro-differential equation can be reduced to a set of ordinary
differential equations for all parameters of the ellipsoid. In this case, the ellipsoid will
remain an ellipsoid, but it can deform and rotate.

Field studies portrayed the simplest structure of a vortex, which consists of a core of a
uniformly swirling liquid and the surrounding liquid. The swirling core induces movement
not only within itself but also in the environment. Exchange across the core boundary is
very difficult, so in the first approximation, it can be neglected. The boundary of the core is
liquid and impermeable but can be easily deformed by the movements of the external or
internal fluid. Higher potential vorticity gradients along the core boundary act as a barrier
that prevents external particles from entering the core, and internal particles from leaving
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it. Of course, this is true in the absence of turbulence, but in any case, the penetration of
particles through the core boundary is very difficult.

The theoretical description of vortices with finite volume (area) was initiated by
Kirchhoff [11], who showed that for plane hydrodynamics an equilateral elliptical region
rotates uniformly without changing shape [12]. Further development in this direction
is documented in many studies, in particular by Chaplygin (1948) who analyzed the
deformation of the Kirchhoff vortex by a constant shear flow [13]. Later, Kida considered
the dynamics of a Kirchhoff vortex in an inhomogeneous flow linearly dependent upon
coordinates [14]. He showed that the vortex boundary has three behaviors: nutational
oscillations, rotation, and unlimited stretching. Although the semi-axes of the ellipse
experience fluctuations near an average value and remain limited at the same time, the
vortex remains a localized formation in the first two cases. In the latter case, one of the axes
increases indefinitely, and the second tends to zero. The vortex, while remaining elliptical,
stretches into a vortex thread, i.e., filament. In the first two cases, while the vortex survives
in the flow, it is destroyed by the flow in the latter case. Being filamentous, the vortex
practically does not induce velocities and, in the presence of even very weak diffusion, it
quickly dissipates.

Further detailed studies of the vortex behavior are presented in several papers [15–23].
Similar mathematical problems in the shallow water approximation were also touched
upon in many studies [24–27]. Although the above approach is of great importance for
theoretical two-dimensional hydrodynamics, it is still very far from describing a real ocean.
For studying real ocean vortices, the effects of the rotation of the Earth, stratification of
seawater, and three-dimensionality of the vortex core should also be considered. Note that
the three-dimensional ellipsoidal vortices that account for rotation and stratification have
been previously studied by V.V. Zhmur and co-authors [28–36]. The basic solution in [30],
upon which all subsequent research on the topic is based, describes a uniformly swirling
ellipsoidal vortex in a stationary ocean or a barotropic horizontally inhomogeneous flow.
Zhmur and Pankratov [9,30] generalized the Kirchhoff and Kida vortices [11,12] to a three-
dimensional case. It was found that if one of the semi-axes of an ellipsoidal vortex is vertical,
then the qualitative behavior of such a vortex is similar to the behavior of a two-dimensional
ellipsoidal vortex. If there is no background flow, then the vortex rotates uniformly without
changing its shape. The rotation speed of the core boundary lags behind the rotation
speed of the liquid particles and depends on the elongation of the core horizontally and
its oblateness vertically. If the vertical size is parametrically increased to infinity, then the
rotation speed of the core approaches the rotation speed of a two-dimensional elliptical
Kirchhoff vortex. However, the vortex in the presence of a background flow is deformed
and may be stretched into a filament. Moreover, the vortex behavior is very different in a
background flow which is either barotropic or has a vertical shift. The stretching of a vortex
in a horizontal plane decreases the fluid motion induced by it. The mode of unlimited
vortex stretching results in the destruction of the vortex by the flow. In this paper, we study
the evolution of a mesoscale vortex by stretching. It means that small-scale mixing across
the vortex boundary is weaker than deformation at the mesovortex scale. At the same time,
the decrease in energy when the vortex is stretched does not affect the mixing across the
vortex boundary in any way. Our paper aims to study the vortex energy transformation by
its stretching, as well as to verify the theoretical results with observations.

2. Theoretical Aspects

Many studies contributed to developing a theoretical approach for describing the
behavior of intra-thermoclinic vortices with ellipsoidal core shape and semi-ellipsoidal
near-surface vortices in equidistant barotropic flows [9,20–23,28–36]. The ocean is assumed
to have a constant Väisälä–Brunt frequency. The Rossby number (Ro) is considered to
be small:

Ro =
U
| f | L

<< 1.



J. Mar. Sci. Eng. 2023, 11, 1131 4 of 15

In the above equation, U is the characteristic horizontal velocity, whereas L is the
characteristic horizontal scale of the vortices, and f is the Coriolis parameter. This expression
is convenient if we consider the change in the horizontal scale as L, and the associated
change in the characteristic horizontal velocity as U. It is this case that interests us.

Notably, there is also a different formulation of the Rossby number that does not use
the characteristic horizontal dimension, L, but rather the vertical component of the rotor of
the flow velocity (relative vorticity):

Ro =

∣∣∣∣∣ rotz
→
u

f

∣∣∣∣∣,
where rotz

→
u = ∂v

∂x −
∂u
∂y is the vertical component of the rotor of the flow velocity (relative

vorticity)
→
u = {u, v, w} in the Cartesian coordinate system (x, y, z).

In the initial theoretical formulation, the vortex core is a freely deformable ellipsoidal
“water bag”, filled with a liquid with a homogeneous potential vorticity ‘σ’. Outside the
vortex, the particles have zero potential vorticity in the entire region under consideration. In
the quasi-geostrophic approximation at Ro << 1, the mathematical problem is reduced to a
single equation for atmospheric pressure, through which all other hydrodynamic character-
istics of fluid motion can be calculated. Similarly, in a more general formulation, the effect
of equidistant currents on an ellipsoidal vortex was also considered. In particular, a vortex
deforming under the action of currents could change its size, nevertheless remaining in the
form of an ellipsoid. Details of these studies can be found in the works [9,20,21,30–32].

In this paper, we investigate the change in vortex energy at various levels of elongation
in the horizontal direction of the vortex core. Let us start with the general energy expression
in the quasi-geostrophic approximation [37]:

E =
1
2

y [
ρ∑(x, y, z)

(
u2(x, y, z) + v2(x, y, z)

)
+

g2

ρ0(z)
ρ2(x, y, z)
N2(x, y, z)

]
dx dy dz, (1)

where ρ0 is the mean density of seawater, v and u are the meridional and zonal components
of the flow velocity, g is the acceleration due to gravity, N is the Väisälä–Brunt frequency,
and ρ = (ρ∑ − ρ0) is the current density deviation to ρ∑ from ρ0. The integration boundaries
are determined by the vortex scales [38,39], where horizontal boundaries are determined
by isolines of zero relative vorticity ζ = ∂v

∂x −
∂u
∂y , and the integral is calculated from 0 to

1000 m depth. The first and second terms in Equation (1) are, respectively, the kinetic
energy and the available potential energy of the vortex. If the integration is carried out over
the entire space in which the vortex induces fluid motion or deforms isochoric surfaces,
Equation (1) gives the total energy of the vortex, including the vortex core energy, as well
as the external fluid energy captured in rotational motion. If the integration is carried out
only over vortex core volume, then we exclude the energy of the external rotating fluid and,
thus, only consider the energy of the vortex core. We consider the options.

The dimensionless parameter ε is the degree of vortex elongation and is estimated
as the ratio of its horizontal scales ε = a

b ≥ 1, where a and b are the horizontal semi-
axes of the ellipsoid core: a is the semi-major axis, b is the semi-minor axis, and c is the
vertical half-axis of the vortex. A dimensionless parameter of the vertical oblateness of
the vortex core (K) is introduced as K = N

f
c
r0

, where r0 =
√

ab is the effective radius of
the vortex, and N is the Väisälä–Brunt frequency averaged over the upper 1000 m depth.
During the vortex deformation by a barotropic flow, the product of the vertical half-axes
a × b and r0, respectively, do not change. Consequently, K is also preserved during the
vortex deformation [9,30]. Notably, the latter is true only under the assumption of the
Väisälä–Brunt frequency invariance. If it changes during the evolution of the vortex, then,
accordingly, K will also change.
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Further, nontrivial transformations can modify the energy Equation (1) as a function
of ε and the compression parameter K. Below there are two variants of energy expressions
identical to each other [40]:

E(ε, K) =
2

15
πρ0r3

oc2σ2 N
f

∫ ∞

0

dµ√
(µ2 + νµ+ 1)(K2 + µ)

, (2)

E(ε, K) =
3

40π
ρ0

V2
0 σ

2

c
K

∞∫
0

dµ√
(µ2 + νµ+ 1)(K2 + µ)

. (3)

Here, V0 = 4
3πabc is the volume of the vortex core, σ is the potential vorticity inferred

from Rossby [41], µ is the integration variable, and ν = ε+ 1
ε ≥ 2 is the horizontal vortex

elongation, another dimensionless parameter. In a coordinate system with two horizontal
axes (x, y) and a vertical axis z, the potential vorticity (σ) is expressed in terms of the current
function ψ(x, y, z, t), t is the time, and f is the Coriolis parameter [41]:

σ = ∆hψ(x, y, z, t) +
∂

∂z
f 2

N2
∂ψ(x, y, z, t)

∂z
.

Note that in the above equation ∆hψ = rotz
→
u . In general, the Väisälä–Brunt frequency

N(z) depends on the vertical z coordinate.
The more elongated the vortex, the greater the ε and ν. Elongated vortices result

in high values of ε and ν and, according to Equations (2) and (3), they will have lower
energy. Equations (2) and (3) consider the total energy of the vortex, which includes the
kinetic and available potential energy of the vortex core, as well as the energy of the
external fluid trapped in motion by the vortex. The energy of the core will change when it
is deformed. Zhmur and Harutyunyan [40] analytically calculated the kinetic Hk

core and
available potential energy Hp

core of the vortex core as functions of the parameters ε and K
for ellipsoidal vortices:

E k
core(ε, K) =

1
40
ρ0σ

2VabK2


ε

[
∞∫
0

ds√
(ε+s)3(ε−1+s)(K2+s)

]2

+

ε−1

[
∞∫
0

ds√
(ε+s)(ε−1+s)

3
(K2+s)

]2

, (4)

E p
core(ε, K) =

1
40
ρ0σ

2VabK4

 ∞∫
0

ds√
(ε+ s)(ε−1 + s)(K2 + s)3

2

, (5)

where s is the integration variable. In this case, the total mechanical energy of the vortex
core E core(ε, K) is the sum of E k

core(ε, K) and E p
core(ε, K):

E core(ε, K) = E k
core(ε, K) + E p

core(ε, K). (6)

Theoretically, when a vortex is elongated by a barotropic flow, only ν and ε change in
Equations (2) and (3) [40]. The denominator in the integrand increases with the elongation
of the vortex, and with elongation the integral itself decreases. In other terms, during
vortex stretching, kinetic and available potential energy, as well as the total mechanical
energy of the vortex core, decrease. The maximum energy values in Equations (2) and (3)
at a fixed K correspond to round vortices in a horizontal plane with ε = 1 or ν = 2. At the
same time, when the background frequency of the Väisälä–Brunt frequency changes, the
parameter K will also change.

Next, we will investigate the transformation of the kinetic and available potential
energy of a quasi-permanent mesoscale vortex using the Global Ocean Physics Reanalysis
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and compare it with the theoretical estimates. The analyzed vortex is located in the
Norwegian Sea.

3. Data and Methods

The GLORYS12V1 (Global Ocean Physics Reanalysis) data, a global ocean vortex-
resolving reanalysis with a spatial resolution of 1/12◦ at 50 levels is available via the
CMS (Copernicus Marine Service). GLORYS12V1 is based on the CMS global real-time
forecasting system, where the NEMO model with ECMWF ERA-Interim forcing is used
to simulate oceanic conditions. In situ measurements, data from altimeters (sea level
anomaly), sea surface temperature (SST), sea ice cohesion, and vertical temperature and
salinity profiles are assimilated together. Observations are assimilated using a low-order
Kalman filter. The product includes daily 3D fields of potential temperature, salinity, and
currents, as well as 2D fields of sea level, mixed layer depth, potential bottom temperature,
ice thickness, ice types, and ice drift velocities.

To estimate the vortex area and to exclude fragments of other hydrodynamic struc-
tures in the MATLAB environment, we constructed masks for each day during the vortex
transformation by stretching [42]. At the first stage, in order to calculate the geometric
parameters of the vortex during the process of its transformation into a filament, it is neces-
sary to bring its horizontal scales to a single spatial discreteness since MATLAB considers a
single segment (pixel) as the x and y steps. Using the kron function, we obtain the values of
one step in x equal to 0.3165 km and in y equal to 0.3193 km. Thus, the length of one pixel in
the calculations is ~0.318 km. After the x and y steps have been aligned, various geometric
characteristics of the vortex can be calculated: the large and small semi-axes of the vortex,
their orientation, perimeter, area, etc., as well as the vertical oblateness parameter.

4. Analysis of Changes in the Kinematic Characteristics of a Mesoscale Vortex in the
Process of Its Stretching

Figure 1 shows an example of the lifespan of an anticyclonic vortex in the Norwegian
Sea. The evolution of the vortex during the process of its stretching is monitored continu-
ously for 22 days (3–24 April 2012). The vortex, which started as a round structure (3 April
2012; Figure 1a), is gradually seen to stretch and elongate with time elapse (Figure 1b–e).
After nearly 2 weeks (19 April 2012, Figure 1d), the semi-major axis of the vortex is several
times larger than the semi-minor axis. By April 21 the vortex is further elongated in the
longitudinal direction, and by April 24, the vortex bending under the influence of the flow
attains a horseshoe shape.

Figure 2 shows the characteristics of the vortex: the elongation parameter, ε; and
the effective radius r0 =

√
ab. The vortex is round (ε = 1) in the horizontal plane at

the start of its lifespan. During its lifetime, the vortex gradually elongates, so that the
longitudinal scale of the vortex is much larger (4 times) than the transverse one. The
effective radius decreased during the initial 12 days but increased thereafter. Note that
the effective radius of the vortex at the start and the end of the vortex lifespan are not
very different in magnitude.

Figure 3 shows the evolution of the Väisälä–Brunt frequency and the dimensionless
parameter, K. Following Zhmur et al. [43], the vertical semi-axis is assumed to be equal
to 400 m in calculations. Vortex characteristics, K and N, both increase during the vortex
lifespan. The increase in the Väisälä–Brunt frequency (N) may be associated with the period
selected for the analysis. Note that April is the period after the winter convection during
which the stratification gradually strengthens [44–46]. The influence of winter convection
likely persists over the vortex during the start of the time series, while the subsequent
increase in water stratification during the following days may increase N. The increase
in the frequency of the Väisälä–Brunt frequency N is likely to increase the oblateness
parameter K, as also seen from the figure. We can obtain the estimation of K.

K =
N
f

3 V0

4 π r3
0

(7)
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Figure 2. Dimensionless parameter of the vortex horizontal elongation ε (blue curve) and its effective
radius r0 =

√
ab (red curve). The x-axis shows the days of the vortex lifecycle from the beginning of

measurements on 3–24 April 2012.

Here, c is the size of the vertical semi-axis, V0 is the volume of the vortex core, and
r0 =

√
a b.

According to Figure 2, the effective radius r0 changes during the vortex deformation,
but its initial and final values are almost the same. Similarly, it is also safe to assume that
the volume of the vortex core also does not change. As a result, the only parameter that
can change K is the Väisälä–Brunt frequency N. Figure 3 demonstrates that the increase in
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parameter K is in phase with the increase in the Väisälä–Brunt frequency N. This gives the
confidence to conclude that the growth of K is solely due to an increase in N.
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Next, we analyze separately the estimates of kinetic and available potential energy
terms in Equation (1). The horizontal integration area is bound by the vortex area (see
Figure 1), and the vertical integral is taken from 0 to 1000 m depth [5,38,39]. Analysis
(Figure 4) quantifies that the available potential energy of the vortex is 1.5 times higher
than its kinetic energy. During the vortex lifespan, the kinetic and the potential energy is
reduced to 3 and 1.7 times, respectively. This decrease in energy is associated with a change
in the shape of the vortex and its stretching. The lower rate of potential energy decrease,
in comparison to the rate of kinetic energy, is related to the Väisälä–Brunt frequency, an
increase in which during the end of the vortex lifespan slows down the decrease in the
available potential energy of the vortex.
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The change in the available potential and kinetic energy of the vortex associated with
its horizontal elongation (the ε parameter) is analyzed next. Analysis (Figure 5) shows
a linear decrease in energy with an increase in the elongation parameter. According to
Figures 4 and 5, the total energy of the vortex when it is stretched decreases by about
2.3 times. The vortex core transformation during its elongation is also confirmed by the
changes in the thermohaline characteristics of the vortex. Figure 6 shows the temperature
longitudinal cross-sections of the vortex. When the vortex is stretched, the part of the core
limited to the 5◦ C isotherm is compressed several times. The vortex still had a round shape
at the start (3 April 2012), when the 5 ◦C isotherm is located at 600 m depth, but retreated
to ~300 m depth by 21 April. In other terms, the area is reduced in depth by half during the
lifetime of the vortex. On the contrary, the part of the core bounded by the 4.5 ◦C isotherm
stretches along the vortex in the longitudinal direction. Note that in Figure 6, the vortex is
not an ellipsoid but rather a semi-ellipsoid. However, there is no contradiction in this since
the theory of ellipsoidal vortices can be also applied to cases of subsurface vortices when
a semi-ellipsoid is considered as a vortex [43]. Similar changes in salinity and potential
density isolines are also found during the analysis.
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Thus, along with a decrease in kinetic and available potential energy in the vortex, a
core transformation occurs, in which the area with the maximum value of temperature,
salinity, and potential density decreases in size but stretches with lower temperature as
well as salinity and potential density values, in the longitudinal direction of the vortex.
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The methodology of calculating energy according to oceanic reanalysis data, given
above, is similar to analytical calculations in Equations (4)–(6), which makes it possible to
compare theoretical estimates with those based on reanalysis data. The sequential evolution
of the vortex, according to Figure 3, starts (3 April 2012) at ε = 1 and K = 0.08 and ends (24
April 2012) at ε = 4.3 and K = 0.23. Using Equations (2)–(5), we can calculate the energy
ratio E k

core(ε, K) , E p
core(ε, K), E core(ε, K) at the final stage to their initial value:

E k
core(1;0.08)

E k
core(4.3;0.23)

—the total kinetic energy of the vortex core,

E p
core(1;0.08)

E p
core(4.3;0.23)

—the total available potential energy of the vortex core,
E core(1;0.08)

E core(4.3;0.23)—the total energy of the vortex core.

We will interpret these relations as the coefficient of attenuation of the corresponding
types of energy. Moreover, this can be performed as in the theoretical approach according
to Equations (4)–(6), as with the reanalysis data. A similar attenuation coefficient can be
obtained for the total energy of the vortex E(ε, K), which additionally includes the energy
of the rotating fluid external to the core: E(1;0.08)

E(4.3;0.23) . However, the latter can be conducted
only on the basis of theoretical relations in Equations (2) and (3), since such a calculation is
impossible using reanalysis data. Table 1 shows all the specified attenuation coefficients.

Table 1. The attenuation coefficients of various types of energy during the vortex stretching.

E(1;0.08)
E(4.3;0.23)

Ecore(1;0.08)
Ecore(4.3;0.23)

E k
core(1;0.08)

E k
core(4.3;0.23)

E p
core(1;0.08)

E p
core(4.3;0.23)

Based on the GLORYS12V1 data

- 0.43 0.33 0.59

Based on theory

0.80 0.53 0.53 0.54

According to Table 1, when the vortex is stretched, there is a decrease in all types of
energy: kinetic, available potential, and total mechanical energy of the vortex core. We
observe not only qualitative but also acceptable quantitative correspondence of theoretical
and practical assessments. Unfortunately, on the basis of reanalysis, it is not technically
possible to estimate the total energy of the vortex, which includes not only the vortex core
energy but also the energy of the liquid trapped outside the core. Therefore, there are
no corresponding estimates in Table 1. The bottom row of Table 1 shows the results of
theoretical calculations using Equations (2)–(5). When the vortex is stretched, the core
energy is found to decrease faster than the total energy of the vortex, which includes the
energy of the external rotating water. This means that the energy of the external fluid
decreases less intensively when the vortex is stretched, in comparison to the decrease in
the total energy of the vortex and its core energy. Unfortunately, this conclusion based
on theory cannot be confirmed experimentally by our methods. However, since the rest
of the theoretical and observed values correspond to each other, it is expected that the
conclusion will be fair too. Discussion of the energy external to the core of the vortex region
is appropriate, since this part of the vortex has, according to theory, noticeably more energy
than the core itself [40].

5. Interpretation of the Results and Discussion

We found out that when the vortices are stretched out their energy decreases. Vortices
are stretched by an inhomogeneous current, which at the same time performs work on
the vortex. This work is spent on reducing the energy of vortices. If we consider an
ensemble of vortices of different signs, sizes, and intensities against the background of
an inhomogeneous barotropic flow, the behavior of such an ensemble will be qualitative
as follows. At first, closely located vortices of the same sign will merge and form larger
vortices of the same sign [9]. Closely spaced vortices of different signs form dipole pairs [47].
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If the integral potential vorticity of such pairs turns out to be zero, then the pairs will leave
the territory of the ensemble. If the integral vortices of the pairs are not compensated, then
the center of mass of such pairs will move along a large circle, periodically leaving and
returning to the ensemble zone. The remaining vortices will interact with each other more
or less actively. A more active interaction will be reduced to stretch weak vortices by strong
ones. All this will be accompanied by the stretching effect of the flow on each vortex and
the ensemble as a whole. As a result, after the initial period of merging close vortices of the
same name, it is natural to expect the following situation. Some of the sufficiently strong
vortices will survive in the flow and will evolve without significant stretching, i.e., they will
remain localized formations. Their evolution will mainly be reduced to the movement of
vortices by the flow and the interaction of vortices with each other. The remaining relatively
weak vortices, or not weak yet but already elongated initially, will continue to be stretched
by the flow or by other vortices [9]. The energy of the surviving vortices will not change
on average, but the energy of the stretching vortices will decrease. In total, the energy of
the ensemble will decrease due to a decrease in the energy of the elongating vortices. If
we approach this problem from the viewpoint of turbulence theory, where vortices play
the role of turbulence elements, then in such a system the total turbulence energy will
be lost over time. These losses will return to the average flow since in our speculative
model there is only flow and turbulence and nothing else. Such a physical behavior of an
ensemble of mesoscale vortices leads to two qualitative conclusions: 1. As the vortices
elongate, they decrease in transverse dimensions, which corresponds to the redistribution
of energy from the mesoscale dimensions toward the submesoscale. This is a direct energy
cascade. 2. Since not all the energy is transferred to a longer vortex during its elongation,
the “lost” energy is returned to the background flow at a characteristic horizontal scale
exceeding the submesoscale. This is a property of the reverse energy cascade, i.e., the
redistribution of energy from small to large scales. Initially, this phenomenon was called
“the negative viscosity phenomenon” [48]. With the help of a direct energy cascade, energy
is redistributed continuously from the mesoscale to the submesoscale (transverse scale
of vortices), while the reverse energy cascade “transfers” energy from small scales to the
flow scale without “stopping” at intermediate scales (as a tunnel effect). This means that
at sizes from the mesoscale to the submesoscale, these oppositely directed energy flows
do not intersect with each other and do not compensate for each other. The existence of a
reverse energy cascade means that in regions where vortices can be stretched by the flow,
the negative viscosity properties should be expected to manifest.

The general picture of the evolution of an ensemble of quasi-geostrophic vortices
against the background of a large-scale flow is as follows. Mainly as a result of baroclinic
instability, the flow itself generates mesoscale vortices, some of the vortices survive the
flow, and some are stretched out by the flow and transformed into submesoscale vortex
formations (filaments). Stretching elements lose energy. Due to the loss of energy in
stretching vortices and the return of energy back into the flow, the phenomenon of a reverse
energy cascade or “the negative viscosity phenomenon” occurs.

Thus, as a result of the vortex stretching, the energy is transferred to other, smaller
scales, i.e., the effect we have indicated leads to a redistribution of energy from mesoscales
to the submesoscale [34,35]. According to this approach, energy is transferred from scale to
scale with losses. The word “loss” in this case implies the part of the energy that is returned
to large-scale flows, and the rest of the energy is redistributed to the submesoscale. The
interaction of the individual vortex with the background current leads to the stretching
of the vortex and, as a consequence, the loss of energy by the vortex, which passes into
the current. In the case of an ensemble of vortices, at the initial stage of interaction, their
merging is possible and, as a consequence, the enlargement of the newly formed vortex
occurs. For a barotropic ocean, this is an essential factor, since the critical distance between
the centers for the subsequent merger of vortices is quite large, i.e., 3.2 R, where R is
the radius of the initial vortices [49]. However, baroclinic vortices can merge at much
smaller distances between the centers [29]. As a result, the efficiency of the merging of
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baroclinic vortices will be lower than for barotropic vortices; therefore, the enlargement of
baroclinic vortices due to merging is less likely. On the contrary, the stretching of vortices
into filaments is much easier for baroclinic vortices and, therefore, it should be expected
that this process will become prevalent. During the formation of vortices from the flow due
to baroclinic instability, e.g., the energy from the currents is transferred to the characteristic
scales of the vortices (direct energy cascade). When the vortices are stretched into filaments,
the process of energy redistribution to smaller scales occurs (this is also a direct energy
cascade). However, the process of stretching vortices is accompanied by a loss of energy,
which returns to the current (inverse energy cascade).

The presence of the directions in which the vortices are stretching can lead to the
anisotropy of the medium, and in turn, this can lead to a deviation from Kolmogorov’s
theory. However, these effects have been poorly studied and there is currently no confidence
in their significance. When the shape of the vortex is lengthened, a highlighted direction of
its elongation appears, which means a violation of the isotropy of space. The hypothesis
of local isotropy of turbulence may also be violated. Unlimited stretching of vortices does
not occur in any inhomogeneous flows but only in flows with pronounced deformation
properties that satisfy certain conditions imposed on the flow parameters. These conditions
are discussed in detail in the previous studies [34–36]. Obviously, the flow in which the
mesoscale vortex is located (shown in Figure 1) satisfies these properties.

6. Conclusions

We analyzed the mesoscale vortex energy transformation that changes its shape during
the process of evolution by stretching. Our analysis (Equations (2)–(3)) found that during
such a transformation, there is a decrease in the kinetic and available potential energy of
the vortex. It is also found that the horizontal semi-axes and the effective radius change
slightly when the vortex is deformed by a barotropic flow (see Figure 2). The vortex energy
change during its transformation is analyzed based on the parameter ε, which characterizes
the ratio of its horizontal axes, and the vertical oblateness parameter of the vortex core K.
The kinetic and available potential energy enclosed in the volume of the vortex core (i.e.,
the total mechanical energy of the vortex) are considered as functions of parameters (ε, K).
A decrease in energy with an increase in ε has been experimentally proven (see Figure 5).

Theoretical conclusions are verified by analyzing the energy evolution of a mesoscale
vortex located in the Norwegian Sea. The study was conducted using GLORYS12V1 ocean
reanalysis data. During the 22 days of evolution (3–24 April 2012), the vortex which had a
round shape at the start was stretched, such that the longitudinal scale of the vortex was
found to be much larger (4 times) than the transverse one. Note that the change in effective
radius during the evolution was minimal, as its values at the start and at the end of the
vortex lifecycle are comparable in magnitude. It is also established that the increase in the
vortex parameter K is associated with an increase in the Väisälä–Brunt frequency N.

The analysis found that the available potential energy of the vortex is higher (1.5 times)
than its kinetic energy (Figure 4). The energy loss during vortex transformation occurs in
different ways such as a decrease in the kinetic energy (3 times) and the available potential
energy (1.7 times). In concurrence, there is a decrease in the total vortex energy (2.3 times).
This decrease in energy is due to the stretching of the vortex and the associated change in the
vortex shape. A linear decrease in the available potential and kinetic energy of the vortex
based on the elongation parameter ε is found (Figure 5). Inferred from ocean reanalysis
data, the estimates of the coefficients of relative attenuation of various vortex energy types
during vortex evolution by stretching qualitatively confirm the theoretical estimates. Note
that the lack of complete correspondence between quantitative estimates may be associated
with the inaccuracy of the determination of the vortex scale from reanalysis data, as well as
some uncertainties.

As the vortex core is pulled out by the barotropic flow, the geometric parameters of
the vortex change as follows. One horizontal axis increases indefinitely, and the second
one decreases while saving the product of a × b. As a result, the core becomes like a long
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“ribbon” stretched horizontally with a finite vertical size equal to the initial vertical size of
the vortex core. From above, such a “ribbon” looks like a vortex thread or filament.

The stretching of vortices leads to a redistribution of energy from the mesoscale to the
submesoscale with a loss of energy. The lost part of the energy is returned to the flow, which
causes the phenomenon of the reverse energy cascade or “negative viscosity phenomenon”.
The stretching of vortices by currents can cause deviations from the law of −5/3 in the
spatial energy spectrum.
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