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Abstract: A new route for the synthesis of quinazolin-2,4(1H,3H)-diones and thieno [2,3-d]pyrimidine-
2,4(1H,3H)-diones substituted by pyridyl/quinolinyl moiety in position 3 has been developed. The
proposed method concluded in an annulation of substituted anthranilic esters or 2-aminothiophene-3-
carboxylates with 1,1-dimethyl-3-(pyridin-2-yl) ureas. The process consists of the formation of N-aryl-
N′-pyridyl ureas followed by their cyclocondensation into the corresponding fused heterocycles. The
reaction does not require the use of metal catalysts and proceeds with moderate to good yields (up to
89%). The scope of the method is more than 30 examples, including compounds with both electron-
withdrawing and electron-donating groups, as well as diverse functionalities. At the same time,
strong electron-acceptor substituents in the pyridine ring of the starting ureas reduce the product
yield or even prevent the cyclocondensation step. The reaction can be easily scaled to gram quantities.

Keywords: quinazoline-2,4-diones; thienopyrimidine-2,4-diones; pyridines; quinolines; ureas;
anthranilic acids derivatives; annulation

1. Introduction

The quinazoline-2,4-dione fragment is part of many clinical candidates: selurampanel
(an AMPA/kainate receptor antagonist for epilepsy treatment) [1,2], elinogrel (a P2Y12
receptor antagonist for the treatment of cardiovascular atherothrombotic disease) [3–5],
zenarestat (an aldose reductase inhibitor for the management of diabetic peripheral neu-
ropathy) [6,7], ketanserin (a 5-HT2 receptor antagonist with the hypotensive action) [8,9],
carotegrast (α4 integrin antagonist for the treatment of ulcerative colitis) [10,11], senaparib
(a PARP inhibitor for the therapy of solid tumors) [12–14], and BMS-986142 (a Bruton’s
tyrosine kinase inhibitor for the treatment of rheumatoid arthritis) [15–17]. In addition,
quinazoline-2,4-dione derivatives were recognized as inhibitors of several cancer-related
enzymes [18] (including carbonic anhydrases IX and XII [19], histone deacetylase-6 [20],
VEGFR-2 [21], tankyrases [22], aminopeptidase [23]) and as modulators of autoimmune
processes [24–27]. Moreover, they are widely used to combat viral [28,29], bacterial [30–32],
parasitic [33–35], and fungal [36] infections.

Thienopyrimidine-2,4-diones is another class of medicinally important annulated di-
carbonyl heterocycles [37]. These compounds found application in the design of gonadotropin-
releasing hormone receptor antagonists [38–43] and acetyl-CoA carboxylase inhibitors [44–46].

In agriculture, both scaffolds (quinazoline-2,4-diones and thienopyrimidine-2,4-diones)
are employed for weed control [47,48].

Among the quinazoline and thienopyrimidine diones described in the literature, most
of the compounds contain a substituent in position 3. The biological significance causes
the emergence of a number of methods for the synthesis of 3-substituted quinazoline-2,4-
diones, including (i) the treatment of 2-aminobenzamides with phosgene, (ii) the reaction of
isatoic anhydride with amines or isocyanates, (iii) the condensation of 2-halobenzoates with
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monoalkylureas, (iv) Baeyer–Villiger oxidation of 4-iminoisatins, (v) the three-component
catalytic condensation of 2-haloanilines with CO2 and isocyanides (Scheme 1) [49,50]. In-
stead of phosgene, various phosgene surrogates can be used as a carbonylating agent,
including phenylisocyanate [51] or Troc-group [52]. Recently, an alternative route for the
synthesis of quinazoline-2,4-diones has been proposed, which consists of benzannulation
strategy—the heteroaromatic condensed system is created by closing not the hetero-, but
the carbocycle (Scheme 1, route vi) [53]. All these methods have a number of disadvantages;
for example, poorly available or highly toxic reagents, harsh reaction conditions, difficulty
in purifying target products, and low yields. Despite this, the synthesis of 3-substituted
quinazolin-2,4-diones is still attractive due to their potential therapeutic application. There-
fore, the development of convenient methods for the synthesis of new quinazolin-2,4-dione
derivatives is an important task for organic and medicinal chemistry.
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The access to 3-substituted thienopyrimidine-2,4-diones is another significant point
that does not have a convenient and general synthetic solution. In the literature, only
two methods for the preparation of these compounds are described. One of them is a
nucleophilic attack of an aminothiophene derivative on an isocyanate in the presence
of a catalytic amount of triethylamine in refluxing 1,4-dioxane followed by treatment of
formed intermediates with NaOR in refluxing ROH [54–56]. The other is a reaction of
aminothiophene carboxamides with 2,2,6-trimethyl-4H-1,3-dioxin-4-one in xylene followed
by formed enamino amides’ fragmentation and cyclization [57].

Another significant goal is the introduction of the pyridyl moiety into organic molecules.
In addition to being important pharmacophore themselves, this heterocycle can improve
pharmacokinetic properties such as aqueous solubility and permeability through biological
membranes. Therefore, it is of considerable interest to find convenient access to quinazolin-
2,4-diones substituted in position 3 with pyridyl moiety. Unfortunately, a general synthetic
method for obtaining a wide range of substituted 3-(pyridin-2-yl)quinazolin-2,4-diones is
unknown hitherto. One of the best synthetic approaches to these compounds is a copper-
catalyzed domino C–C bond cleavage of 2,3-unsubstituted indole/indolines/oxindoles
through oxidation followed by insertion of 2-aminopyridines [58]. However, this method
utilizes pyridine-2-amines, which are characterized by insufficient diversity and a rather
high cost of commercially available compounds.

At present, our research is focused on the development of simple methods for introduc-
ing pyridin-2-yl and quinolin-2-yl fragments into organic and organometallic compounds
based on the use of masked isocyanates—N,N-dialkyl-N′-(pyridine-2-yl)ureas [59–64]. These
compounds are easily synthesized from the corresponding pyridines [65–68]. In this paper,
we report a simple one-step protocol for the synthesis of 3-pyridyl-substituted quinazoline-
and thienopyrimidine-2,4-diones from anthranilic or 2-aminothiophene-3-carboxylic acid
esters that uses this approach. Taking into account the wide range of commercially available
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pyridines, the proposed method has potential in the design of pharmaceutically relevant
fused heterocycles.

2. Results and Discussion

Recently, we described the reaction of N-pyridyl ureas with a broad spectrum of
amines [59]. During this study, the reaction of 1,1-dimethyl-3-(4-methylpyridin-2-yl)urea
(1a) with anthranilic acid ethyl ester 2a was carried out and unexpectedly quinazoline-2,4-
dione 3a was identified as the main product (the isolated yield of 51%). The more detailed
study showed that the initially formed ethyl 2-(3-(5-methylpyridin-2-yl)ureido)benzoate
(4a) undergoes further cyclocondensation under the reaction conditions to afford quinazolin-
2,4-dione 3a (Scheme 2).
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Product 3a was characterized by high-resolution mass spectrometry and 1H and 13C
NMR spectroscopies. The structure of the compound was confirmed by single-crystal X-ray
diffraction (XRD, Figure 1 and Table S1).
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Figure 1. Molecular structure of quinazoline-2,4-dione 3a (Olex2 view).

We investigated the influence of the reaction conditions on the yield of 3a (Table 1).
We have determined that increasing the reaction time and temperature does not affect the
yield (Table 1, entries 1 and 2). We enlarged the excess of anthranilic acid ethyl ester 2a
step by step in the reaction mixture and found that 5 equiv. of the one affords a higher
yield (Table 1, entries 3–5). Then, we carried out the reaction under solvent-free conditions
and the desired product 3a was obtained in a better yield (Table 1, entry 6). A further
increase in the 2a excess reduced the yield of the product (Table 1, entry 7), so for the further
experiments we used a 5-fold excess. Finally, we tested whether anthranilic acid could be
used instead of its ester and found that the desired quinazoline-2,4-dione 3a was formed,
albeit in a lower yield (Table 1, entry 8).

After finding the optimal reaction conditions, we determined the range of possible
substrates that can participate in the process. First, we studied various substituted (pyridin-
2-yl)ureas 1 and showed that the reaction proceeds in all cases, but the reaction yields
vary. This indicates the sensitivity of the reaction to electronic effects of substituents in
the pyridine ring (Scheme 3), but the nature of this influence is ambiguous. It can be said
that electron-donating groups in positions 4 and 5 of the pyridine ring have a positive
effect on the yields of quinazoline-2,4-diones 3. The presence of two methyl groups at
positions 3 and 5 of the pyridine ring (ortho and para with respect to the nitrogen atom
of the ureide fragment entering into the cyclocondensation) provides the target product
3e with the highest yield (86%). It should be noted that quinazoline-2,4-dione 3c bearing
5-methylpyridyl moiety was obtained in a slightly lower yield (48%).
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Table 1. Optimization of the reaction conditions.

Entry Equiv. of 2a Solvent Temperature, ◦C Time, h Yield, %

1 1.2 DMF 120 24 52

2 1.2 DMF 140 24 50

3 1.5 DMF 120 20 58

4 2.0 DMF 120 20 62

5 5.0 DMF 120 20 63

6 5.0 neat 120 20 70

7 10.0 neat 120 20 59

8 * 1.5 DMF 120 20 46
* Anthranilic acid was used instead ester 2a.
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The presence of electron-withdrawing groups in the heterocyclic ring also decreased
the yield of products 3. Perhaps this is due to such substituents adversely affecting the cyclo-
condensation step. Particularly, in the case of the substrate containing a nitro-group at posi-
tion 4 of the pyridine ring, the desired quinazoline-2,4-dione was formed in only 19% yield
(according to 1H NMR data for the reaction mixture), whereas the main product was the
corresponding intermediate urea. Moreover, the presence of the electron-withdrawing
cyano-group in position 5 (para with respect to the nitrogen atom of the ureide fragment)
completely suppressed the cyclocondensation. In this case, urea 4b was isolated in 40%
yield as the main product. The prolonged heating of 4b at 120 ◦C only led to its degradation
to the 2-aminopyridine 5 and the starting anthranilic acid ethyl ester 2a (Scheme 4).
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Substituents in position 6 of the starting N–pyridylureas 1 slightly reduced the yield of
target quinazolin-2,4-diones 3 (Scheme 3). The reason for this is the steric hindrances, but
their effect is not very significant. Therefore, using ureas bearing quinoline and isoquinoline
moieties 1l–q as starting compounds, we synthesized 6 corresponding quinazolin-2,4-
diones (3l–q) in moderate to good yields (47–78%, Scheme 3).

Next, we checked the possibility of synthesizing quinazolin-2,4-diones bearing sub-
stituents in the quinazoline fragment via the developed procedure. For this goal, the
scope of functionalized anthranilic esters was investigated. Reactions were carried out
with 1.5 equiv. of esters 2b–j in DMF at 120 ◦C. We found that neither electron-donating
nor electron-withdrawing substituents prevented the reaction and the corresponding
quinazolin-2,4-diones (3r–x,z) were successfully obtained in 47–89% yields (Scheme 5).
In addition, this method allows us to obtain N1-alkylsubstituted quinazolin-2,4-diones,
however, with less yield. Particularly, the reaction between urea 1a and N-methyl an-
thranilic ester 2h provided target product 3y with 32% yield only. Presumably, such poor
yield of 3y is caused by instability of N-alkyl-N-aryl urea (the proposed intermediate) in
the reaction conditions and its side transformation into 1,3-bis(4-methylpyridin-2-yl)urea,
which was also detected in the reaction mixture. This process was described in our previous
work [59].
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To expand the reaction scope, we studied the reactivity 2-aminothiophene-3-carboxylates
(products of the Gewald reaction) in this process. It turned out that when ethyl 2-amino-4,5,6,7-
tetrahydrobenzo[b]thiophene-3-carboxylate (6a) was used as a starting amine, the reaction
stopped at the stage of the urea 7a formation and any traces of a desired thienopyrimidine-
2,4-dione were not observed in the reaction mixture (Scheme 6).
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Then, the conditions search for the implementation of the cyclocondensation was
performed. Since the occurrence of similar reactions under basic conditions is described in
the literature [50,69], we tested several bases and t-BuONa gave the best results. Having
chosen the conditions for the cyclocondensation of the intermediate urea 7, we synthesized
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thienopyrimidine-2,4-diones 8a–f in the overall yield of 35–56% according to the two-stage
one-pot procedure (Scheme 7).
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Scheme 7. Two-stage one-pot synthesis of thienopyrimidine-2,4-diones 8a–f.

Finally, to highlight the practicality of this method, the scale-up syntheses of quinazoline-
2,4-dione 3a and thienopyrimidine-2,4-dione 8a were performed (Scheme 8).
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3. Material and Methods
3.1. General

The starting N-oxides, used to obtain the N-piridyl ureas, were synthesized accord-
ing to the literature procedures [65,70–72]. All other reagents and solvents were pur-
chased and were used as is. Column chromatography was carried out with silica gel
grade 60 (0.040–0.063 mm) 230–400. NMR spectra were recorded on Bruker Avance DPX
400 (400 MHz, 101 MHz, and 376 MHz for 1H, 13C, and 19F, respectively) in DMSO–d6 or
CDCl3. Chemical shifts are reported as parts per million (δ, ppm). The 1H and 13C spectra
were calibrated using the residual signals of nondeuterated solvents as internal reference
(2.50 ppm for residual 1H and 39.50 ppm for 13C in DMSO–d6, 7.26 ppm for residual 1H
and 77.16 ppm for 13C in CDCl3). 19F NMR spectra were referenced through the solvent
lock (2H) signal according to IUPAC recommended secondary referencing method and the
manufacturer’s protocols and the chemical shifts are reported relative to CFCl3 (δ 0.0 ppm).
Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet,
m = multiplet, br = broad; coupling constants, J, are reported in Hertz (Hz). Melting points
were determined in open capillary tubes on Electrothermal IA 9300 series digital melting
point apparatus. High–resolution mass spectra (HRMS) were measured on Bruker Maxis
HRMS–ESI–qTOF (ESI ionization).

Singe crystal for X-ray studying was obtained by slow evaporation of DMSO solution
of quinazoline-2,4,-dione 3a at RT in air. X-ray diffraction data were collected via Rigaku
XtaLAB Synergy–S diffractometer using CuKα (λ = 0.154184 nm) radiation. The structure
was solved with the ShelXT [73] structure solution program using intrinsic phasing and
refined with the ShelXL [74] refinement program incorporated in the OLEX2 program
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package [75] using least squares minimization. Empirical absorption correction was applied
in the CrysAlisPro [76] program complex using spherical harmonics, implemented in
SCALE3 ABSPACK scaling algorithm. Supplementary crystallographic data for this paper
have been deposited at Cambridge Crystallographic Data Centre and can be obtained free
of charge via www.ccdc.cam.ac.uk/data_request/cif (CCDC number 2249286) (accessed on
28 March 2023).

3.2. Preparation of Starting Ureas 1a–r

Ureas 1a–d,f,i–k,r [65], 1e,g,m [59], 1l,q [61] were prepared according to the previously
reported protocols. Ureas 1h,n–p were synthesized and characterized for the first time.

Synthesis of methyl 6-(3,3-dimethylureido)picolinate 1h. A mixture of N-oxide
(1 mmol), dimethylcyanamide (1.5 mmol), and acetonitrile (2 mL, 20 mmol) was stirred at
RT for 2 min, and then methanesulfonic acid (1.5 mmol) was added dropwise over 3 min.
Then, the reaction mixture was gently heated to 60 ◦C and stirred for 3 h, cooled to RT,
diluted with a saturated aq. Na2CO3 (2 mL) and aq. NaCl solution (5 mL) and extracted
with ethyl acetate (4×15 mL). Combined organic fractions were dried over anhydrous
Na2SO4, filtered, and concentrated in a rotary evaporator. The crude product was subjected
to column chromatography on silica gel (EtOAc/hexane) to give target urea 1h in 40% yield
(90 mg) as a light-yellow powder; mp 74–75 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.30 (dd,
J = 7.7, 1.5 Hz, 1H), 7.74–7.82 (m, 2H), 7.48 (s, 1H), 3.98 (s, 3H), 3.07 (s, 6H). 13C NMR
(101 MHz, CDCl3) δ 165.5, 154.9, 153.2, 145.5, 139.0, 119.8, 117.3, 52.9, 36.6 (2C). HRMS (ESI),
m/z: [M + Na]+ calcd. for C10H13N3O3 246.0849; found 246.0849.

Synthesis of ureas 1n–p. A mixture of substituted quinoline N-oxide (1 mmol),
dimethylcyanamide (2 mmol), and acetonitrile (0.5 mL, 5 mmol) was stirred at RT for 2 min,
and then methanesulfonic acid (1.1 mmol) was added dropwise over 3 min. Then, the
reaction mixture was gently heated to 60 ◦C and stirred for 2 h, cooled, and diluted with
a saturated aq. Na2CO3 (2 mL) and distilled water (5 mL). The precipitate formed was
filtered off, washed with diethyl ether (10 mL) to give compounds 1n–p.

1,1-Dimethyl-3-(6-methylquinolin-2-yl)urea 1n. Beige powder; 47 yield (108 mg);
mp 140–141 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.27 (d, J = 9.0 Hz, 1H), 8.03 (d, J = 9.0 Hz,
1H), 7.67 (d, J = 8.6 Hz, 1H), 7.53 (s, 1H), 7.47 (d, J = 8.6 Hz, 1H), 7.41 (s, 1H), 3.11 (s, 6H),
2.51 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 155.1, 152.0, 145.2, 137.6, 134.2, 132.0, 126.7 (2C),
125.9, 114.2, 36.6 (2C), 21.4. HRMS (ESI), m/z: [M + H]+ calcd. for C13H15N3O 230.1287;
found 230.1290.

1,1-Dimethyl-3-(7-methylquinolin-2-yl)urea 1o. Beige powder; 51% yield (117 mg);
mp 101–103 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.23 (s, 1H), 8.05 (s, 1H), 7.80–7.42 (m, 3H),
7.22 (d, J = 8.2 Hz, 1H), 3.09 (s, 6H), 2.51 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 155.1,
152.7, 147.0, 140.8, 140.2, 138.0, 127.3, 126.7, 126.1, 113.3, 36.6 (2C), 22.0. HRMS (ESI), m/z:
[M + H]+ calcd. for C13H15N3O 230.1288; found 230.1290.

3-(6-Methoxyquinolin-2-yl)-1,1-dimethylurea 1p. Beige powder; 99% yield (242 mg);
mp 56–58 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.27 (d, J = 9.0 Hz, 1H), 8.03 (d, J = 9.1 Hz, 1H),
7.69 (d, J = 9.2 Hz, 1H), 7.51 (br s, 1H), 7.30 (dd, J = 9.2, 2.9 Hz, 1H), 7.06 (d, J = 2.8 Hz, 1H),
3.92 (s, 3H), 3.11 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 156.5, 155.3, 150.9, 142.3, 137.2, 128.2,
126.5, 122.1, 114.6, 105.8, 55.6, 36.6 (2C). HRMS (ESI), m/z: [M + H]+ calcd. for C13H15N3O2
246.1237; found 246.1226.

3.3. Synthesis of Quinazoline-2,4-Diones 3

General procedure A. Urea 1 (0.2 mmol) and ethyl anthranilate 2 (1 mmol) were placed
in a vial and the resulting mixture was stirred at 120 ◦C for 20 h. The reaction mixture was
cooled to RT, treated with diethyl ether (5 mL), and the precipitate was separated, then the
precipitate was washed with diethyl ether to give compounds 3a–q.

General procedure B. Urea 1 (0.2 mmol), substituted ethyl anthranilate 2 (1 mmol), and
DMF (0.1 mL) were placed in a vial and the resulting mixture was stirred at 120 ◦C for 20 h.
The reaction mixture was cooled to RT, DMF was removed by a rotary evaporator, and the
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residue was treated with diethyl ether (5 mL). The resulting precipitate was separated and
washed with diethyl ether to give compounds 3r–z.

3-(4-Methylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3a [58]. White powder; 70% yield
(35 mg); mp 266–268 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.63 (s, 1H), 8.51–8.41 (m, 1H),
7.99–7.89 (m, 1H), 7.78–7.67 (m, 1H), 7.39–7.31 (m, 2H), 7.31–7.20 (m, 2H), 2.39 (s, 3H). 13C
NMR (101 MHz, DMSO-d6) δ 162.1, 149.9, 149.7, 149.2, 148.9, 139.9, 135.5, 127.5, 125.0, 124.8,
122.8, 115.4, 114.1, 20.3. HRMS (ESI), m/z: [M + Na]+ calcd. for C14H11N3O2 276.0743;
found 276.0750.

3-(Pyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3b [58]. White powder; 57% yield (27
mg); mp 266–267 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.63 (s, 1H), 8.63–8.58 (m, 1H),
8.00 (td, J = 7.7, 1.9 Hz, 1H), 7.95 (dd, J = 8.3, 1.6 Hz, 1H), 7.76–7.70 (m, 1H), 7.54–7.48 (m,
2H), 7.28–7.22 (m, 2H). 13C NMR (101 MHz, DMSO-d6) δ 162.1, 149.9, 149.3, 149.3, 139.9,
138.7, 135.5, 127.5, 124.4, 124.1, 122.7, 115.4, 114.5. HRMS (ESI), m/z: [M + Na]+ calcd. for
C13H9N3O2 262.0587; found 262.0587.

3-(5-Methylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3c [58]. White powder; 65% yield
(33 mg); mp 230–232 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.59 (s, 1H), 8.42 (d, J = 2.3 Hz,
1H), 7.97–7.91 (m, 1H), 7.80 (dd, J = 8.1, 2.4 Hz, 1H), 7.75–7.68 (m, 1H), 7.38 (d, J = 8.0 Hz,
1H), 7.27–7.20 (m, 2H), 2.38 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 162.1, 150.0, 149.3,
146.8, 139.9, 138.9, 135.4, 133.6, 127.5, 123.6, 122.7, 115.4, 114.2, 17.5. HRMS (ESI), m/z:
[M + Na]+ calcd. for C14H11N3O2 276.0743; found 276.0745.

3-(6-Methylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3d [58]. White powder; 48% yield
(24 mg); mp 285–287 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.60 (s, 1H), 7.94 (dd, J = 8.3,
1.6 Hz, 1H), 7.87 (t, J = 7.7 Hz, 1H), 7.75–7.68 (m, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.29 (d, J =
7.8 Hz, 1H), 7.27–7.21 (m, 2H), 2.49 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 162.1, 158.1,
149.9, 148.5, 139.9, 138.8, 135.4, 127.4, 123.4, 122.7, 121.3, 115.4, 114.2, 23.6. HRMS (ESI),
m/z: [M + Na]+ calcd. for C14H11N3O2 276.0743; found 276.0747.

3-(3,5-Dimethylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3e. White powder; 86% yield
(46 mg); mp 261–263 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.66 (s, 1H), 8.24 (d, J = 1.5 Hz,
1H), 7.96 (dd, J = 8.0, 1.5 Hz, 1H), 7.77–7.70 (m, 1H), 7.69–7.64 (m, 1H), 7.31–7.23 (m, 2H),
2.35 (s, 3H), 2.08 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 161.7, 149.4, 147.0, 145.8, 140.0
(2C), 135.6, 133.9, 131.0, 127.5, 122.9, 115.5, 113.9, 17.3, 16.2. HRMS (ESI), m/z: [M + Na]+

calcd. for C15H13N3O2 290.0900; found 290.0905.
3-(4-Methoxypyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3f. White powder; 79% yield

(42 mg); mp 240–242 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.60 (s, 1H), 8.40 (d, J = 5.8 Hz,
1H), 7.94 (dd, J = 8.1, 1.6 Hz, 1H), 7.76–7.69 (m, 1H), 7.28–7.22 (m, 2H), 7.15 (d, J = 2.4 Hz,
1H), 7.09 (dd, J = 5.8, 2.5 Hz, 1H), 3.86 (s, 3H). 13C NMR (101 MHz, DMSO) δ 167.1, 162.0,
150.8, 150.1, 149.8, 139.9, 135.5, 127.5, 122.7, 115.4, 114.2, 110.5, 110.4, 55.8. HRMS (ESI),
m/z: [M + H]+ calcd. for C14H11N3O3 270.0873; found 270.0877.

3-(6-Phenylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3g. White powder; 42% yield
(26 mg); mp 279–280 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.66 (s, 1H), 8.13–8.01 (m, 4H),
7.97 (dd, J = 8.0, 1.5 Hz, 1H), 7.78–7.71 (m, 1H), 7.54–7.44 (m, 4H), 7.31–7.23 (m, 2H). 13C
NMR (101 MHz, DMSO-d6) δ 162.1, 156.3, 149.9, 149.2, 140.0, 139.8, 137.7, 135.5, 129.4,
128.8, 127.5, 126.7, 123.0, 122.8, 120.4, 115.5, 114.2. HRMS (ESI), m/z: [M + Na]+ calcd. for
C19H13N3O2 338.0900; found 338.0902.

Methyl 6-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)picolinate 3h. Light beige pow-
der; 51% yield (30 mg); mp 247–249 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.72 (s, 1H),
8.26–8.16 (m, 2H), 7.99–7.93 (m, 1H), 7.82 (dd, J = 7.5, 1.3 Hz, 1H), 7.78–7.72 (m, 1H),
7.32–7.24 (m, 2H), 3.90 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.5, 162.1, 149.8, 149.3,
147.3, 140.3, 140.0, 135.6, 128.4, 127.5, 125.2, 122.9, 115.5, 114.1, 52.6. HRMS (ESI), m/z:
[M + Na]+ calcd. for C15H11N3O4 320.0642; found 320.0638.

Methyl 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)isonicotinate 3i. Beige pow-
der; 56% yield (33 mg); mp 233–235 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.67 (s, 1H), 8.83
(dd, J = 5.0, 0.8 Hz, 1H), 8.10–8.01 (m, 1H), 7.99–7.92 (m, 2H), 7.77–7.70 (m, 1H), 7.29–7.23
(m, 2H), 3.93 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.5, 162.2, 150.6, 150.5, 149.9, 140.0,
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139.5, 135.5, 127.5, 123.7, 123.0, 122.8, 115.5, 114.2, 53.0. HRMS (ESI), m/z: [M + H]+ calcd.
for C15H11N3O4 298.0822; found 298.0836.

6-(2,4-Dioxo-1,4-dihydroquinazolin-3(2H)-yl)picolinonitrile 3j. Light beige powder;
55% yield (29 mg); mp 295–297 ◦C (dec.). 1H NMR (400 MHz, DMSO-d6) δ 11.72 (s, 1H), 8.31
(t, J = 7.8 Hz, 1H), 8.20 (d, J = 7.6 Hz, 1H), 8.01–7.90 (m, 2H), 7.79–7.72 (m, 1H), 7.32–7.22 (m,
2H). 13C NMR (101 MHz, DMSO-d6) δ 162.0, 150.4, 149.6, 141.0, 140.0, 135.7, 132.0, 129.6,
129.4, 127.5, 122.9, 116.7, 115.6, 114.0. HRMS (ESI), m/z: [M + Na]+ calcd. for C14H8N4O2
287.0539; found 287.0541.

2-(2,4-Dioxo-1,4-dihydroquinazolin-3(2H)-yl)isonicotinonitrile 3k. White powder;
30% yield (16 mg); mp 306–308 ◦C (dec.). 1H NMR (400 MHz, DMSO-d6) δ 11.77 (s, 1H),
8.90 (d, J = 5.1 Hz, 1H), 8.16–8.09 (m, 1H), 8.03 (dd, J = 5.0, 1.5 Hz, 1H), 7.96 (dd, J = 8.0,
1.5 Hz, 1H), 7.79–7.73 (m, 1H), 7.31–7.24 (m, 2H). 13C NMR (101 MHz, DMSO-d6) δ 162.0,
151.0, 150.2, 149.6, 139.9, 135.8, 127.5, 126.7, 126.2, 123.0, 121.6, 116.1, 115.6, 114.0. HRMS
(ESI), m/z: [M + Na]+ calcd. for C14H8N4O2 287.0539; found 287.0536.

3-(Quinolin-2-yl)quinazoline-2,4(1H,3H)-dione 3l. White powder; 60% yield (35 mg);
mp 256–259 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.71 (s, 1H), 8.57 (d, J = 8.5 Hz, 1H),
8.11 (d, J = 8.1 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.87–7.82 (m,
1H), 7.78–7.70 (m, 2H), 7.66 (d, J = 8.5 Hz, 1H), 7.32–7.25 (m, 2H). 13C NMR (101 MHz,
DMSO-d6) δ 162.3, 150.0, 149.0, 146.9, 140.0, 138.8, 135.5, 130.1, 128.6, 127.9, 127.6, 127.5 (2C),
122.8, 122.1, 115.5, 114.3. HRMS (ESI), m/z: [M + Na]+ calcd. for C17H11N3O2 312.0743;
found 312.0747.

3-(4-Methoxyquinolin-2-yl)quinazoline-2,4(1H,3H)-dione 3m. White powder; 78% yield
(50 mg); mp 284–285 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.69 (s, 1H), 8.21 (dd, J = 8.5, 1.5
Hz, 1H), 8.00–7.93 (m, 2H), 7.85–7.79 (m, 1H), 7.78–7.72 (m, 1H), 7.70–7.64 (m, 1H), 7.33–7.22
(m, 3H), 4.05 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 163.5, 162.1, 150.4, 149.9, 147.4, 140.0,
135.5, 130.4, 128.4, 127.4, 126.6, 122.8, 121.6, 120.4, 115.5, 114.2, 101.7, 56.6. HRMS (ESI),
m/z: [M + H]+ calcd. for C18H13N3O3 320.1030; found 320.1033.

3-(6-Methylquinolin-2-yl)quinazoline-2,4(1H,3H)-dione 3n. White powder; 66% yield
(40 mg); mp 310–311 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.69 (s, 1H), 8.45 (d, J = 8.5 Hz,
1H), 8.09–7.88 (m, 2H), 7.87 (s, 1H), 7.74 (t, J = 7.8 Hz, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.59 (d,
J = 8.5 Hz, 1H), 7.40–7.14 (m, 2H), 2.56 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 162.3, 150.0,
148.2, 145.5, 140.0, 138.0, 137.0, 135.5, 132.2, 128.3, 127.7, 127.5, 126.6, 122.8, 122.1, 115.5,
114.3, 21.2. HRMS (ESI), m/z: [M + H]+ calcd. for C18H13N3O2 304.1081; found 304.1089.

3-(7-Methylquinolin-2-yl)quinazoline-2,4(1H,3H)-dione 3o. White powder; 48% yield
(29 mg); mp 279–281 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.68 (s, 1H), 8.49 (d, J = 8.5 Hz,
1H), 7.98 (t, J = 8.5 Hz, 2H), 7.81 (s, 1H), 7.78–7.71 (m, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.34–7.22
(m, 2H), 2.56 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 162.3, 150.0, 149.0, 147.2, 140.1, 140.0,
138.4, 135.5, 129.6, 127.6, 127.5, 127.4, 125.7, 122.8, 121.2, 115.5, 114.3, 21.4. HRMS (ESI),
m/z: [M + H]+ calcd. for C18H13N3O2 304.1081; found 304.1078.

3-(6-Methoxyquinolin-2-yl)quinazoline-2,4(1H,3H)-dione 3p. White powder; 58% yield
(37 mg); mp 303–305 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.68 (s, 1H), 8.43 (d, J = 8.5 Hz,
1H), 7.97 (dd, J = 8.0, 1.5 Hz, 1H), 7.92 (d, J = 8.9 Hz, 1H), 7.79–7.71 (m, 1H), 7.58 (d, J = 8.5
Hz, 1H), 7.53–7.44 (m, 2H), 7.32–7.22 (m, 2H), 3.94 (s, 3H). 13C NMR (101 MHz, DMSO-d6)
δ 162.3, 157.9, 150.1, 146.7, 142.8, 140.0, 137.5, 135.5, 130.0, 128.9, 127.5, 122.7, 122.5, 122.3,
115.5, 114.3, 105.8, 55.6. HRMS (ESI), m/z: [M + H]+ calcd. for C18H13N3O3 320.1030;
found 320.1029.

3-(Isoquinolin-1-yl)quinazoline-2,4(1H,3H)-dione 3q. Light beige powder; 47% yield
(27 mg); mp 269–271 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.80 (s, 1H), 8.53 (d, J = 5.6 Hz,
1H), 8.12 (d, J = 8.3 Hz, 1H), 8.03 (s, 1H), 8.02–7.99 (m, 1H), 7.97 (dd, J = 7.9, 1.5 Hz,
1H), 7.88–7.83 (m, 1H), 7.81–7.75 (m, 1H), 7.69–7.64 (m, 1H), 7.35–7.27 (m, 2H). 13C NMR
(101 MHz, DMSO-d6) δ 162.4, 149.9, 148.6, 141.6, 140.3, 137.4, 135.7, 131.0, 128.7, 127.5, 127.0,
125.7, 124.5, 122.9, 122.3, 115.7, 114.1. HRMS (ESI), m/z: [M + Na]+ calcd. for C17H11N3O2
312.0743; found 312.0746.
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6-Methyl-3-(4-methylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3r. White powder;
77% yield (41 mg); mp 304–305 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.53 (s, 1H), 8.44 (dd,
J = 4.9, 0.8 Hz, 1H), 7.79–7.70 (m, 1H), 7.55 (dd, J = 8.4, 2.1 Hz, 1H), 7.37–7.28 (m, 2H), 7.16
(d, J = 8.2 Hz, 1H), 2.39 (s, 3H), 2.35 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 162.4, 149.8,
149.6, 149.3, 148.9, 137.7, 136.5, 132.0, 126.8, 124.9, 124.8, 115.4, 113.9, 20.3, 20.2. HRMS (ESI),
m/z: [M + H]+ calcd. for C15H13N3O2 268.1081; found 268.1082.

8-Methyl-3-(4-methylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3s. White powder;
74% yield (40 mg); mp 268–270 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 10.85 (s, 1H), 8.51–8.41
(m, 1H), 7.82 (dd, J = 7.8, 0.8 Hz, 1H), 7.57 (d, J = 7.3 Hz, 1H), 7.40–7.29 (m, 2H), 7.16 (t,
J = 7.6 Hz, 1H), 2.41 (s, 3H), 2.40 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 162.2, 150.1,
149.7, 149.3, 148.9, 138.3, 136.5, 125.3, 125.0, 124.7, 124.3, 122.5, 114.3, 20.3, 17.2. HRMS (ESI),
m/z: [M + H]+ calcd. for C15H13N3O2 268.1081; found 268.1083.

1-Methyl-3-(4-methylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3t. White powder;
32% yield (17 mg); mp 224–225 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 8.45 (d, J = 5.1 Hz, 1H),
8.06 (dd, J = 7.8, 1.6 Hz, 1H), 7.89–7.82 (m, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.39–7.30 (m, 3H),
3.54 (s, 3H), 2.40 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 161.2, 150.1, 149.7, 149.6, 148.9,
140.8, 135.8, 127.8, 125.0, 124.6, 122.9, 115.2, 114.9, 30.4, 20.3. HRMS (ESI), m/z: [M + H]+

calcd. for C15H13N3O2 268.1081; found 268.1087.
6,7-Dimethoxy-3-(4-methoxypyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3u. White

powder; 74% yield (49 mg); mp 238–240 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.39 (s, 1H),
8.39 (d, J = 5.7 Hz, 1H), 7.28 (s, 1H), 7.14–7.05 (m, 2H), 6.74 (s, 1H), 3.87 (s, 3H), 3.86 (s, 3H),
3.80 (s, 3H). 13C NMR (126 MHz, DMSO) δ 167.1, 161.5, 155.3, 151.0, 150.1, 149.9, 145.3,
135.7, 110.4 (2C), 107.5, 106.0, 97.7, 55.9, 55.8 (2C). HRMS (ESI), m/z: [M + H]+ calcd. for
C16H15N3O5 330.1084; found 330.1090.

6-Fluoro-3-(4-methylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3v. White powder;
89% yield (48 mg); mp 293–294 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.70 (s, 1H), 8.49–8.41
(m, 1H), 7.70–7.59 (m, 2H), 7.34 (d, J = 3.9 Hz, 2H), 7.32–7.26 (m, 1H), 2.39 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 161.8 (d, J = 3.1 Hz), 157.9 (d, J = 240.4 Hz), 150.2, 150.1, 149.5,
149.4, 137.1 (d, J = 1.3 Hz), 125.5, 125.2, 124.0 (d, J = 24.4 Hz), 118.3 (d, J = 7.9 Hz), 115.7 (d,
J = 8.0 Hz), 112.9 (d, J = 24.0 Hz), 20.8. 19F NMR (376 MHz, DMSO-d6) δ –119.63. HRMS
(ESI), m/z: [M + H]+ calcd. for C14H10FN3O2 272.0830; found 272.0829.

6-Chloro-3-(4-methylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3w. White powder;
66% yield (38 mg); mp 301–302 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.77 (s, 1H), 8.45 (dd,
J = 4.8, 1.0 Hz, 1H), 7.87 (d, J = 2.5 Hz, 1H), 7.78 (dd, J = 8.7, 2.5 Hz, 1H), 7.37–7.31 (m, 2H),
7.27 (d, J = 8.7 Hz, 1H), 2.39 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 161.1, 149.7, 149.6,
149.0, 148.9, 138.8, 135.4, 126.7, 126.3, 125.1, 124.7, 117.7, 115.6, 20.3. HRMS (ESI), m/z:
[M + Na]+ calcd. for C14H10ClN3O2 310.0354; found 310.0356.

7-Chloro-3-(4-methylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3x. White powder;
47% yield (27 mg); mp 254–255 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.74 (s, 1H), 8.54–8.38
(m, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.38–7.31 (m, 2H), 7.29 (dd, J = 8.4, 2.0 Hz, 1H), 7.26 (d,
J = 1.9 Hz, 1H), 2.39 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 161.4, 149.8, 149.7, 148.9,
141.0, 139.8, 129.6, 125.1, 124.7, 123.0, 114.8, 113.2, 20.3. HRMS (ESI), m/z: [M + Na]+ calcd.
for C14H10ClN3O2 310.0354; found 310.0351.

6-Bromo-3-(4-methylpyridin-2-yl)quinazoline-2,4(1H,3H)-dione 3y. Light beige pow-
der; 62% yield (41 mg); mp 293–295 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 11.77 (s, 1H), 8.45
(dd, J = 4.9, 0.9 Hz, 1H), 8.00 (d, J = 2.3 Hz, 1H), 7.89 (dd, J = 8.7, 2.3 Hz, 1H), 7.38–7.31 (m,
2H), 7.21 (d, J = 8.7 Hz, 1H), 2.39 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 160.5, 149.2,
149.1, 148.5 (2C), 138.7, 137.5, 128.8, 124.6, 124.2, 117.4, 115.5, 113.7, 19.8. HRMS (ESI), m/z:
[M + Na]+ calcd. for C14H10BrN3O2 353.9849; found 353.9843.

Methyl 3-(4-methylpyridin-2-yl)-2,4-dioxo-1,2,3,4-tetrahydroquinazoline- 7-carboxylate
3z. White powder; 65% yield (41 mg); mp 266–267 ◦C (dec.). 1H NMR (400 MHz, DMSO-d6)
δ 11.82 (s, 1H), 8.45 (d, J = 5.4 Hz, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 1.5 Hz, 1H), 7.75
(dd, J = 8.2, 1.6 Hz, 1H), 7.39–7.30 (m, 2H), 3.92 (s, 3H), 2.40 (s, 3H). 13C NMR (101 MHz,
DMSO-d6) δ 165.1, 161.5, 149.8, 149.8, 149.0 (2C), 140.0, 135.3, 128.2, 125.1, 124.7, 122.5,
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117.4, 116.3, 52.8, 20.3. HRMS (ESI), m/z: [M + H]+ calcd. for C16H13BrN3O4 312.0979;
found 312.0972.

Ethyl 2-(3-(5-cyanopyridin-2-yl)ureido)benzoate 4b. Compound 4b was obtained
according to the general procedure A from urea 1r (0.15 mmol) and ethyl anthranilate
(0.75 mmol). Beige powder; 40% yield (19 mg); mp 193–195 ◦C. 1H NMR (400 MHz,
DMSO-d6) δ 11.11 (s, 1H), 10.69 (s, 1H), 8.73 (d, J = 2.3 Hz, 1H), 8.29–8.22 (m, 1H), 8.17
(dd, J = 8.8, 2.3 Hz, 1H), 7.93 (dd, J = 7.9, 1.7 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.63–7.55
(m, 1H), 7.20–7.13 (m, 1H), 4.35 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 166.4, 155.2, 151.8, 151.6, 141.5, 139.6, 133.5, 130.5, 122.6, 121.9, 118.1,
117.4, 111.8, 101.7, 61.0, 14.0. HRMS (ESI), m/z: [M + H]+ calcd. for C16H14N4O3 311.1139;
found 311.1149.

3.4. Synthesis of Thienopyrimidine-2,4-Diones 8

General procedure C. Urea 1 (0.2 mmol), amino ester 6 (0.3 mmol), and DMF (0.1 mL)
were placed in a vial; the resulting mixture was stirred at 120 ◦C for 20 h. Then, the reaction
mixture was cooled to RT and sodium tert-butoxide (0.2 mmol) and DMF (0.6 mL) were
added. The reaction mixture was stirred for another 2 h at 120 ◦C. After completion of the
reaction, the reaction mixture was cooled to RT, and DMF was removed by a rotary evapo-
rator. The residue was purified by column chromatography (gradient from n–hexane/ethyl
acetate to hexane/ethyl acetate/methanol) to give compounds 8a–f.

3-(4-Methylpyridin-2-yl)-5,6,7,8-tetrahydrobenzo [4,5]thieno [2,3-d]pyrimidine-2,4
(1H,3H)-dione 8a. White powder; 54% yield (34 mg); mp 281–282 ◦C. 1H NMR (400 MHz,
DMSO-d6) δ 12.24 (br s, 1H), 8.41 (d, J = 5.0 Hz, 1H), 7.29 (d, J = 5.0 Hz, 1H), 7.23 (s, 1H),
2.67 (dt, J = 29.1, 6.4 Hz, 4H), 2.37 (s, 3H), 1.82–1.65 (m, 4H). 13C NMR (101 MHz, DMSO-d6)
δ 158.8, 150.5, 150.2, 149.5, 149.5, 148.9, 131.0, 125.7, 124.9, 124.8, 112.4, 24.9, 23.9, 22.7, 21.6,
20.3. HRMS (ESI), m/z: [M + H]+ calcd. for C16H15N3O2S 314.0958; found 314.0960.

3-(Pyridin-2-yl)-5,6,7,8-tetrahydrobenzo [4,5]thieno [2,3-d]pyrimidine-2,4(1H,3H)-dione
8b. White powder; 50% yield (30 mg); mp 276–278 ◦C. 1H NMR (400 MHz, DMSO-d6) δ
12.26 (s, 1H), 8.58 (dd, J = 5.0, 1.9 Hz, 1H), 7.97 (td, J = 7.7, 2.0 Hz, 1H), 7.51–7.41 (m, 2H),
2.76–2.61 (m, 4H), 1.83–1.67 (m, 4H). 13C NMR (101 MHz, DMSO-d6) δ 158.7, 150.1 (2C),
149.4, 149.3, 138.6, 131.1, 125.9, 124.5, 123.9, 112.5, 24.9, 23.9, 22.7, 21.6. HRMS (ESI), m/z:
[M + H]+ calcd. for C15H13N3O2S 300.0801; found 300.0804.

3-(4-Methoxypyridin-2-yl)-5,6,7,8-tetrahydrobenzo [4,5]thieno [2,3-d]pyrimidine-
2,4(1H,3H)-dione 8c. White powder; 45% yield (29 mg); mp 257–260 ◦C.1H NMR (400 MHz,
DMSO-d6) δ 12.23 (s, 1H), 8.40–8.34 (m, 1H), 7.10–7.01 (m, 2H), 3.85 (s, 3H), 2.68 (dt, J = 29.4,
6.3 Hz, 4H), 1.83–1.66 (m, 4H). 13C NMR (101 MHz, DMSO-d6) δ 167.0, 158.6, 150.9, 150.1,
150.1, 150.0, 131.0, 125.8, 112.5, 110.4, 110.3, 55.7, 24.9, 23.8, 22.7, 21.6. HRMS (ESI), m/z:
[M + H]+ calcd. for C16H15N3O3S 330.0907; found 330.0910.

3-(6-Phenylpyridin-2-yl)-5,6,7,8-tetrahydrobenzo [4,5]thieno [2,3-d]pyrimidine-2,4
(1H,3H)-dione 8d. Light yellow powder; 48% yield (36 mg); mp 293–294 ◦C. 1H NMR
(400 MHz, DMSO-d6) δ 12.30 (s, 1H), 8.13–7.93 (m, 4H), 7.56–7.38 (m, 4H), 2.70 (dt, J = 29.8,
6.3 Hz, 4H), 1.88–1.64 (m, 4H). 13C NMR (101 MHz, DMSO-d6) δ 158.7, 156.3, 150.1, 150.1,
149.3, 139.7, 137.7, 131.0, 129.4, 128.8, 126.6, 125.9, 123.1, 120.2, 112.6, 24.9, 23.9, 22.7, 21.6.
HRMS (ESI), m/z: [M + Na]+ calcd. for C21H17N3O3S 398.0934; found 398.0939.

3-(Quinolin-2-yl)-5,6,7,8-tetrahydrobenzo [4,5]thieno [2,3-d]pyrimidine-2,4(1H,3H)-
dione 8e. Light yellow powder; 56% yield (39 mg); mp 308–310 ◦C (dec.). 1H NMR
(400 MHz, DMSO-d6) δ 12.35 (s, 1H), 8.53 (d, J = 8.5 Hz, 1H), 8.09 (dd, J = 8.4, 0.8 Hz,
1H), 8.01 (dd, J = 8.4, 1.0 Hz, 1H), 7.87–7.80 (m, 1H), 7.74–7.68 (m, 1H), 7.58 (d, J = 8.5 Hz,
1H), 2.70 (dt, J = 26.9, 6.3 Hz, 4H), 1.84–1.66 (m, 4H). 13C NMR (101 MHz, DMSO-d6) δ
158.9, 150.3, 150.2, 149.2, 147.0, 138.7, 131.1, 130.0, 128.6, 127.9, 127.6, 127.4, 125.9, 122.3,
112.6, 24.9, 23.9, 22.7, 21.6. HRMS (ESI), m/z: [M + H]+ calcd. for C19H15N3O3S 350.0958;
found 350.0957.

3-(4-Methylpyridin-2-yl)-1,5,6,7-tetrahydro-2H-cyclopenta [4,5]thieno [2,3-d]pyrimidine-
2,4(3H)-dione 8f. Brown powder; 35% yield (21 mg); mp 103–104 ◦C. 1H NMR (400 MHz,
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DMSO-d6) δ 12.31 (s, 1H), 8.42 (d, J = 5.0 Hz, 1H), 7.31 (d, J = 5.2 Hz, 1H), 7.27 (s, 1H),
2.86–2.75 (m, 4H), 2.41–2.32 (m, 5H). 13C NMR (101 MHz, DMSO-d6) δ 158.3, 154.6, 150.2,
149.6, 149.3, 148.9, 140.1, 130.7, 124.9, 109.8, 28.4, 28.3, 27.5, 20.3. HRMS (ESI), m/z:
[M + Na]+ calcd. for C15H13N3O2S 322.0621; found 322.0618.

Preparation of ethyl 2-(3-(4-methylpyridin-2-yl)ureido)-4,5,6,7-tetrahydrobenzo[b]
thiophene-3-carboxylate 7a. Urea 1 (0.2 mmol), ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]
thiophene-3-carboxylate 6a (0.3 mmol) and DMF (0.1 mL) were placed in a vial, the result-
ing mixture was stirred at 120 ◦C for 20 h. After completion of the reaction, the reaction
mixture was cooled to RT, DMF was removed by a rotary evaporator. The residue was
washed with diethyl ether to give compound 7a in 56% yield (40 mg) as a white powder;
mp 237–238 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 13.21 (br s, 1H), 10.27 (s, 1H), 8.17 (d,
J = 5.2 Hz, 1H), 7.02 (s, 1H), 6.90 (dd, J = 5.2, 1.6 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.76–2.66
(m, 2H), 2.64–2.54 (m, 2H), 2.29 (s, 3H), 1.77–1.67 (m, 4H), 1.30 (t, J = 7.1 Hz, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 164.2, 152.3, 151.5, 149.6, 147.4, 146.0, 130.4, 125.2, 119.1, 111.9, 110.6,
59.7, 26.0, 23.7, 22.5, 22.4, 20.8, 14.3. HRMS (ESI), m/z: [M + H]+ calcd. for C18H21N3O3S
360.1376; found 360.1374.

3.5. Gram-Scale Synthesis of 3a and 8a

3a. Urea 1a (5.6 mmol, 1 g) and ethyl anthranilate 2a (27.9 mmol, 4.61 g) were placed in
a 100 mL round-bottom flask and the resulting mixture was stirred at 120 ◦C for 20 h. The
reaction mixture was cooled to RT, treated with diethyl ether (20 mL), and the precipitate
was separated. Then, the precipitate was washed with diethyl ether and dried at 50 ◦C in
air to give quinazoline-2,4-dione 3a in 71% (1.01 g) yield.

8a. Urea 1a (5.6 mmol, 1 g), ester 6a (8.4 mmol, 1.89 g), and DMF (4 mL) were placed
in a 100 mL round-bottom flask, the resulting mixture was stirred at 120 ◦C for 20 h. Then,
the reaction mixture was cooled to RT and sodium tert-butoxide (5.6 mmol, 0.54 g) and
DMF (17 mL) were added. The reaction mixture was stirred for another 2 h at 120 ◦C. After
completion of the reaction, the reaction mixture was cooled to RT, and DMF was removed
by a rotary evaporator. The residue was dissolved in isopropyl alcohol (150 mL) and the
resultant solution was diluted with water (350 mL). The precipitate formed was filtered off
and dried at 50 ◦C in air to give thienopyrimidine-2,4-dione 8a in 61% (1.06 g) yield.

4. Conclusions

Thus, we developed a new route to 3-pyridyl-substituted quinazolin-2,4(1H,3H)-
diones and thieno [2,3-d]pyrimidine-2,4(1H,3H)-diones via the annulation of anthranilic
esters with N-pyridyl ureas, which act as masked isocyanates. The process consists of
the formation of N-aryl-N′-pyridyl ureas followed by their cyclocondensation into the
corresponding diones. The reaction does not require the use of metal catalysts and proceeds
with moderate to good yields. The synthetic route we propose will successfully complement
the method developed by Ravi et al. [58] for the preparation of quinazolin-2,4(1H,3H)-
diones based on aminopyridines in cases where the corresponding aminopyridines or
quinolines are not commercially available.

Although the nature of the substituent in the pyridine ring has little effect on the
product yield, strong electron-withdrawing functionalities such as cyano-group decrease
the yield of the desired products or even prevent the cyclocondensation step. The proposed
method is characterized by uncomplicated workup and easy gram-scalability.
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