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Abstract: A detailed statistical description of the evolution of supersaturated-by-gas solution at

degassing has been presented on the basis of finding the time-dependent distribution in radii of

overcritical gas bubbles. The influence of solution viscosity and capillarity via internal pressure in

the bubbles on this distribution has been considered until the moment when the gas supersaturation

drops due to depletion and stops nucleation of new overcritical gas bubbles. This study aims to find

the nonstationary growth rate of overcritical bubbles depending on gas supersaturation, diffusivity

and solubility in solution, solution viscosity, and surface tension on bubble surface. Other important

factors are linked with the initial rate of homogeneous gas bubble nucleation and coupling between

diffusivity and viscosity in the solution. Here, we numerically studied how all these factors affect the

time-dependent distribution function of overcritical bubbles in their radii, maximal and mean bubble

radii, and the time-dependent swelling ratio of a supersaturated-by-gas solution in a wide range of

solution viscosities.

Keywords: kinetics; degassing; gas bubble; diffusion; distribution function; capillarity; viscosity;

swelling

1. Introduction

The theory of swelling of a gas-supersaturated solution as a result of nucleation and
further growth of overcritical gas bubbles is in demand in many problems of fundamental
science and related technologies. Such a theory is needed for describing bubble nucleation
and subsequent foaming as a general phenomenon [1–3], the processes of intensive foaming
in food and beverages [4–6], embolism in tissues and blood vessels [7–9], the formation
of porous materials from polymeric melts [10–12], and volcanic eruptions [13–16]. The
foundations of this theory were previously formulated in Refs. [17–20] and extended to
the multicomponent case in Refs. [21,22]. In these works, the importance of the high
solubility of the gas and its strong supersaturation in the initial solution was underlined
as the conditions for the implementation of the mode of self-similar nonstationary diffu-
sion growth of overcritical bubbles [17–19,23–25] with a significant swelling of the entire
solution. It was also shown there that, in the case of stationary diffusion growth of gas
bubbles, the swelling of the solution is insignificant and stays within a few percent. Further
studies [26–29] showed that a marked role in the growth of gas bubbles can be played by
capillary and viscous effects, which, through the pressure inside a bubble, slow down the
transition to a self-similar regime and may even prevent it at all. More detailed analytical
study of the limiting growth regimes and a numerical calculation of the growth rate of
overcritical bubbles in the presence of capillary and viscous effects in a wide range of
solution viscosities developed in Ref. [29] demonstrated, that even in the absence of the
self-similar diffusion regime of bubble growth, the nonstationary gas concentration decline
around the overcritical bubbles can be significant and provide nonstationary growth rates
of bubbles [30]. It has also been mentioned [30] that coupling between diffusivity and
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viscosity can enhance the damping effect on swelling with increasing solution viscosity.
As a result of previous studies, we expect that the capillary and viscous effects may no-
ticeably affect the general state of the supersaturated-by-gas solution and, in particular,
its swelling at degassing. The first task of this paper is applying the analysis [29] to direct
calculation of the distribution function of supercritical gas bubbles in a degassing solution
at an arbitrary moment of the nucleation stage in the wide range of solution viscosities and
nucleation rates with full allowance for the Laplace pressure in small overcritical bubbles.
The novelty of this task lies in the fact that earlier, such calculations of the strong influence
of the viscosity on the distribution function of the nucleated and growing gas bubbles with
nonstationary diffusion were not carried out at all because of the lack of an analytical basis.
Cooperation of the diffusivity and viscosity will be checked for the first time. The second
task of this work is to study numerically the collective behavior of the ensemble of gas
bubbles in degassing solution through the mean bubble radius and coefficient of swelling
of the solution as functions of time and the parameters of the solution. Earlier, the collective
characteristics of an ensemble of gas bubbles were considered only for the case of stationary
diffusion in the absence of viscosity.

2. Materials and Methods

2.1. Concentration of Gas around a Single Growing Bubble

At nonstationary growth of a spherical gas bubble in a supersaturated-by-gas liquid
solution, a concentric shell is formed around the growing bubble with a radially inhomo-
geneous distribution of the bulk gas concentration c(r, t), where r is the distance from the
bubble center and t is the time. The concentration c(r, t) is described as a solution of the
equation of nonstationary gas diffusion to the bubble with moving boundary,

∂c(r, t)

∂t
=

D

r2

∂

∂r

[
r2 ∂c(r, t)

∂r

]
−

R2(t)
.
R(t)

r2

∂c(r, t)

∂r
(1)

where D is the gas diffusivity in the liquid solution, R is the bubble radius, and
.
R(t) is the

growth rate of the bubble radius. The boundary conditions for Equation (1) are

c(r, t) →
r→∞

c0, (2)

c(r = R, t) ≡ c(R) = c∞

[
1 +

R∗

R

(
1 +

2η
.
R

σ

)]
, (3)

where c0 is bulk concentration of the dissolved gas in the liquid solution, c(R) is the
equilibrium concentration of the dissolved gas at the bubble boundary, c∞ = c(R)|R→∞

is
the equilibrium concentration of the dissolved gas in liquid solution at the flat boundary
with the gas phase, R∗ ≡ 2σ/Pl , σ is the bubble surface tension, Pl is the bulk pressure
in the liquid solution, and η is the viscosity of the liquid solution. Here, we have used
Henry’s law of solubility at the bubble surface with c(R) = sn(R) (s is the gas solubility

in the liquid solution) and uniform concentration of gas in the bubble n(R) =
Pg

kBT =

Pl
kBT

(
1 + 2σ

Pl R
+ 4η

.
R

Pl R

)
(Pg is the gas pressure in the bubble, kB is the Boltzmann constant,

and T is the absolute temperature of solution, see details in Ref. [29]). In the case when

contributions R∗/R and 2η
.
RR∗/σR cannot be neglected in Equation (3) (and this is just

our case of interest with important capillary and viscous effects), there is an approximate
solution of Equation (1) in the form [29,30]

c(r, t) = c(ρ, R) = c∞





ζ0 + 1 − ζ0

[
1 −

Rc

R

(
1 +

2η
.
R

σ

)]
Φ

(
ρ, h(R) R

.
R

2D

)

Φ

(
1, h(R) R

.
R

2D

)





, (4)
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where ρ = r/R(t), c∞ = sPl/kBT, and ζ0 ≡ (c0 − c∞)/c∞ is the bulk gas supersaturation in
the liquid solution and Rc = R∗/ζ0 is the critical radius of the bubble which is in unstable
equilibrium with liquid solution at the bulk gas concentration c0,

Φ

(
ρ, h(R)

R
.
R

2D

)
≡

∞∫

ρ

dx

x2
exp

[
−

(
x2 +

2

x
− 3

)
h(R)

R
.
R

2D

]
. (5)

Function h(R) in Equation (5) is a correction function providing the balance of the
number of gas molecules that have left the liquid solution and entered the growing bubble
and is determined [29,30] as

h(R) =
1 + 2R∗

3R + 4η
.
R

3σ
R∗
R + 2ηR∗

3σ
d

.
R

dR

1 + R∗
R + 2η

.
R

σ
R∗
R

(6)

while the growth rate
.
R satisfies equation

h(R)R
.
R

D
= sζ0

1 − Rc
R − 2

η
.
R
σ

Rc
R

1 + R∗
R + 2η

.
R

σ
R∗
R

(
Φ

(
1, h(R)

R
.
R

2D

))−1

. (7)

Thus, to determine h(R) and
.
R(R), it is necessary to solve jointly the system of

Equations (6) and (7), then use Equation (5) to find the function Φ as a function of ρ and R,
and then substitute found function Φ into Equation (4) to calculate the gas concentration
c(ρ, R) in the solution around the single growing gas bubble.

2.2. Excluded Volume for a Single Growing Overcritical Bubble

Since the gas concentration c(r, t) in the solution near the bubble, according to solution
(4), drops to the equilibrium value, the local supersaturation ζ(r, t) = (c(r, t)− c∞)/c∞ of
the gas also drops there. It is convenient to determine the local relative decline ϕ(r, t) of
gas supersaturation from the bulk value ζ0 by the relation

ϕ(r, t) ≡
ζ0 − ζ(r, t)

ζ0
. (8)

Taking into account Equation (4), we can rewrite Equation (8) as

ϕ(ρ, R) =

(
1 −

Rc

R

(
1 +

2η
.
R

σ

))
Φ

(
ρ, R

.
R

2D h(R)
)

Φ

(
1, R

.
R

2D h(R)
) . (9)

In the shell around the growing overcritical bubble, where the decline ϕ(ρ, R) is
maximal, the local nucleation rate I(ρ, R) of new overcritical bubbles is suppressed. At the
same time, outside this shell, the nucleation rate increases to the initial level I0. According
to Refs. [17–20,29], it is convenient to introduce the volume Vex(R), which is excluded for
nucleation around the selected growing overcritical bubble with radius R(t) by the integral
relation:

Vex(R) = 4πR3

∞∫

1

dρρ2

(
1 −

I(ρ, R)

I0

)
. (10)

According to Equation (10), the total number of bubbles formed per unit time at current
profile of gas supersaturation in the solution volume V around a selected bubble is equal
to the number of bubbles nucleated in the volume V − Vex(R) where the nucleation rate
is assumed to be equal to I0 at bulk gas supersaturation ζ0. The ratio q(R) ≡ Vex(R)/VR
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of volume Vex(R) and volume VR = (4π/3)R3 of the bubble with radius R becomes an
important parameter. Figure 1 illustrates the physical meaning of the quantities Vex and q.

,
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Figure 1. The relation between Vex(R), VR, and q(R).

As is generally known [17–20], the ratio I(ρ, R)/I0 can be expressed through the de-
cline ϕ(ρ, R) as I(ρ, R)/I0 = e−Γϕ(ρ,R), where Γ ≡ −ζ0(∂∆Fc/∂ζ0) and ∆Fc is the activation
barrier for formation of the critical gas bubble. With the help of Equation (10), we can
represent ratio q as

q(R) = 3

∞∫

1

dρρ2
(

1 − e−Γϕ(ρ,R)
)

. (11)

As we will see in the next section, this parameter plays an important role in finding
the total excluded volume for an ensemble of growing bubbles.

2.3. Total Excluded Volume and Distribution of Overcritical Gas Bubbles in Radii

We assume that the dissolved gas at degassing only redistributes between the volume
of the solution and the nucleated and growing bubbles. Let us now designate Vtot

ex (t) as the
sum of individual excluded volumes around all bubbles at time t. If the initial volume of
solution equals VL, then VL − Vtot

ex (t) is the solution volume, where initial nucleation rate
I0 remains preserved to time t.

f (R, t)VL = I0

t∫

0

dτ
[
VL − Vtot

ex (τ)
]
δ(R − R(t − τ)), (12)

where the Dirac delta-function δ(R − R(t − τ)) takes into account the spread in radii of the
bubbles past the critical size at previous moments of time. Evidently, the total volume Vg(t)
of bubbles at time t is related to the distribution function f (R, t) as

Vg(t) =
4πVL

3

∞∫

R0

R3 f (R, t)dR, (13)
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where R0 is the radius of the smallest overcritical bubble. Because Equation (11) for the
excluded volume ratio q(R) ≡ Vex(R)/VR can be applied to any overcritical bubble, we

assume [29] that rate dVtot
ex (t)/dt is proportional to integral 4πVL

3

∞∫
R0

dRq(R)R3 ∂ f (R,t)
∂t (which

is a direct change in time of the total excluded volume) and, in view of the possibility of
an accidental overlapping of diffuse layers of bubbles at any point in a liquid solution, is
also proportional to the fraction 1 − Vtot

ex (t)/VL of initial liquid solution volume which is
available for the nucleation of new bubbles. Thus, we may write

dVtot
ex (t)

dt
=

4πVL

3

(
1 −

Vtot
ex (t)

VL

) ∞∫

R0

q(R)R3 ∂ f (R, t)

∂t
dR. (14)

As shown in Ref. [29], with the help of Equation (12), Equation (14) can be converted
to equation

VL − Vtot
ex (t)

VL
= exp


−I0

t∫

0

dτq(R(t − τ))VR(t − τ)
VL − Vtot

ex (τ)

VL


. (15)

For the nucleation stage, the first iteration solution of Equation (15) may be written as

1 −
Vtot

ex (t)

VL
≈ exp


−

4π I0

3

R(t)∫

R0

q(R)R3

.
R(R)

dR


. (16)

Substitution of Equation (16) into Equation (12) gives

f (R, t) ≈
I0θ
(
t − t̃(R)

)
.
R(R)

e
−

4π I0
3

R(t−t̃(R))∫
R0

q(y)y3
.
R(y)

dy

, (17)

where θ is the Heaviside step function and t̃(R) is the time of overcritical bubble growth
from the initial radius R0 to radius R (the inverse function for R(t)), R(0) = R0. With the
help of Equation (17) we can find the mean bubble radius R(t):

R(t) =

∞∫
R0

R f (R, t)dR

∞∫
R0

f (R, t)dR

=

R(t)∫
R0

RdR
.
R(R)

e
−

4π I0
3

R(t−t̃(R))∫
R0

q(y)y3
.
R(y)

dy

R(t)∫
R0

dR
.
R(R)

e
−

4π I0
3

R(t−t̃(R))∫
R0

q(y)y3
.
R(y)

dy

. (18)

As follows from Equation (16), the duration t1 of the nucleation stage is determined
by the condition

4π I0

3

R(t1)∫

R0

q(R)R3

.
R(R)

dR = 1. (19)

where R(t1) is the maximal bubble radius to the end of the nucleation stage.
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2.4. Swelling of Solution

One of the important collective characteristics of the state of the degassing solution is
its swelling over time. Assuming that the dissolved gas does not leave the solution through
its external boundaries, we can determine the swelling coefficient κ as

κ(t) ≡
VL + Vg(t)

VL
. (20)

Substitution of Equations (13) and (17) into Equation (20) gives the following expres-
sion for swelling coefficient κ as a function of time t:

κ(t) = 1 +
4π I0

3

R(t)∫

R0

dRR3

.
R(R)

e
−

4πI0
3

R(t−t̃(R))∫
R0

q(y)y3
.
R(y)

dy

. (21)

3. Results and Discussion

According to the tasks formulated in the Introduction, we are interested in direct
calculation of the distribution function f (R, t) of supercritical gas bubbles in a degassing
solution and finding the mean bubble radius R(t) and coefficient κ(t) of swelling of the
solution at an arbitrary time moment of the nucleation stage in the wide range of solution
viscosities and nucleation rates with full allowance for the Laplace pressure in small
overcritical bubbles. As is seen from Equations (17) and (21), the quantities f (R, t) and κ(t)
are determined by the dependence of the individual bubble radius R(t) on time (related

to the bubble growth rate
.
R(R)) and the dependence of the excluded volume ratio q(R)

(related to the local relative decline ϕ(r, R, t) of gas supersaturation ζ(r, R, t) around the
bubble with radius R from the bulk supersaturation value ζ0). To illustrate the predictions
of the theory considered in Section 2 at different values of solution viscosity η and different
nucleation rates I0, we carried out several numerical calculations. First, we substituted
Equation (6) in Equation (7) and have used Maple (Maplesoft, a division of Waterloo Maple

Inc. 2021) implicitplot and getdata routines for finding R
.
R/D as a function of bubble

radius R using 1500 points. Numerical integration of the obtained R
.
R(R)- dependence

gave the function R(t). Substitution of the R
.
R/D(R) and

.
R(R) functions in Equation (6)

provided the correction function h(R). Then, with the help of Equation (9), we found the
local relative decline ϕ(r, t) of gas supersaturation around a single bubble in variables ρ
and R, and substituted the results in Equation (12) to calculate the excluded volume ratio

q as a function of the bubble radius R. As a next step, we used the results for
.
R(R) and

q(R) in Equations (17) and (18) to calculate the distribution function f (R, t) of overcritical
bubbles and the dependence of the mean bubble radius R(t) on time. Equation (19) allows
us to find the duration t1 of the nucleation stage. Finally, with the help of Equation (20) we
computed the dependence of the swelling coefficient κ on time t.

The following values of parameters for the solution and the dissolved gas have been
taken in calculation:

Pl = 105 Pa, σ = 0.075 N/m, s = 0.2, ζ0 = 50, Γ = 50, D = 10−9 m2/s, (22)

that gave us
R∗ = 2σ/Pl = 1.5·10−6m, Rc = R∗/ζ0 = 3·10−8 m. (23)

Evidently, the parameters in (22) can have other values that are acceptable from a
physical point of view. Choosing values (22), we did not pursue the goal of describing any
particular system but only illustrating the role of viscosity in a wide range of its values. The
accepted values of the parameters are close to those that can be appropriate for solutions of
highly soluble gases in water.
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Generally, the initial nucleation rate I0 is the function of initial supersaturation ζ0 [1,22]
which is mostly characterized by derivative Γ ≡ −ζ0(∂∆Fc/∂ζ0) (mentioned in Section 2).
Pre-exponential factor in the relation between I0 and activation barrier ∆Fc can give a
second-order correction. Taking in mind the discussion in [31] concerning the relation
between the activation barrier ∆Fc for the classical theory of homogeneous bubble gas
nucleation in gas-supersaturated liquid solution, the gas solubility, and supersaturation,
we decided to take two values for the initial nucleation rate I0:I0 = 105 m−3s−1 and
I0 = 107 m−3s−1 at the same values of ζ0 and Γ fixed in Equation (22). The influence of the
solution viscosity η has been checked at three values of viscosity: η = 1 Pa·s, η = 103 Pa·s,
and η = 105 Pa·s.

Note that it is possible to study the degassing of various gases in a solvent, and this
allows us to formally consider the case when the diffusion coefficient is fixed at different
values of the viscosity of the solution. If we study the degassing of a given gas in solutions
with different viscosities, then we should take into account the relationship between the
diffusivity and viscosity. In such a case, we have used in our calculations the Einstein-
Stokes formula which predicts that the product of the diffusion coefficient for gas molecules
and viscosity of solution is constant at other fixed parameters.

The results of the computations are presented below. The dependence of an individual
bubble radius R(t) on time t is shown in Figure 2 for three values of the solution viscosity.
The dashed blue curve 0 depicts the limiting case at η = 0 and R >> R∗ which corresponds
to self-similar growth of bubbles [17,19,29]. In this limiting case, all viscosity and capillary
effects are absent. Solid curves 1–3 correspond at fixed diffusivity D = 10−9 m2/s to
η = 1 Pa·s, η = 103 Pa·s, and η = 105 Pa·s, respectively. Curve 2′ is plotted for the solution
with η = 103 Pa·s, but the product Dη was taken to be the same as for the solution with
D = 10−9 m2/s and η = 1 Pa·s. It is seen that increasing the viscosity at fixed diffusivity
decreases the bubble growth rate and diminishes R(t). However, this effect is significant
only for curves 3 and 2′. Evidently, nucleation rate does not affect R(t).

ff ff 910
1 Pa s 310 Pa s 510 Pa s 2 tt

310 Pa s
910 1 Pa s

ff

2 ff

 

ff

( , )
ff

( , )
( , )

tt ( , )
( , )

ff ( , )
( , )

ff
ff ( , ) ff ffi

Figure 2. Bubble radius R(t) as a function of time at fixed diffusivity and three values of viscosity.

Figure 3a,b illustrate how the behavior of the local relative decline ϕ(r, R(t)) of gas
supersaturation changes with increasing viscosity at fixed diffusivity. If we neglect the
capillarity and viscosity, the gas concentration near the bubble is equal to the equilibrium
value c∞ and, respectively, the local supersaturation of the gas near the bubble at r = R(t)
is zero. Then, the local relative decline ϕ(r = R(t), R(t)) is equal to unity for all bubble
sizes. As the distance r from the bubble center increases, the value of ϕ(r, R(t)) drops
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to zero. This pattern corresponds to the behavior of ϕ(r, R(t)) on surface 0 in Figure 3a,
and we see that the decay of ϕ(r, R(t)) is quite fast for the values of the parameters taken
from Equation (22) (nucleation rate does not affect ϕ(r, R(t))). It is also seen that rising
viscosity leads to a slower decrease in the value of ϕ(r, R(t)) in the space around the bubble,
especially for smaller bubble sizes. The presence of folds on surfaces 1 and 2 in the region
of small droplet radii in Figure 3a is just due to viscous and capillary effects. Compared
with the dependence of the radius on time shown in Figure 2, the influence of these effects
on ϕ(r, R(t)), even at a fixed diffusion coefficient, is noticeably more significant.

  

(a) (b) 

 

(c) 

( , )
0 910

1 Pa s
310 Pa s 910

( , )
510 Pa s 910

( , )
1 Pa s 910 310 Pa s 1210

2

( , ) 510 Pa s ( , )

Figure 3. (a) The 3D-surfaces of local relative decline ϕ(r, R(t)) of gas supersaturation at distance r

around the bubble with radius R(t). Surface 0 plots the limiting case at η = 0, D = 10−9 m2/s, and

R >> R∗. Surfaces 1 and 2 correspond to η = 1 Pa·s and η = 103 Pa·s at D = 10−9 m2/s. (b) The

3D-surface of local relative decline ϕ(r, R(t)) of gas supersaturation at distance r around the bubble

with radius R(t) at η = 105 Pa·s and D = 10−9 m2/s. (c) The 3D-surfaces of local relative decline

ϕ(r, R(t)) of gas supersaturation at distance r around the bubble with radius R(t) for solutions with

η = 1 Pa·s, D = 10−9 m2/s (surface 1) and η = 103 Pa·s, D = 10−12 m2/s (surface 2′ ).
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As is seen in Figure 3b, viscosity has much a stronger influence on the value of
ϕ(r, R(t)) at η = 105 Pa·s. However, we can observe here that ϕ(r, R(t)) still monotonically
drops along the lines with fixed R(t) as in Figure 3a, and this fact is in accordance with the
general behavior of the solution of the diffusion equation. The nonmonotonic behavior of
function ϕ(r, R(t)) as a function of the bubble radius R(t) for small radii at a fixed distance
r/R(t) from the bubble center, which is well observed in Figure 3b (and weakly noticeable

in Figure 3a), is associated with the effect of viscosity on the bubble growth rate
.
R in the

factor
(
1 − (Rc/R)

(
1 + 2η

.
R/σ

))
in the expression (9).

We also compared surfaces of ϕ(r, R(t)) for solutions with fixed product Dη at
η = 1 Pa·s, D = 10−9 m2/s and η = 103 Pa·s at D = 10−12 m2/s (i.e., in the case of
coupling of diffusivity and viscosity). The result is shown in Figure 3c. As is seen, the
functions ϕ(r, R(t)) in scaled variables r/R(t) and R(t)/R∗ virtually coincide in this case.
This is not a random result. A study of the asymptotical forms of the growth rate for small
and large R, carried out in [30], showed that they are directly proportional to the diffusion
coefficient, and only the terms proportional to the product Dη are present in the corrections.

Our calculations here additionally show that the whole curves for
.
R(R)/D and, in view

of Equation (6), for correction function h(R) coincide at different viscosities and diffusion
coefficients with a fixed product Dη.

The next important characteristic of gas absorption by a bubble is the excluded vol-
ume ratio q. The dependence of the ratio q on bubble radius R(t) at fixed diffusivity
D = 10−9 m2/s and three values of viscosity η = 1 Pa·s, η = 103 Pa·s, and η = 105 Pa·s is
shown in Figure 4 (curves 1, 2, and 3, respectively). Curve 2′ is related to the solution with
η = 103 Pa·s and D = 10−12 m2/s. As is outlined by the blue color, this curve virtually
coincides with the curve 1 for the solution with η = 1 Pa·s and D = 10−9 m2/s (with the
same product Dη). As follows from definition (11), this coincidence is a consequence of
the coincidence of the surfaces ϕ(r, R(t)) for curves 1 and 2′. The value q0 = 0.3399, which
is shown by line 0, corresponds to self-similar growth of bubbles in the limiting case at
η = 0 and R >> R∗ at the diffusivity D = 10−9 m2/s with neglection of all viscosity and
capillary corrections. This value is asymptotic for other curves. Increasing the viscosity at
fixed diffusivity increases the bubble size to reach this asymptotic value.
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ff
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ff ff
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ff tt

,
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,

,


Figure 4. The excluded volume ratio q as a function of the bubble radius R at different conditions on

diffusivity and viscosity.

Figure 5a,b show 3D plots of the nonequilibrium distribution function f (R, t) as a
function of the bubble radius and time for different values of viscosity with fixed diffusion
coefficient D = 10−9 m2/s and nucleation rate I0 = 105 m−3s−1. Figure 5a illustrates the
behavior of f (R, t) at η = 1 Pa·s (surface 1) and η = 103 Pa·s (surface 2) relative to the
distribution function for the limiting case at η = 0 and R >> R∗ (surface 0) with neglection
of viscosity and capillarity effects. We used the semi-transparency of the plotted surfaces.
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Therefore, it is clear that under the specified parameters, all distribution functions are
similar and successively nested into each other. Figure 5b shows the behavior of f (R, t)
at η = 105 Pa·s. We see that in all cases considered, in accordance with Formula (17),
the presence of the Heaviside theta function leads to the appearance of a front, beyond
which the distribution function is equal to zero. At any moment of time t there cannot be
bubbles with radii greater than R(t). At the distribution front, the function f (R, t) reaches
its maximum values for each bubble radius R. A more specific behavior of f (R, t) at small

bubble radii in Figure 5b is related to the fact that the bubble growth rate
.
R(t) is very small

for these sizes (see analytical results in [30]).

 

(a) (b) 

 

(c) 

,
0 910

1 Pa s 310 Pa s 910

, 510 Pa s
910 ,

1210 0
310 Pa s

ff ffi

Figure 5. (a) The 3D-surfaces of the gas bubble distribution f (R, t) as a function of the bubble radii

R and time t. Surface 0 plots the limiting case at η = 0 and D = 10−9 m2/s. Surfaces 1 and 2

corresponds to η = 1 Pa·s and η = 103 Pa·s at D = 10−9 m2/s. (b) The 3D-surface of the gas bubble

distribution f (R, t) as a function of the bubble radii R and time t at η = 105 Pa·s and D = 10−9 m2/s.

(c) The 3D-surfaces of the gas bubble distribution f (R, t) as a function of the bubble radii R and time

t at D = 10−12 m2/s. Surface 0 plots the limiting case at η = 0 and R >> R∗. Surfaces 1 corresponds

to η = 103 Pa·s.
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Of particular interest is the behavior of the distribution function of gas bubbles at
higher nucleation rates and when the diffusion coefficient of gas molecules and the viscosity
of the solution are coupled. The results of the corresponding calculations of f (R, t) for
solution with η = 103 Pa·s and D = 10−12 m2/s are shown in Figure 5c in relation to
the distribution function for the case with neglection of viscosity and capillarity effects at
D = 10−12 m2/s.

Note that the maximal value of time t in Figure 5a–c corresponds to the duration of the
nucleation stage during solution degassing. According to Equation (19), the characteristic
time t1 of the nucleation stage at parameters (22) and nucleation rate I0 = 105 m−3s−1 is
0.30 s for a solution with at η = 1 Pa·s (the maximal bubble radius is 241R∗), 0.34 s for a
solution with η = 103 Pa·s (the maximal bubble radius is 244R∗), and 0.66 s for a solution
with η = 105 Pa·s (maximal bubble radius is 191R∗). At D = 10−12 m2/s and η = 103 Pa·s,
we find t1 = 3.62 s and maximal bubble radius is R(t1) = 24R∗. In comparison with surface
2 in Figure 5a related to I0 = 105 m−3s−1, we see in Figure 5c a sharp rise in the number of
small bubbles with a significant increase in the degassing time.

Figure 6 shows the dependence of the mean bubble radius R(t) on time at the nucle-
ation stage, calculated by Formula (18). The numbering of the curves (with used values of
physical parameters) in Figure 6 corresponds to the numbering of the curves in Figure 2 for
the dependence of the bubble radius on time t. Obviously, the curves in Figure 2 can be
interpreted as dependences of the maximal bubble size in the ensemble of bubbles.

, 310 Pa s 1210

ff 1210

1
5

0 10 − −

1 Pa s
310 Pa s

510 Pa s 1210 310
Pa s 1 3.62 1 24

5
0 10 − −

 

ff ff

ff
ffi

1

ffi
ff

Figure 6. Mean bubble radius R(t) as a function of time at different conditions on diffusivity and

viscosity.

Comparing the curves in Figure 6 with the corresponding curves in Figure 2, we
conclude that the average radius in an ensemble of bubbles always grows noticeably slower
than the maximum bubble radius. An increase in viscosity slows down the growth of the
mean radius R(t), especially in the case of inverse proportionality between the diffusion
coefficient and the viscosity of the solution. The maximal value of time t for curves in
Figure 6 corresponds to the duration t1 of the nucleation stage during solution degassing.

Finally, Figure 7 shows the time dependence of the swelling coefficient of the de-
gassing solution during the nucleation stage. The numbering of the curves under different
degassing conditions coincides with the numbering in Figure 6. It should be noted that at
all three values of viscosity (fixed and inversely proportional to the viscosity diffusivity),
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swelling of the solution at the nucleation stage rises approximately to close values, although
at a significantly different rate.

ff

ff

 

ffi

ff ff

ffi 2
ff ffi

ffi ff ffi
2

2

ff
ff ff

ff

ff ff

ff

ffi
ff

0

ff

Figure 7. Swelling coefficient κ(t) for the degassing solution as a function of time during the

nucleation stage at different conditions on diffusivity and viscosity.

The fact that the swelling coefficient of curve 2′ with inverse proportionality between
the diffusion coefficient and viscosity reaches greater values by the end of the nucleation
stage than the swelling coefficient of curve 2 at a fixed diffusion coefficient is due to the use
of a higher nucleation rate in the calculations for the case 2′. As a result, we have in the
case of 2′ a huge number of small bubbles to the end of nucleation stage.

4. Conclusions

Our previous analysis [29,30] of individual growth rates of gas bubbles at degassing
in viscous supersaturated-by-gas solutions under high initial gas supersaturation and gas
solubility has been extended to study of cooperative effects for an ensemble of growing
gas bubbles. As we have shown here, viscous effects may noticeably affect the distribution
function of supercritical gas bubbles in a degassing solution on the nucleation stage, and
we gave a description of the mechanism of a such influence. In particular, as a macroscopic
effect at degassing, viscosity provides slowdown of the maximal and mean bubble growth
as well as the rate of swelling of the total solution. With increasing solution viscosity by
five decimal orders at fixed diffusivity, viscosity does provide the damping effect on the
rate of growth of the mean bubble radius and the rate of swelling up to two times and,
correspondingly, increases twice the time of the nucleation stage. Taking inverse coupling
between diffusivity and viscosity into account allowed us to find much stronger dumping
up to one decimal order for three decimal orders of viscosity. Nevertheless, we have shown
that to the end of nucleation stage, the swelling coefficient will be several units. Thus, in
spite of the fact that the self-similar theory of diffusional growth of bubble [17–19] (which
requires η = 0 and R >> R∗) cannot be directly applied at large viscosities, many of its
features are preserved.

The results obtained allow us to consider any specific system for which the physic-
ochemical parameters, such as gas solubility, surface tension, diffusion and viscosity
coefficients, nucleation rate, and work of formation are self-consistent. At present, such a
set of values of parameters can only be obtained experimentally.

In this paper, we considered the case of instantaneous decompression of a gas-
saturated solution. In the case of a finite decompression rate, the approach proposed
here requires modification, primarily related to the change in the growth dynamics of a
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single gas bubble. The corresponding problem of single bubble growth in a highly viscous
liquid was considered in recently published paper by Chernov, Davydov, and Pil’nik [32].
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