SPECTROSCOPIC AND QUANTUM CHEMICAL STUDY OF ADSORBED OZONE

Aminev T.R., Tsyganenko A.A. and Krauklis I.V. Saint Petersburg State University, Saint Petersburg, Russia 8919300@gmail.com

Despite its great importance for ecology, only few works deal with ozone ad-sorption studied by IR spectroscopy so far ([1, 3, 4] and refs. therein). Due to its low stability, adsorbed ozone is a promising object for the resonance IR laser-induced photodecomposition or photoozonolysis [5].

We succeeded to obtain frequencies for v_1 , v_3 and v_{1+3} combination modes for all eight isotopomers of chemisorbed ozone [1, 2]. All the isotopic species have different distinct bands of v_{1+3} combination, while the v_1 and v_3 bands are split into three or four maxima containing several unresolved close lines. This is because v_1 and v_3 mods, which were symmetric and antisymmetric stretching vibrations for a free molecule, are localized now on two different bonds of the molecule.

Several variants of ozone adsorption on TiO_2 (anatase) clusters have been calculated by DFT method using the B3LYP functional and 6-311+G(d) basis. Two models: TiO_2 molecule and a $Ti_{20}O_{40}$ cluster reveal two stable conformations: bidentate and monodentate. This was found for both the 4- and 5-coordinated surface Ti sites of the cluster.

The calculated frequencies of the combination v_{1+3} mode for the bidentate and monodentate conformations on the five and four coordinated titanium atoms multiplied by the scaling factor are shown in figure 1. All the 5 investigated ozone complexes well reproduce the experimentally observed splitting of v_{1+3} band and the decrease in anharmonicity detected in the experiment. The most energetically favorable conformation turns out to be a monodentate adsorbed ozone molecule on a 4-coordinated titanium atom. However, the separation between the bands of v_1 and v_3 vibrations is better reproduced for the bidentate molecule on the same site, as it was reported earlier in [6].

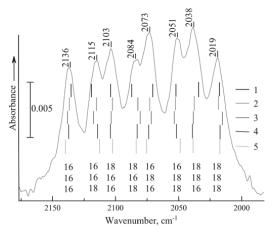


Fig. 1. Experimental spectrum and calculated frequencies. The numerated lines show the calculated frequencies of mono on TiO_{2} , mono and bi- on 5- coordinated Ti, bi and mono on 4-coordinated Ti respectively

Acknowledgments: The work was supported by RFBR and CITMA, grant No. 18-53-34004. The author thanks the Computing Center of St.PbU for the computing facilities.

- 1. Tsyganenko A., Aminev T., Baranov D., Pestsov O.. 2020, Chem. Phys. Lett. **761**. 138071.
- 2. Aminev T., Krauklis I., Pestsov O., Tsyganenko A. 2021, Appl. Sci., 11, 7683.
- 3. Bulanin K.M., Lavalley J.-C., Tsyganenko A.A.. 1995, Colloids and Surfaces A: Physicochem. & Engin. Aspects. **101**, 153.
- 4. Berlier G., Yamamoto T., Spoto G., Lamberti C., Gribov E., Zecchina A. 2002, PCCP., **4**, 3872.
- 5. Tsyganenko A.A., Kompaniets T.N., Novikov R.G., Pestsov O.S. 2019, Current Opinion in Chem. Engineering, **24**, 69.
- Kevorkyants R., Chizhov Y.V., Bulanin K.M., 2020, Langmuir, 36, 1930.