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Abstract. This paper is concerned with uniform mechanochemical corrosion, often observed
in practice. The linearly elastic thick-walled cylindrical long tube subjected to a longitudinal
force, constant internal and external pressure of active environments is investigated. It is known
that the rate of corrosion depends on many factors. In neutral and alkalescent environments or
when tension is less than certain threshold, mechanical stress has no influence on corrosiveness.
When this is the case, the values of stress-components at some instant are determined by Lame’s
formulae with given temporal laws of corrosive wear. In other situations, according to most ex-
perimental data, the rate of uniform corrosion is linear with stress. Furthermore, corrosion rate
is inversely as the exponent of time when closed oxide layer leads to the inhibition of corrosion.
The problem is then reduced to the ordinary differential equation in either circumferential or
longitudinal stress as the situation requires. In the general way, basic equations can be solved
by computational methods. In some cases (e.g. when corrosion is one-sided or axial force is
relatively small) analytical solutions of the equations are found. Taking into account changes of
mechanical characteristics of a pipe, the method for a durability prediction is developed. It is
obvious that failure can be caused by the several reasons. To specify the cause and the instant
of failure, different estimating functions are suggested. Calculations performed have shown
that increasing the exponent of inhibition of corrosion leads to considerable prolongation of the
service life of a tube.
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1 INTRODUCTION

Most damage terminations in metal structures are due to material degradation induced by an
operating environment. It is well known that corrosion activity may be intensified by mechani-
cal stresses. When this is the case, corrosion is said to be a mechanochemical one. The research
in this area has been conducted by numerous authors. This paper is concerned with surface
mechanochemical corrosion. A comprehensive review of models and calculations of structures
taking into account corrosive wear was given e.g. in [1, 2]. One of the first in the field is the
article [3] concerned with mechanochemical corrosion of a thin-walled cylindrical shell under
a longitudinal force. In the work [4] the lifetime of a loaded pipe has been assessed under
the assumption of the exponential dependence of corrosion rate on the mean stress. According
to [2, 5], corrosion rate depends on stress linearly and is inversely as the exponent of time.
Using this relation, the corrosive wear of a nonlinearly elastic cylinder subjected to pressure
and temperature has been simulated in book [2]. In this paper the equal-rate mechanochemical
corrosion of a linearly elastic thick-walled cylindrical tube subjected to a longitudinal force,
internal and external pressure is discussed [6, 7].

2 PROBLEM STATEMENT

The uniform surface corrosion of an elastic cylindrical tube subjected to a longitudinal force
Q, constant internal presure pr and external pressure pR is investigated. The inner and outer
tube radii at the initial instant t = 0 are denoted by r0 and R0 (r0 < R0). The action of the
ends of the cylinder is not taken into account. Changes of the tube radii are assumed to be
quasi-static. Corrosion rates at the internal (ρ = r) and external (ρ = R) boundaries are given
by the expressions [2, 5]:

vr =
dr

dt
=

d[r0 + δr]

dt
= [ar +mrσ1(r)] exp(−bt) when |σ1(r)| ≥ |σth

r |, (1)

vR = −dR

dt
= −d[R0 − δR]

dt
= [aR +mRσ1(R)] exp(−bt) when |σ1(R)| ≥ |σth

R | (2)

correspondingly. Here b, ar, aR,mr,mR are observable quantities, and ar = v0r −mrσ
th
r ,

aR = v0R −mRσ
th
R ; σth

r , σth
R are the threshold stresses (as a matter of fact, which are dif-

ferent for traction and compression); v0r , v0R are the initial corrosion rates at |σ1(r)| < |σth
r |,

|σ1(R)| < |σth
R |; σ1 is the maximum principal stress.

It is necessary to assess the life-time of the tube concerned.

3 BASIC EQUATIONS

The problem of a tube under pressure has been disscused by numerous writers including
G. Lame. The stress-components in this case are expressed, by reference to cylindrical coordi-
nates ρ, θ, z by the equations

σθθ(ρ) =
prr

2 − pRR
2

R2 − r2
+

pr − pR
R2 − r2

r2R2

ρ2
, (3)

σρρ(ρ) =
prr

2 − pRR
2

R2 − r2
− pr − pR

R2 − r2
r2R2

ρ2
,
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σw
zz(ρ) = 2ν

prr
2 − pRR

2

R2 − r2
, σpQ

zz (ρ) =
prr

2 − pRR
2 +Q/π

R2 − r2
,

σQ
zz(ρ) =

Q

π(R2 − r2)
, (4)

r ≤ ρ ≤ R, 0 ≤ θ < 2π,

where ν is Poisson’s ratio.
When the length of the cylinder is maintained constant, then there is longitudinal tension

of amount σw
zz. If a closed cylindrical vessel is under an axial force Q, internal pressure pr

and external pressure pR, then the resultant longitudinal tension is σzz = σpQ
zz . If the vessel is

unclosed, then σzz = σQ
zz.

When r = 0, pr = 0, pR = p or pr = pR = p, there is a homogeneous stress
σθθ ≡ σρρ ≡ −p in a tube irrespective of corrosion. Moreover, in neutral and alkalescent envi-
ronments or when load is less than the threshold σth, stress has no influence on corrosion rate.
In that cases the stress-components at any instant are determined by the above equations (3)–(4)
with given lows of r(t), R(t). We shall discuss other situations.

The maximum principal stress is the circumferential tension or the longitudinal one as the
case may be.

3.1 Case (a)

At first, let the maximum principal stress be the circumferential tension σ1 = σθθ. The case
σ1 = σw

zz is a particular case of this situation. The greatest tension is at the inner surface ρ = r.
So we are to observe its amount σθθ(r) = σ1. It will be convenient to rewrite the formula (3) in
the form

σ1(r) = σθθ(r) = pr
η2 + 1

η2 − 1
− 2pR

η2

η2 − 1
(5)

and

σ1(R) = pr
2

η2 − 1
− pR

η2 + 1

η2 − 1
, (6)

where

η =
R

r
=

R0 − δR
r0 + δr

. (7)

If we eliminate σ1 from the formulae (1) and (2) by using (5), (6) we obtain the relationship

Rmr + rmR = mR

(
r0 +

ar
−b

[exp(−bt)− 1]
)
+mr

(
R0 −

AR

−b
[exp(−bt)− 1]

)
(8)

where
AR = aR −mR (pr − pR). (9)
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On differentiating the expression (5) with respect to t, and using (1), (2), (7)–(9), we can
deduce the ordinary differential equation for σ1 = σθθ(r) [6]

dσ1

dt
=

√
[σ1 + pr][σ1 − pr + 2pR]

pr − pR

[
mr

√
σ1 + pr +mR

√
σ1 − pr + 2pR

]
× (10)

× [AR +mRσ1]
√
σ1 − pr + 2pR + [ar +mrσ1]

√
σ1 + pr[

mR

(
r0 −

ar
−b

)
+mr

(
R0 +

AR

−b

)]
exp(bt) +mR

ar
−b

−mr
AR

−b

.

The initial conditions to be satisfied at t = 0 are

σ1|t=0 = σ0
θθ(r) = pr

η20 + 1

η20 − 1
− 2pR

η20
η20 − 1

, η0 =
R0

r0
. (11)

3.2 Case (b)

Now let the maximum principal stress be the longitudinal tension σ1 = σQ
zz. In this case

instead of relationship (8) we may derive the formula

Rmr + rmR = mR

(
r0 +

ar
−b

[exp(−bt)− 1]
)
+mr

(
R0 −

aR
−b

[exp(−bt)− 1]
)

(12)

On combining the expression (4) and (12) we find that the following equation must hold at
every moment t

r =

[
−mR

mr

{
mR

mr

(
r0 +

ar
−b

[exp(−bt)− 1]
)
+R0 −

aR
−b

[exp(−bt)− 1]
}
+ (13)

+

({
mR

mr

(
r0 +

ar
−b

[exp(−bt)− 1]
)
+R0 −

aR
−b

[exp(−bt)− 1]
}2

+

+

[(
mR

mr

)2

− 1

]
Q

πσ1

)1/2]
1

1−
(
mR

mr

)2 .

On differentiating the expression (4) with respect to t, and using (1), (2), (4), (12), (13) we
can obtain the ordinary differential equation

dσ1

dt
= − 2πσ2

1

Q

[
1−

(
mR

mr

)2
]
exp(bt)

[(
−aR +

mR

mr

ar

)
× (14)

×
{
mR

mr

(
r0 +

ar
−b

[exp(−bt)− 1]
)
+R0 −

aR
−b

[exp(−bt)− 1]
}
+

+
(
mR

mr

(aR +mRσ1)− ar −mrσ1

) ([(
mR

mr

)2

− 1

]
Q

πσ1

+

+
{
mR

mr

(
r0 +

ar
−b

[exp(−bt)− 1]
)
+R0 −

aR
−b

[exp(−bt)− 1]
}2
)1/2]

,

where σ1 = σQ
zz.

The initial conditions are of the form

σ1|t=0 = σ0
zz =

Q/π

R2
0 − r20

. (15)
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3.3 Case (c)

The case σ1 = σpQ
zz is investigated in detail in the article [7]. There the problem is also

reduced to the ordinary differential equations.

4 SOLUTIONS OF THE BASIC EQUATIONS

4.1 Case (a)

In the case σ1 = σθθ we are to solve the equation (10). The integral of this equation, satisfy-
ing the conditions (11), is

t = −1

b
ln

{
1− b

mRr0 +mrR0

mRar −mrAR

(
exp [(mRar −mrAR)F (σ1)]− 1

)}
, (16)

where

F (σ1) = (pr − pR)

σ1∫
σ0
1

1√
[σ1 + pr][σ1 − pr + 2pR]

×

× 1

[AR +mRσ1[
√
σ1 − pr + 2pR + [ar +mrσ1]

√
σ1 + pr

×

× dσ1

mr

√
σ1 + pr +mR

√
σ1 − pr + 2pR

.

When the corrosion is one-sided the solution can be simplified. For example, if pR = p > 0,
pr = 0, ar = mr = 0 (external corrosion) the result may be written in the form

t = −1

b
ln {1− bF (σ1)} when b ̸= 0, (17)

t = F (σ1) when b = 0,

where
— if 2p > |AR/mR|

F (σ1) = − r0
mR (AR/mR − 2p)

√ σ1

σ1 + 2p
− η0 +

p√
AR/mR (AR/mR − 2p)

×

×

ln
√
AR/mR (AR/mR − 2p)σ1[σ1 + 2p] + σ1 (p− AR/mR)− pAR/mR

σ1 + AR/mR

−

− ln

√
AR/mR (AR/mR − 2p) σ0

1[σ
0
1 + 2p] + σ0

1 (p− AR/mR)− pAR/mR

σ0
1 + AR/mR

 ,

— if 2p < |AR/mR|

F (σ1) = − r0
mR (AR/mR − 2p)

√ σ1

σ1 + 2p
− η0 +

p√
AR/mR (AR/mR + 2p)

×

×

ln
√
AR/mR (AR/mR + 2p) σ1[σ1 + 2p] + σ1 (p− AR/mR)− pAR/mR

σ1 + AR/mR

−

− ln

√
AR/mR (AR/mR + 2p)σ0

1[σ
0
1 + 2p] + σ0

1 (p− AR/mR)− pAR/mR

σ0
1 + AR/mR

 .
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Here it is necessary to take the real branch of the function ln(x). It is to be noted that in that
case mR < 0 since σ1 < 0.

In the case of internal corrosion when pR = 0, pr = p > 0, aR = mR = 0, the solution is
of the form (17) where

— if p > |ar/mr|

F (σ1) =
R0

ar −mrp

(√
σ1 − p

σ1 + p
− 1

η0
+

+
p√

p2 − a2r/m
2
r

arcsin
p2 − a2r/m

2
r

σ1 + ar/mr

+
ar
mr

p
− arcsin

p2 − a2r/m
2
r

σ0
1 + ar/mr

+
ar
mr

p




— if p < |ar/mr|

F (σ1) =
R0

ar −mrp

(√
σ1 − p

σ1 + p
− 1

η0
+

+
p√

a2r/m
2
r − p2

ln
p2 + σ1ar/mr −

√
(a2r/m

2
r − p2)([σ1]2 − p2)

σ1 + ar/mr

−

− pr√
a2r/m

2
r − p2

ln
p2 + σ0

1ar/mr −
√
(a2r/m

2
r − p2)([σ0

1]
2 − p2)

σ0
1 + ar/mr

 ,

σ1 = σθθ(r).

Here it is necessary to take the real branch of the function ln(x) and the increasing branch of
the function arcsin(x).

4.2 Case (b)

When σ1 = σQ
zz we are to solve the equation (14). In the general way, the equation (14)

with the initial conditions (15) can be solved by computational methods. When the corrosion is
one-sided the solution may be written in the form (17) where

— if ar = mr = 0 (external corrosion)

F (σ1) =
1

aR


√
r20 +

Q

πσ1

−R0 +
Q

2πr0

√√√√−QaR
πr20mR

+
a2R
m2

R

×

×

ln
2

√√√√(−QaR
πr20mR

+
a2R
m2

R

)(
σ2
1 +

Qσ1

πr20

)
+

(
Q

πr20
− 2aR

mR

)
σ1 −

QaR
πr20mR

aR
mR

+ σ1

−
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− ln

2QR0

πr0(R2
0 − r20)

√√√√−QaR
πr20mR

+
a2R
m2

R

+

(
Q

πr20
− 2aR

mR

)
σ0
1 −

QaR
πr20mR

aR
mR

+ σ0
1




— if aR = mR = 0 (internal corrosion)

F (σ1) =
1

ar


√
R2

0 −
Q

πσ1

− r0 +
Q

2πR0

√√√√ Qar
πR2

0mr

+
a2r
m2

r

× (18)

×

ln
2

√√√√( Qar
πR2

0mr

+
a2r
m2

r

)(
σ2
1 −

Qσ1

πR2
0

)
−
(

Q

πR2
0

+
2ar
mr

)
σ1 +

Qar
πR2

0mr

ar
mr

+ σ1

−

− ln

2Qr0
πR0(R2

0 − r20)

√√√√ Qar
πR2

0mr

+
a2r
m2

r

−
(

Q

πR2
0

+
2ar
mr

)
σ0
1 +

Qar
πR2

0mr

ar
mr

+ σ0
1



 ,

σ1 = σQ
zz.

4.3 Case (c)

The analytical solutions of the basic equations in the case σ1 = σpQ
zz are given in [7]. The

example of the lifetime determination in the case concerned is worked out there.

5 LIFETIME ASSESSMENT

5.1 Estimating functions

Taking into account synergetic interaction of general corrosion with mechanical stresses,
lifetime of a tube may be assessed. It is obvious, that failure can be due to a variety of reasons.
To determine the reason and the instant of failure, estimating functions are suggested. Following
the L. Kachanov approach [8], different kinds of damage are represented by scalar functions
changing in the interval [0, 1] (or [−∞, 1]) and mounting to 1 in the moments of fault related

to concrete criteria. To assess the strength margin, functions of the type Πs(t) =
f(σ, ϵ)

σs

≤ 1

may be used. For the maximum stress criterion we can write Πs(t) =
σ1(t)

σs(t)
, where σs(t) is

limiting stress that may change in time. In that situation and if σs = const, the time to rupture
is evaluated by the formulae (16)–(18) with the σs for σ1.

Functions to assess the stability factor may be of the form Πcr(t) =
σzz(t)

σcr
zz(t)

+
σθθ(t)

σcr
θθ(t)

≤ 1,

where σcr
zz is buckling stress depending on the tube sizes and mechanical quantities for only
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longitudinal tension (under no pressure) and σcr
θθ is buckling stress for only circumferential ten-

sion (under no axial force) [9]. Stability of thin-walled shells under conditions of the corrosive
action have been investigated by many scientists, e.g. [10], [11].

Damage being due to different reasons, to assess damage accumulation numerous functions
can be proposed. For instance, according to Bailey’s principle, the time to destruction t∗ is

determined by the equation Πd(t
∗
d) =

t∗d∫
0

dt

τ [σ(t)]
= 1, where τ [σ] is the working life of the

material under stress σ.
Furthermore, failure may be determined apparently by accidental circumstances. For such

assessment we can introduce estimating function as being equal to probability i.e. accident risk
Πp(t) = P (x1, ...xn, t/y1, ...yn). It is to be emphasized that unreliability function depends on
other estimating functions.

5.2 Lifetime determination

The graphs of all estimating functions are plotted and compared with each other. The curve
being the first to run up to 1 determines the most probable reason of breakdown and the dura-
bility of an item t∗ = min{t∗i : Πi(t

∗
i ) = 1}.

Typical curves for the functions Πs and Πcr are showm in Fig. 1.

Figure 1: Durability prediction.

The exponent b2 of inhibition of corrosion corresponding to the curves Π2
s and Π2

cr, is greater
than the exponent b1 corresponding to the curves Π1

s and Π1
cr, so that b2 = 2b1, other conditions

being equal. In the case b = b1 the curve Π1
s is the first to rich up to 1, therefore the most proba-

ble cause of failure is fracture. So the lifetime t∗ is the moment of fracture t∗s : Π
1
s(t

∗
s) = 1. As it

can be seen in Fig. 1, increasing the exponent b of inhibition of corrosion leads to considerable
prolongation of the service life of a tube. When b is relatively high (as in the case b = b2)
corrosion can practically stop before any critical state is reached.
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6 CONCLUSIONS

• The problem of a tube under a longitudinal force and pressure may have two version. The
first version take place when the greatest stress is eqal to the circumferential tension. The
second one take place when the maximum stress is the longitudinal tension.

• For the case of mechanochemical corrosion the problem is reduced to the ordinary differ-
ential equation.

• When it is possible the analytical solutions of this equation are found.

• Various functions assessing the strength margin, stability factor, damage accumulation,
accident risk are introduced for the lifetime prediction.

• Lifetime is determined by the estimating function being the first to run up to 1.
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