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k-Blichi arithmetic

» For k > 2 consider FA A over X} for X, = {0,1,...,k — 1}.

» The language L(A) and the set [L(A)]x € N".

» R C N"is called k-FA-recognizable if there exists X]-FA A
such that R = [L(A)] k.

Theorem. Biichi [1960], Bruyére [1985], Villemaire [1992]: R C N" is
k-FA-recognizable if and only if it is 3V¥3-definable in the structure
(N;0,1,4, Vi, =), where Vi (x, y) iff x is the largest power of k that
divides y.
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WMSO-theories and Parikh automata

» Denote by F the set of all finite subsets of N.
» 2-FA-recognizability of R C F" is defined similarly.
Theorem. Biichi [1960], Elgot [1961], Trakhtenbrot [1962]: R C F" is

2-FA-recognizable iff it is WMSO-definable in the structure (N; S).
Therefore, WMSOTh(N; S) is decidable.

3/ 14




WMSO-theories and Parikh automata

» Denote by F the set of all finite subsets of N.
» 2-FA-recognizability of R C F" is defined similarly.
Theorem. Biichi [1960], Elgot [1961], Trakhtenbrot [1962]: R C F" is

2-FA-recognizable iff it is WMSO-definable in the structure (N; S).
Therefore, WMSOTh(N; S) is decidable.

Theorem. Klaedtke and RueR [2003]: The existential WMSO-theory of
the structure (N; S, EqCard) is decidable, whereas
WMSOTh(N; S, EqCard) is undecidable.

3/ 14




WMSO-theories and Parikh automata

» Denote by F the set of all finite subsets of N.
» 2-FA-recognizability of R C F" is defined similarly.
Theorem. Biichi [1960], Elgot [1961], Trakhtenbrot [1962]: R C F" is

2-FA-recognizable iff it is WMSO-definable in the structure (N; S).
Therefore, WMSOTh(N; S) is decidable.

Theorem. Klaedtke and RueR [2003]: The existential WMSO-theory of
the structure (N; S, EqCard) is decidable, whereas
WMSOTh(N; S, EqCard) is undecidable.

» For m > 0 and a finite set D C N, a X-Parikh automaton is a pair
(A, ), where Ais a (X x D)-FA and ¢(xi, ..., xm) is an (existential)
formula of Presburger arithmetic.

3/ 14




WMSO-theories and Parikh automata

» Denote by F the set of all finite subsets of N.
» 2-FA-recognizability of R C F" is defined similarly.
Theorem. Biichi [1960], Elgot [1961], Trakhtenbrot [1962]: R C F" is

2-FA-recognizable iff it is WMSO-definable in the structure (N; S).
Therefore, WMSOTh(N; S) is decidable.

Theorem. Klaedtke and RueR [2003]: The existential WMSO-theory of
the structure (N; S, EqCard) is decidable, whereas
WMSOTh(N; S, EqCard) is undecidable.

» For m > 0 and a finite set D C N, a X-Parikh automaton is a pair
(A, ), where Ais a (X x D)-FA and ¢(xi, ..., xm) is an (existential)
formula of Presburger arithmetic.

» >-PFA A, accepts w € X" iff (qo, w,0,...,0) = -+ = (g, € Y1, .., Ym),
where gr is a final state of A and ¢(y1, ..., ym) is true.

3/ 14




WMSO-theories and Parikh automata

» Denote by F the set of all finite subsets of N.
» 2-FA-recognizability of R C F" is defined similarly.

Theorem. Biichi [1960], Elgot [1961], Trakhtenbrot [1962]: R C F" is
2-FA-recognizable iff it is WMSO-definable in the structure (N; S).
Therefore, WMSOTh(N; S) is decidable.

Theorem. Klaedtke and RueR [2003]: The existential WMSO-theory of
the structure (N; S, EqCard) is decidable, whereas
WMSOTh(N; S, EqCard) is undecidable.

» For m > 0 and a finite set D C N, a X-Parikh automaton is a pair
(A, ), where Ais a (X x D)-FA and ¢(xi, ..., xm) is an (existential)
formula of Presburger arithmetic.

» >-PFA A, accepts w € X" iff (qo, w,0,...,0) = -+ = (g, € Y1, .., Ym),
where gr is a final state of A and ¢(y1, ..., ym) is true.

» R C F"is 2-PFA-recognizable iff it is existentially WMSO-definable in
the structure (N; S, EqCard).

3/ 14




WMSO-theories and Parikh automata

» Denote by F the set of all finite subsets of N.
» 2-FA-recognizability of R C F" is defined similarly.

Theorem. Biichi [1960], Elgot [1961], Trakhtenbrot [1962]: R C F" is
2-FA-recognizable iff it is WMSO-definable in the structure (N; S).
Therefore, WMSOTh(N; S) is decidable.

Theorem. Klaedtke and RueR [2003]: The existential WMSO-theory of
the structure (N; S, EqCard) is decidable, whereas
WMSOTh(N; S, EqCard) is undecidable.

» For m > 0 and a finite set D C N, a X-Parikh automaton is a pair
(A, ), where Ais a (X x D)-FA and ¢(xi, ..., xm) is an (existential)
formula of Presburger arithmetic.

» >-PFA A, accepts w € X" iff (qo, w,0,...,0) = -+ = (g, € Y1, .., Ym),
where gr is a final state of A and ¢(y1, ..., ym) is true.

» R C F"is 2-PFA-recognizable iff it is existentially WMSO-definable in
the structure (N; S, EqCard).

» Decidability of the Emptiness problem and undecidability of the
Universality problem for Parikh automata.
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Existential characterization of k-FA-recognizable languages
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oj(ojoj1rf{1rfojoj1fo|1} x
011 t
01 1 1 1 1 qo
0 1 a1
0 1 1 1 q2

dtdqodqidqe (Pz(t) AX<tAQ+aq1+q=2t—1A
go&qgi = 0A go&ga = 0N 1&g =0A
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Parikh automata and EqNZBy

L={xe{0,1}" | x4,y = 0}, where x; is 0,(0,1) 0,(0,0)
the i-th letter of x.

{0, 1}-PFA with
D ={(0,0),(0,1),(1,0),(1,1)} and
p=x=y.

1,(1,1) 1,(1,0)

x = 10011011100
=20
y2=0
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L={xe€{0,1}" | xu,(x) = 0}, where x; is 0,(0,1) 0,(0,0)
the j-th letter of x.

{0, 1}-PFA with
D ={(0,0),(0,1),(1,0),(1,1)} and
p=x=y.
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L={xe€{0,1}" | xu,(x) = 0}, where x; is 0,(0,1) 0,(0,0)
the j-th letter of x.

{0, 1}-PFA with
D ={(0,0),(0,1),(1,0),(1,1)} and
p=x=y.

1,(1,1) 1,(1,0)

x = 10011011100
=20
y2 =2
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Parikh automata and EqNZBy

L={xe{0,1}" | x4,y = 0}, where x; is 0,(0,1) 0,(0,0)
the i-th letter of x.

{0, 1}-PFA with
D ={(0,0),(0,1),(1,0),(1,1)} and
p=x=y.

1,(1,1) 1,(1,0)

x = 10011011100
=1
y2 =3
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Parikh automata and EqNZBy

L={xe{0,1}" | x4,y = 0}, where x; is 0,(0,1) 0,(0,0)
the i-th letter of x.

{0, 1}-PFA with
D ={(0,0),(0,1),(1,0),(1,1)} and
p=x=y.

1,(1,1) 1,(1,0)

x = 10011011100
=2
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Parikh automata and EqNZBy

L={xe{0,1}" | x4,y = 0}, where x; is 0,(0,1) 0,(0,0)
the i-th letter of x.

{0, 1}-PFA with
D ={(0,0),(0,1),(1,0),(1,1)} and
p=x=y.

1,(1,1) 1,(1,0)

x = 10011011100
yi=3
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yi=>5
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Parikh automata and EqNZBy

L={xe{0,1}" | x4,y = 0}, where x; is 0,(0,1) 0,(0,0)
the i-th letter of x.

{0, 1}-PFA with
D ={(0,0),(0,1),(1,0),(1,1)} and
p=x=y.

L(1,1) L,(1,0)
x = 10011011100

y1 =26
y2 =6
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Parikh automata and EqNZBy

L={xe€{0,1}" | xu,(x) = 0}, where x; is 0,(0,1) 0,(0,0)
the i-th letter of x.

{0, 1}-PFA with
D ={(0,0),(0,1),(1,0),(1,1)} and
p=x=y.

1,(1,1) 1,(1,0)
x = 10011011100

y1 =206
y2 =6
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Parikh automata and EqNZBy

L={xe€{0,1}" | xu,(x) = 0}, where x; is 0,(0,1) 0,(0,0)
the i-th letter of x.

{0, 1}-PFA with
D= {(07 0)7 (07 l)a (17 O)a (17 1)} and
p=x=y.

0,(0,0)

1,(1,1) 1,(1,0)

» Parikh map @, : N — N¥ such that ®(x) = (#,0(x), -, #xk—1(x)),
where # ; counts the number of occurrences of i in k-ary expansion of x.

» R(x1,...,xn) is 3-definable in (N;0,1,+,=), and 3 € {0,..., k —1}". Then
R(#k,a1(x1), ...s #k,a,(%n)) is 3-definable in (N;0,1, 4+, &, EqNZB,, =).
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L={xe€{0,1}" | xu,(x) = 0}, where x; is 0,(0,1) 0,(0,0)
the i-th letter of x.

{0, 1}-PFA with
D= {(07 0)7 (07 1)a (17 0)’ (17 1)} and
p=x=y.

0,(0,0)

1,(1,1) 1,(1,0)

» Parikh map @, : N — N¥ such that ®(x) = (#,0(x), -, #xk—1(x)),
where # ; counts the number of occurrences of i in k-ary expansion of x.

» R(x1,...,xn) is 3-definable in (N;0,1,+,=), and 3 € {0,..., k —1}". Then
R(#k,a1(x1), ...s #k,a,(%n)) is 3-definable in (N;0,1, 4+, &, EqNZB,, =).

#i,a(x) + #u6(y) = #r.c(2) © XY (EGNZB (X' + y', O c(2))A
x'&ky' = 0N EQNZB, (X', Ok,2(x)) A EGNZB, (y', Ok.5(y)))-
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Parikh automata and EqNZBy

L={xe€{0,1}" | xu,(x) = 0}, where x; is 0,(0,1) 0,(0,0)
the i-th letter of x.

{0,1}-PFA with
D= {(07 0)7 (07 l)a (17 0)’ (17 1)} and
p=x=y.

0,(0,0)

1,(1,1) 1,(1,0)
» Parikh map @, : N — N¥ such that ®(x) = (#,0(x), -, #xk—1(x)),
where # ; counts the number of occurrences of i in k-ary expansion of x.
» R(x1,...,xn) is 3-definable in (N;0,1,+,=), and 3 € {0,..., k —1}". Then
R(#k,a1(x1), ...s #k,a,(%n)) is 3-definable in (N;0,1, 4+, &, EqNZB,, =).
» D is a finite subset of N”.
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Parikh automata and EqNZBy

L={xe€{0,1}" | xu,(x) = 0}, where x; is 0,(0,1) 0,(0,0)
the i-th letter of x.

{0, 1}-PFA with
D= {(07 0)7 (07 1)a (17 0)’ (17 1)} and
p=x=y.

0,(0,0)

1,(1,1) 1,(1,0)
» Parikh map @, : N — N¥ such that ®(x) = (#,0(x), -, #xk—1(x)),
where # ; counts the number of occurrences of i in k-ary expansion of x.
» R(x1,...,xn) is 3-definable in (N;0,1,+,=), and 3 € {0,..., k —1}". Then
R(#k,a1(x1), ...s #k,a,(%n)) is 3-definable in (N;0,1, 4+, &, EqNZB,, =).
» D is a finite subset of N™.
» M(D) is the maximal element of D.

» Introduce m(M(D) + 1) variables ¥ = y1.0,....y1,M(D)--- Ym,0.---:¥Ym,M(D)
such that for every i € [1..m] it holds that 0x(t, yio, ..., yi,m(p)), Where

Ok(t, yo0,...,ym) = /\ yi&ery; = 0 A yo + ... + ym = Li(t).

0<i<j<M 7/ 14




First-order characterization of Parikh automata

For every integer k > 2 a relation R C N" s k-PFA-recognizable if and
only if it is 3-definable in the structure (N; 0,1, +, &y, EGNZB,,=).

8 /14




First-order characterization of Parikh automata

For every integer k > 2 a relation R C N" s k-PFA-recognizable if and
only if it is 3-definable in the structure (N; 0,1, +, &y, EGNZB,,=).

For (p,3,d) € @ x X7 x D we have:
R t
Bzt a,%y) = (qu(p)&kigfn]@k,ai(;7Xi)&k

8 /14




First-order characterization of Parikh automata

For every integer k > 2 a relation R C N" s k-PFA-recognizable if and
only if it is 3-definable in the structure (N; 0,1, +, &y, EGNZB,,=).

For (p,3,d) € Q x £ x D we have:

t
Dan (8% Y) = (qun&e &k Ora (7. x)&k & yig
(p38) (L TXY) (q &k, Si Oy (7:) k,-e[l..km]y’"”)

8 /14




First-order characterization of Parikh automata

For every integer k > 2 a relation R C N" s k-PFA-recognizable if and
only if it is 3-definable in the structure (N; 0,1, +, &y, EGNZB,,=).

For (p,3,d) € Q x £} x D we have: )

o t y
D,z (ta.xy) = (qu(p)&k & 01 (1) & yj,d,-) <k P @
® i€ft..n] k jel.m] IO

peS(p,a,d)

8 /14




First-order characterization of Parikh automata

For every integer k > 2 a relation R C N" s k-PFA-recognizable if and
only if it is 3-definable in the structure (N; 0,1, +, &y, EGNZB,,=).

For (p,3,d) € Q x £} x D we have: )

o t y
D,z (ta.xy) = (qu(p)&k & 01 (1) & yj,d,-) <k P @
® i€ft..n] k jel.m] IO

peS(p,a,d)

8 /14




First-order characterization of Parikh automata

For every integer k > 2 a relation R C N" s k-PFA-recognizable if and
only if it is 3-definable in the structure (N; 0,1, +, &y, EGNZB,,=).

For (p,3,d) € Q x £ x D we have:
==z t Q)
Dot = (qum&r & Oy )&k & yig) < :
(p,a,d)( G, %,Y) (q (p) kie[l.’.(n] K, ’(k X;) kjE[l..krn]-yJ’d]) X ( |k p )

pes(p,a,d)

Ria,)(x) < 3t353)7<Pk(t)/\ \ xi < tAKe(t, )N
i€[l..n]

8 /14




First-order characterization of Parikh automata

For every integer k > 2 a relation R C N" s k-PFA-recognizable if and
only if it is 3-definable in the structure (N; 0,1, +, &y, EGNZB,,=).

For (p,3,d) € Q x £ x D we have:
==z t Q)
Dot = (qum&r & Oy )&k & yig) < :
(p,a,d)( G, %,Y) (q (p) kie[l.’.(n] K, ’(k X;) kjE[l..krn]-yJ’d]) X ( |k p )

pes(p,a,d)

RL(Ag,)(X) =4 EItE!qEIy(Pk(t)/\ /\ X < t/\Kk(t q /\ 0k ,y,o, S Yi M(D))/\
i€[1..n] i€[1..m]

8 /14




First-order characterization of Parikh automata

For every integer k > 2 a relation R C N" s k-PFA-recognizable if and
only if it is 3-definable in the structure (N; 0,1, +, &y, EGNZB,,=).

For (p,3,d) € Q x £ x D we have:
==z t Q)
AL (t = (qum&r &k Oun(=x)&x &i yig) < .
(b2 (60X, Y) (q (& S koo (%) k,-ep..km]y”d’) K ( |, p )

pes(p,a,d)

RL(A(‘,)(X) =4 EItEIqEIy(Pk(t)/\ /\ X < t/\Kk(t q /\ 0k ,y,o, S Yi M(D))/\
i€[1..n] i€[1..m]

/\ A(p,ﬁ,ﬂ)(tﬁa Y7 .)7)/\

(p,3,d)EQXT] XD

8 /14




First-order characterization of Parikh automata

For every integer k > 2 a relation R C N" s k-PFA-recognizable if and
only if it is 3-definable in the structure (N; 0,1, +, &y, EGNZB,,=).

For (p,3,d) € Q x £ x D we have:
==z t Q)
AL (t = (qum&r &k Oun(=x)&x &i yig) < .
(b2 (60X, Y) (q (py &k Sk Ok, (%) k,-ep..km]y”d’) K ( |, p )

pes(p,a,d)

R, )(X)<:>E|tEIqEIy<Pk(t)/\ N\ xi <trAKe(t, A N 0k(t, ¥ios oos Yim(o))A
i€[1..n] i€[1..m]

/\ A(p,ﬁ,g)(nav X, _)7)/\@( Z C#k,l(y1,C)7 ey Z C#k,l(ym,c)))-

(p,3,d)EQXT] XD c€[1..M(D)] c€[1..M(D)]

8 /14




First-order characterization of Parikh automata

For every integer k > 2 a relation R C N" s k-PFA-recognizable if and
only if it is 3-definable in the structure (N; 0,1, +, &y, EGNZB,,=).

For (p,3,d) € Q x £ x D we have:
o qv
AL 9(ta,Xy) = (qV )&k &, @k ai( ,Xi)&kﬁ%éfm]n,dj) <k ( |k k(Tﬁ).

ieftn] ped(p,a,d)

R, )(X)<:>E|t5|q3y<Pk(t)/\ N\ xi <trAKe(t, A N 0k(t, ¥ios oos Yim(o))A
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/\ A(p,ﬁ,ﬁ)(hﬁa X, y)AQD( Z C#kyl(y17C)7 sy Z C#k,l(ym,c)))-
(p,3,d)€EQXETIXD ce[1..M(D)] ce[1..M(D)]

Corollary 1. The 3-theory of (N;0, 1, +, &, EGQNZB,, =) is decidable and the
V3-theory of this structure is undecidable. [Klaedtke and Ruel, 2003]
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First-order characterization of Parikh automata

Theorem 2

For every integer k > 2 a relation R C N" is k-PFA-recognizable if and
only if it is 3-definable in the structure (N; 0,1, +, &, EgNZB,,=).

For (p,a,d) € @ x X} x D we have:
A 3,d (t7aa?7y) = (qu &y &k eka( Xi)&k &k _yjyd-) <k | g .
(p,3,d) el Y s k k
P

i€[l..n] -
(p,3,d)

<
S

RL(.A )(X) A 3taqu<P’<(t)/\ /\ Xi < t/\Kk(t q /\ ek 7}//07- - Yi,M D))/\
i€[l..n] i€[l..m]

/\ A(p,ﬁ,g)(t7av X, _7)/\g0( Z C#k,l(y175)7 ey Z C#k,l(}’m,c))) .
(P’E’E)GQXZZXD ce[1..M(D)] ce[1..M(D)]
Corollary 1. The 3-theory of (N;0, 1, +, &, EGQNZB,, =) is decidable and the
V3-theory of this structure is undecidable. [Klaedtke and Ruel, 2003]
Corollary 2. The problem of deciding whether a set existentially definable in
the structure (N; 0,1, +, &, EgNZB,, =) is 3-definable in (N; 0,1, 4, &, =) is
undecidable. [Cadilhac, Finkel and McKenzie, 2011] 8/ 14




Multi-counter machines, concatenation, and DPR-theorem

Two-way multi-counter machine M over X7 (k-MCM):

(m, Q, qo, F,9)
» The number of the counters m > 0.
» Transition function & from Q x (X U {F,}) x {0,1}7 to 29x{~1.0.1}""
» Configuration on an input - x - is a tuple (g,F x =, 7, y1, ..., Ym)-
> (q,F x i, y1, 0 ym) = (¢, x =, i+ A, y1 + di,y ..., Ym + dm) if and
only if (¢', A, di,...,dn) € 5(q,a,[yr > 0], ..., [ym > 0]).
» Input x € " is accepted by M if for - x - there is a computation

(go,F x,0,0,...,0) = ... = (gr,F x 1,0,0,...,0) for gr € F
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Two-way multi-counter machine M over X7 (k-MCM):

(m, Q, qo, F,9)

» The number of the counters m > 0.

» Transition function & from Q x (X U {F,}) x {0,1}7 to 29x{~1.0.1}""

» Configuration on an input - x - is a tuple (g,F x =, 7, y1, ..., Ym)-

> (q,F x i, y1, 0 ym) = (¢, x =, i+ A, y1 + di,y ..., Ym + dm) if and
only if (¢', A, di,...,dn) € 5(q,a,[yr > 0], ..., [ym > 0]).

» Input x € " is accepted by M if for - x - there is a computation
(go, x 4,0,0,...,0) = ... = (gr,F x 4,0,0,...,0) for gr € F ~ L(M).

» R C N"is k-MCM-recognizable if there exists a k-MCM M such that

Va e N" (R(3) < Ruan(3))
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Multi-counter machines, concatenation, and DPR-theorem

Two-way multi-counter machine M over X7 (k-MCM):
(m7 Q: qo, F75)

>

>
>
>

v

>

Aim:

The number of the counters m > 0.
Transition function & from Q@ x (X U {i-,4}) x {0,1}" to 29*{-1.0.1}""
Configuration on an input - x - is a tuple (g, x 4,7, y1, ..., Ym)-

(g, F x i, y1, e ym) = (¢, x =, i+ A, y1 + di,y .o, Ym + dm) if and
only if (¢, A, dh, ..., dm) € 6(q, 3, [yr > 0], ..., [ym > 0]).

Input x € X* is accepted by M if for - x - there is a computation
(go,F x 4,0,0,...,0) = ... = (gr,F x 4,0,0, ...,0) for gr € F ~ L(M).

R C N" is k-MCM-recognizable if there exists a k-MCM M such that
va € N" (R(3a) & Rum)(3))

The same arguments as in the cases of k-FA and k-PFA for existential

characterization of r.e. sets.
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Multi-counter machines, concatenation, and DPR-theorem

Two-way multi-counter machine M over X7 (k-MCM):
(m7 Q: qo, F75)

>

>
>
>

v

>

Aim:

The number of the counters m > 0.
Transition function & from Q@ x (X U {F, }) x {0,1}™ to 2@* {101}

Configuration on an input - x - is a tuple (g, x 4,7, y1, ..., Ym)-

(g, F x i, y1, e ym) = (¢, x =, i+ A, y1 + di,y .o, Ym + dm) if and
only if (¢, A, dh, ..., dm) € 6(q, 3, [yr > 0], ..., [ym > 0]).

Input x € X* is accepted by M if for - x - there is a computation
(go,F x 4,0,0,...,0) = ... = (gr,F x 4,0,0, ...,0) for gr € F ~ L(M).

R C N" is k-MCM-recognizable if there exists a k-MCM M such that
va € N" (R(3a) & Rum)(3))

The same arguments as in the cases of k-FA and k-PFA for existential

characterization of r.e. sets. Introduce concatenation
t=x ey =t=x+k'®y and use bytewise multiplication instead of bitwise
to encode 4.
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The predicate A, and function U,

» Function Copy,(u,t,x).
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» Predicate Ay(u,t,x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form
x = 0000001 0000010 0000100 0000010 0000100 0000010 0000001

10 / 14




The predicate A, and function U,

» Function Copy,(u,t,x).

» Predicate Ay(u,t,x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form
x = 0000001 0000010 0000100 0000010 0000100 0000010 0000001

10 / 14




The predicate A, and function U,

» Function Copy,(u,t,x).

» Predicate Ay(u,t,x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form
x = 0000001 0000010 0000100 0000010 0000100 0000010 0000001

10 / 14




The predicate A, and function U,

» Function Copy,(u,t,x).

» Predicate Ay(u,t,x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form
x = 0000001 0000010 0000100 0000010 0000100 0000010 0000001

10 / 14




The predicate A, and function U,

» Function Copy,(u,t,x).

» Predicate Ay(u,t,x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form
x = 0000001 0000010 0000100 0000010 0000100 0000010 0000001

10 / 14




The predicate A, and function U,

» Function Copy,(u,t,x).

» Predicate Ay(u,t,x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form
x = 0000001 0000010 0000100 0000010 0000100 0000010 0000001

10 / 14




The predicate A, and function U,

» Function Copy,(u,t,x).

» Predicate Ay(u,t,x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form
x = 0000001 0000010 0000100 0000010 0000100 0000010 0000001

10 / 14




The predicate A, and function U,

» Function Copy,(u,t,x).

» Predicate Ay(u,t,x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form
x = 0000001 0000010 0000100 0000010 0000100 0000010 0000001

10 / 14




The predicate A, and function U,

» Function Copy,(u,t,x).

» Predicate Ay(u,t,x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form

x = 0000001 0000010 0000100 0000010 0000100 0000010 0000001

x = 0000001 ...0..0001000..00..abcdefg .0 ... 0000001
) = 0000000 ... 0..0010000..0

& = 0000000... 0..0001000..0

% = 0000000... 0..0000100..0

10 / 14




The predicate A, and function U,

» Function Copy,(u,t,x).

» Predicate Ay(u,t,x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form

x = 0000001 0000010 0000100 0000010 0000100 0000010 0000001

x = 0000001 ...0..0001000..00..abcdefg .0 ... 0000001
) = 0000000 ... 0..0010000..00..0cde000..0...

& = 0000000... 0..0001000..00..00cde00..0 ...

% = 0000000... 0..0000100..00..000cde0..0...

10 / 14




The predicate A, and function U,

» Function Copy,(u,t,x).

» Predicate Ay(u,t,x), which is true when u is a power of k greater
than k2, x has the same u-byte-length as t and has the form

x = 0000001 0000010 0000100 0000010 0000100 0000010 0000001
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DPR-theorem and a corollary

For every integer k > 2 a relation is k-MCM-recognizable if and only if it
is 3-definable in the structure (N;0,1,+, &k, ~x,=). Therefore, every
relation R C N" js r.e. iff it is 3-definable in this structure.

Rua (%) < auataaaéahay(cM(u, t,4,%,0,h,y) A

A(P,E,E)(ua t,q, ?, h, 7)) .
(p3,0)€Q@x (TRU{r,4}) x {0,1}™
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DPR-theorem and a corollary

Theorem 3

For every integer k > 2 a relation is k-MCM-recognizable if and only if it
is 3-definable in the structure (N;0,1,+, &k, ~x,=). Therefore, every
relation R C N" js r.e. iff it is 3-definable in this structure.
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