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k-Büchi arithmetic

▶ For k ≥ 2 consider FA A over Σn
k for Σk = {0, 1, ..., k − 1}.

▶ The language L(A) and the set JL(A)Kk ⊆ Nn.
▶ R ⊆ Nn is called k-FA-recognizable if there exists Σn

k -FA A
such that R = JL(A)Kk .

Theorem. Büchi [1960], Bruyère [1985], Villemaire [1992]: R ⊆ Nn is
k-FA-recognizable if and only if it is ∃∀∃-definable in the structure
⟨N; 0, 1,+,Vk ,=⟩, where Vk(x , y) iff x is the largest power of k that
divides y .

Theorem. Haase and Różycki [2021]: R ⊆ Nn is k-FA-recognizable if
and only if it is ∃∀-definable in ⟨N; 0, 1,+,Vk ,=⟩, but ∃-formulas are
less expressive.

In particular, J{10, 01}∗K2 is not ∃-definable in ⟨N; 0, 1,+,V2,=⟩.

Question: Whether there is a “natural” structure where every
k-FA-recognizable relation is ∃-definable, and vice versa?
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WMSO-theories and Parikh automata

▶ Denote by F the set of all finite subsets of N.

▶ 2-FA-recognizability of R ⊆ Fn is defined similarly.

Theorem. Büchi [1960], Elgot [1961], Trakhtenbrot [1962]: R ⊆ Fn is
2-FA-recognizable iff it is WMSO-definable in the structure ⟨N;S⟩.
Therefore, WMSOTh⟨N;S⟩ is decidable.

Theorem. Klaedtke and Rueß [2003]: The existential WMSO-theory of
the structure ⟨N;S ,EqCard⟩ is decidable, whereas
WMSOTh⟨N;S ,EqCard⟩ is undecidable.

▶ For m > 0 and a finite set D ⊆ Nm, a Σ-Parikh automaton is a pair
(A, φ), where A is a (Σ× D)-FA and φ(x1, ..., xm) is an (existential)
formula of Presburger arithmetic.

▶ Σ-PFA Aφ accepts w ∈ Σ∗ iff (q0,w , 0, ..., 0) → · · · → (qf , ϵ, y1, ..., ym),
where qf is a final state of A and φ(y1, ..., ym) is true.

▶ R ⊆ Fn is 2-PFA-recognizable iff it is existentially WMSO-definable in
the structure ⟨N;S ,EqCard⟩.

▶ Decidability of the Emptiness problem and undecidability of the
Universality problem for Parikh automata.

▶ FO-version? EqNonZeroBits(x , y) is true iff x and y have the same
number of non-zero bits.

▶ Question of Bès [2013]: it would be interesting to study the expressive
power of fragments of FO arithmetic which include predicates like
EqNonZeroBits.
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Question: Is there a “reasonable” existential FO-characterization of Parikh
automata?
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Bounded universal quantifier

▶ In these logical characterizations the universal quantifier is bounded.

▶ Davis, Putnam, and Robinson [1963]: Every relation R ⊆ Nn is r.e.
if and only if it is ∃-definable in ⟨N; 0, 1,+, ·, exp,=⟩.

Proof uses
multiplication, factorials, binomial coefficients etc.

▶ Matiyasevich’s proof of DPR-theorem [1976]: Purely existential
arithmetization of Turing machines. The structure
⟨N; 0, 1,+,&,⌢,=⟩, for the bitwise minimum operation & and
concatenation ⌢, where t = x ⌢ y ⇌ t = x + 2l(x)y .

▶ Every relation R ⊆ Nn is definable in ⟨N; 0, 1,+,Vk ,=⟩ iff it is
definable in the structure ⟨N; 0, 1,+,&k ,=⟩.

y =Θk,a(x) ⇔ ∃x1...∃xk−1

( ∧
1≤i<j≤k−1

xi&kxj = 0 ∧ (x1 + ...+ xk−1) ≼k 1k(x)∧

x1 + 2x2 + ...+ (k − 1)xk−1 = x ∧ y = xa
)
.

y =Θk,0(t, x). Example: Θ3,0(100000, 1020) = 110101
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Existential characterization of k-FA-recognizable languages

Theorem 1

For an integer k ≥ 2 every relation is k-FA-recognizable if and only if it is
∃-definable in the structure ⟨N; 0, 1,+,&k ,=⟩.

▶ k-FA A = (Q, q0,F , δ).

▶ Variables q = q0, ..., qs for every qi ∈ Q.
▶ For a state p ∈ Q, denote by ν(p) its number from [0..s].

Kk(t, q)⇌
∧

0≤i<j≤s

qi&kqj = 0∧ q0 + ...+ qs = 1k(t)∧ 1 ≼k q0 ∧
∨
p∈F

t ≼k qν(p).

▶ For every (p, a) ∈ Q × Σn
k

∆(p,a)(t, q, x)⇌

(
qν(p)&k &k

i∈[1..n]
Θk,ai (

t

k
, xi )

)
≼k

(
|
k

p̃∈δ(p,a)

qν(p̃)
k

)
.

RL(A)(x) ⇔ ∃t∃q
(
Pk(t) ∧

∧
i∈[1..n]

xi < t ∧ Kk(t, q) ∧
∧

(p,a)∈Q×Σn
k

∆(p,a)(t, q, x)
)
.
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Example: ∃-formula for the set J{10, 01}∗K2

q0

q1

q2

0 1

1 0

∃t∃q0∃q1∃q2

(
P2(t) ∧ x < t ∧ q0 + q1 + q2 = 2t − 1∧

q0&q1 = 0 ∧ q0&q2 = 0 ∧ q1&q2 = 0∧

q0&1 = 1 ∧ q0&t = t ∧ q0&x ≼
q2

2
∧ q0& ∼ (

t

2
, x) ≼

q1

2
∧

q1&x ≼
q0

2
∧ q1& ∼ (

t

2
, x) ≼ 0 ∧ q2&x ≼ 0 ∧ q2& ∼ (

t

2
, x) ≼

q0

2

)
.
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Parikh automata and EqNZBk

L = {x ∈ {0, 1}∗ | x#1(x) = 0}, where xi is
the i-th letter of x .

{0, 1}-PFA with
D = {(0, 0), (0, 1), (1, 0), (1, 1)} and
φ⇌ x = y .

q0 q1

0, (0, 1)

1, (1, 1)

0, (0, 0)

0, (0, 0)

1, (1, 0)

x = 10011011100
y1 = 0
y2 = 0
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▶ Parikh map Φk : N → Nk such that Φk(x) = (#k,0(x), ...,#k,k−1(x)),
where #k,i counts the number of occurrences of i in k-ary expansion of x .

▶ R(x1, ..., xn) is ∃-definable in ⟨N; 0, 1,+,=⟩, and a ∈ {0, ..., k − 1}n. Then
R(#k,a1(x1), ...,#k,an (xn)) is ∃-definable in ⟨N; 0, 1,+,&k ,EqNZBk ,=⟩.

▶ D is a finite subset of Nm.
▶ M(D) is the maximal element of D.
▶ Introduce m(M(D) + 1) variables y = y1,0,...,y1,M(D),...,ym,0,...,ym,M(D)

such that for every i ∈ [1..m] it holds that θk(t, yi,0, ..., yi,M(D)), where

θk(t, y0, ..., yM)⇌
∧

0≤i<j≤M

yi&kyj = 0 ∧ y0 + ...+ yM = 1k(t).
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First-order characterization of Parikh automata

Theorem 2

For every integer k ≥ 2 a relation R ⊆ Nn is k-PFA-recognizable if and
only if it is ∃-definable in the structure ⟨N; 0, 1,+,&k ,EqNZBk ,=⟩.

For (p, a, d) ∈ Q × Σn
k × D we have:

∆(p,a,d)(t, q, x , y)⇌
(
qν(p)&k &k

i∈[1..n]
Θk,ai (

t

k
, xi )&k &k

j∈[1..m]
yj,dj

)
≼k

(
|
k

p̃∈δ(p,a,d)

qν(p̃)
k

)
.

RL(Aφ)(x) ⇔ ∃t∃q∃y
(
Pk(t)∧

∧
i∈[1..n]

xi < t∧Kk(t, q)∧
∧

i∈[1..m]

θk(t, yi,0, ..., yi,M(D))∧

∧
(p,a,d)∈Q×Σn

k
×D

∆(p,a,d)(t, q, x , y)∧φ
( ∑
c∈[1..M(D)]

c#k,1(y1,c), ...,
∑

c∈[1..M(D)]

c#k,1(ym,c)
))

.

Corollary 1. The ∃-theory of ⟨N; 0, 1,+,&k ,EqNZBk ,=⟩ is decidable and the
∀∃-theory of this structure is undecidable. [Klaedtke and Rueß, 2003]
Corollary 2. The problem of deciding whether a set existentially definable in
the structure ⟨N; 0, 1,+,&k ,EqNZBk ,=⟩ is ∃-definable in ⟨N; 0, 1,+,&k ,=⟩ is
undecidable. [Cadilhac, Finkel and McKenzie, 2011]
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Multi-counter machines, concatenation, and DPR-theorem

Two-way multi-counter machine M over Σn
k (k-MCM):

(m,Q, q0,F , δ)

▶ The number of the counters m ≥ 0.

▶ Transition function δ from Q × (Σ ∪ {⊢,⊣})× {0, 1}m to 2Q×{−1,0,1}m+1
.

▶ Configuration on an input ⊢ x ⊣ is a tuple (q,⊢ x ⊣, i , y1, ..., ym).

▶ (q,⊢ x ⊣, i , y1, ..., ym) → (q′,⊢ x ⊣, i +∆, y1 + d1, ..., ym + dm) if and
only if (q′,∆, d1, ..., dm) ∈ δ(q, a, [y1 > 0], ..., [ym > 0]).

▶ Input x ∈ Σ∗ is accepted by M if for ⊢ x ⊣ there is a computation
(q0,⊢ x ⊣, 0, 0, ..., 0) → ... → (qf ,⊢ x ⊣, 0, 0, ..., 0) for qf ∈ F

⇝ L(M).

▶ R ⊆ Nn is k-MCM-recognizable if there exists a k-MCM M such that
∀a ∈ Nn

(
R(a) ⇔ RL(M)(a)

)
Aim: The same arguments as in the cases of k-FA and k-PFA for existential
characterization of r.e. sets. Introduce concatenation
t = x ⌢k y ⇌ t = x + k lk (x)y and use bytewise multiplication instead of bitwise
to encode δ.
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The predicate ∆k and function Uk

▶ Function Copyk(u, t, x).

▶ Predicate ∆k(u, t, x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form
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Sequences of configurations

▶ k-MCM M = (m,Q, q0,F , δ)

▶ Variables q = q0, ..., qs for every qi ∈ Q.

Kk(u, t, q)⇌
∧

0≤i<j≤s

qi&kqj = 0 ∧ q0 + ...+qs = Copy k(u, t, 1)∧

1 ≼kq0 ∧
∨
p∈F

Λk(u, t) ≼k qν(p).

▶ Function bk(x) — the smallest power of k greater than every xi ∈ x

CM(u, t, q, x , θ, h, y)⇌ Pk(u) ∧
∧

i∈[1..n]

k4xi ≤ u ∧ u ≤ t ∧ Kk(u, t, q)∧

θ⊢ = Copy k(u, t,1) ∧
∧

i∈[1..n]

(
θi,0 = Copy k(u, t, kΘk,0(xi + bk(x))∧

∧
a∈[1..k−1]

θi,a = Copy k(u, t,kΘk,a(xi ))
)
∧ θ⊣ = Copy k(u, t, kbk(x))∧

∆k(u, t, h) ∧
∧

i∈[1..m]

∆k(u, t, yi ).
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Sequences of transitions

▶ Assume CM(u, t, q, x , θ, h, y)

▶ Letter (a1, ..., an) ∈ Σn
k ∪ {⊢,⊣}, a state p ∈ Q, and a tuple

c ∈ {0, 1}m

▶ Counters from Yc = {i ∈ [1..m] | ci = 0} are equal to zero and
from [1..m] \ Yc are non-zero
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Example: h = 0000001 0000010 0000100 0000010 0000001
(k1h)

u
= 0000000 0000010 0000100 0001000 0000100
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DPR-theorem and a corollary

Theorem 3

For every integer k ≥ 2 a relation is k-MCM-recognizable if and only if it
is ∃-definable in the structure ⟨N; 0, 1,+,&k ,⌢k ,=⟩. Therefore, every
relation R ⊆ Nn is r.e. iff it is ∃-definable in this structure.

RL(M)(x) ⇔ ∃u∃t∃q∃θ∃h∃y
(
CM(u, t, q, x , θ, h, y) ∧∧
(p,a,c)∈Q×(Σn

k
∪{⊢,⊣})×{0,1}m

∆(p,a,c)(u, t, q, θ, h, y)
)
.

Corollary 1 (DPR-theorem). Every relation R ⊆ Nn is r.e. if and only if it is
∃-definable in the structure ⟨N; 0, 1,+, ·, exp,=⟩.
▶ Fix k = 2, then z = x&2y ⇔ z ≼ y ∧ y ≼ x + y − z

▶ x ≼ y ⇔
(
y
x

)
≡ 1(mod 2)

▶ x ≼ y ⇔ s2(y) = s2(x) + s2(y − x) ⇔ EqNZB(y , x ⌢ (y − x))

Corollary 2. Every relation R ⊆ Nn is r.e. if and only if it is ∃-definable in the
structure ⟨N; 0, 1,+,EqNZB,⌢,=⟩.
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Summary and open problems

▶ An ∃FO-characterization of k-FA-recognizability.

Existential version
of Cobham-Semënov: for multiplicatively independent k and l a
relation R ⊆ Nn is simultaneously ∃-definable in ⟨N; 0, 1,+,&k ,=⟩
and ⟨N; 0, 1,+,&l ,=⟩ iff it is ∃-definable in ⟨N; 0, 1,+,=⟩.

▶ Definability results for EqNZB. Answer to a question of Bès [2013].

▶ A continuum of principles that link automata reading digits to the
Hilbert’s 10th problem.

▶ Villemaire [1992]: for multiplicatively independent k and l
multiplication is definable in ⟨N; 0, 1,+,Vk ,Vl ,=⟩. Whether
multiplication is existentially definable in ⟨N; 0, 1,+,&k ,&l ,=⟩?

▶ Easy: ∃Def⟨N; 0, 1,+,&2,=⟩ = ∃Def⟨N; 0, 1,+, J{10, 01}∗K2,=⟩.
How can we describe k-recognizable relations Rk ⊆ Nn such that
every k-FA-recognizable is ∃-definable in ⟨N; 0, 1,+,Rk ,=⟩?

Thank you for your attention !
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