

XIII Конференция молодых ученых по общей и неорганической химии: Тезисы докладов конференции, Москва, 2023. – 366 с.

ISBN 978-5-6048945-4-5

Настоящие материалы Конференции созданы на основании информации, предоставленной участниками и одобренные организационным комитетом. Материалы тезисов публикуются в авторской версии. Организаторы не несут ответственности за неточности и упущения в названиях и адресах, представленных в данном сборнике. XIII Конференция молодых ученых по общей и неорганической химии посвящена новым работам в области общей и неорганической химии:

- синтезу, изучению и методам приминения новых неорганических веществ и материалов;
- химическому строению и реакционной способности координационных соединений;
- теоретическим основам химической технологии и разработки эффективных химико-технологических процессов;
- методам и средствам химического анализа и исследования веществ и материалов.

ISBN 978-5-6048945-4-5

Издательство: ООО «МЕСОЛ» ,107564, Россия, Москва, ул. Краснобогатырская, д. 38, стр.2, этаж 2 комн 16

@ Все права на издание принадлежат ООО «МЕСОЛ»

Минобрнауки России

Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук

Научно-образовательный центр по общей и неорганической химии Научный совет РАН по неорганической химии Совет молодых ученых ИОНХ РАН

ИОНХ РАН

XIII КОНФЕРЕНЦИЯ МОЛОДЫХ УЧЕНЫХ ПО ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ

ТЕЗИСЫ ДОКЛАДОВ

МОДИФИЦИРОВАННЫЕ НАНОЧАСТИЦЫ НА ОСНОВЕ CR-НАР КАК ПЕРСПЕКТИВНЫЙ КОМПОНЕНТ МУЛЬТИФУНКЦИОНАЛЬНОЙ КОСМЕТИЧЕСКОЙ ФОРМУЛЫ

Колоколова Н.Д., Бобрышева Н.П., Осмоловский М.Г., Вознесенский М.А., Осмоловская О.М.

Институт химии СПбГУ nd.kolokolova@yandex.ru

Многочисленные исследования дерматологов указывают на то, что нарушение микробиоты кожи влияет на здоровье человека. При этом использование многоступенчатого ухода, включающего большое количество средств, содержащих консерванты, приводит к ее разрушению. Современным подходом к решению этой проблемы является разработка мультифункциональных средств. В качестве основного компонента таких средств мы предлагаем использовать гидроксиапатит. Он нашел широкое применение в составе филлеров, оказывающих антивозрастной эффект, а путем допирования можно придавать материалу различные оттенки и использовать его как неорганический пигмент.

Ранее нами были успешно синтезированы наностержни зеленой цветовой палитры на основе Cr-HAp с минимальной длиной около 200 нм. Для уменьшения размеров частиц и усиления уходового эффекта в данной работе синтез Cr-HAp проводился в присутствии оксиэтилидендифосфоновой (ОЭДФ), янтарной и винной кислот. Помимо непосредственного изменения размеров наночастиц, приводящего к изменению оптических характеристик материала, модификаторы способны изменять состав поверхности, что облегчает включение наночастиц в косметическую композицию.

Образцы были получены методом осаждения с последующей гидротермальной обработкой. Все образцы были комплексно охарактеризованы методами РФА, БЭТ, ПЭМ, ИК-спектроскопии; методом АЭС-ИСП определяли количество допанта; путем регистрации спектров поглощения и отражения изучали влияние допирования на цвет наночастиц. Получены фазово-чистые наностержни, имеющие размеры не более 16 на 60 нм для винной и янтарной кислот и 30 на 150 нм для ОЭДФ. Установлено, что гидротермальная обработка свежеприготовленных наночастиц приводит к инициированию процесса ориентационного присоединения, который протекает с различной интенсивностью в зависимости от типа модификатора. Успешность допирования подтверждена изменением параметров кристаллической решетки, количество допанта в продукте синтеза соответствует заложенному и составляет около 10 мол.%, его степень окисления в ходе синтеза не меняется.

Возможность использования наночастиц как пигментов была оценена путем анализа спектров поглощения и отражения. Показано, что они полностью соотносятся друг с другом, в частности в области 500-600 нм наблюдается минимум на спектре поглощения и максимум на спектре отражения, что обуславливает цвет образцов. Запрещенная зона варьируется в диапазоне 3,57-3,83 эВ. Выраженный пик спектров поглощения в области 200-300 нм указывает на возможность блокирования в интервале 320-280 нм отвечающему UVB-излучению. Цветовая палитра образцов представляет собой светло-зеленую гамму различных оттенков.

Научные исследования проводились на оборудовании Научного парка СПбГУ: «РДМИ», «МАСВ», «ОЛМИВ», «ФМИП», РЦ «Нанотехнологии».

<u>АВ</u>ТОРСКИЙ УКАЗАТЕЛЬ

Караваев И.А.	301	Кубасов А.С.	45	Москаленко А.К.	101
Карасева А.А.	36	Курлыкин А.А.	95	Муравьев В.А.	102
Качина Е.В.	37	Курникова А.А.	343	Мурашко А.М.	50
Кашевский С.В.	92	Кусов В.Е.	204	Муртазоев А.Ф.	212
Кендин М.П.	194	Кучеряев К.А.	344	Мыкина Е.А.	270
Киреев В.Е.	195	Ларионов А.И.	136	Мышлецов И.И.	310
Киселева М.А.	196	Левин Д.О.	96	Навасардян М.А.	213
Киселевич А.Г.	197	Левкевич Е.А.	137	Нагорнов И.А.	51
Кисель А.В.	329	Лобович Д.В.	345	Назаров Д.И.	214
Клетнов Д.А.	258	Ломакин М.С.	46	Наумов А.С.	52
Климашевская А.В.	260	Лукошкова А.А.	263	Нелюбин А.В.	215
Климова И.А.	198	Лупачев Е.В.	331	Неумолотов Н.К.	216
Клюкин И.Н.	199	Мадраимов М.Ш.	97	Никитина Ю.О.	333
Кобрин М.Р.	38	Майоров Н.С.	205	Никифоров И.В.	141
Кожевина А.В.	39	Макаревич Ю.Е.	206	Никифорова П.К.	103
Кожевникова А.В.	330	Максимова А.Д.	308	Новиков Д.В.	311
Козлова А.А.	302	Максумова А.М.	47	Новиков С.С.	312
Козлова Л.О.	40	Манелис Л.С.	264	Новикова В.А.	218
Козлова Т.О.	303, 304	Манин А.Д.	138	Новикова В.М.	217
Кокурина Т.В.	261	Матвеева Д.С.	207	Новоселова К.Н.	104
Колбунова А.В.	200	Матюхина А.К.	208	Ныхрикова Е.В.	271
Колоколов Д.С.	93	Маханёва А.Ю.	209	Оболкина Т.О.	334
Колоколова Н.Д.	133	Медведева Е.Д.	98	Овчаренко И.В.	313
Кондаков И.В.	305	Мельников М.Д.	139	Овчинникова А.А.	272
Кондратьева О.Н.	134	Меркулов О.В.	48	Огаркова Н.К.	314
Корнакова З.Э.	41	Мещерякова Е.А.	265	Осипов Н.Г.	219
Корнеева Е.Ю.	201	Милевский Н.А.	332	Павлова Е.А.	273
Короткова Н.А	42	Милых А.С.	266	Панина М.В.	274
Косарева Е.О.	135	Минакова П.В.	99	Паршукова К.Н.	105
Котельников Н.Л.	43	Михайлов Н.М.	267	Пикулин И.С.	220
КотцовС.Ю.	44	Мишенина А.А.	210	Плешаков Г. А.	53
Коченкова Ю.А.	306	Мишуринский С.А.	268	Плотникова А.О.	54
Кочнева Е.М.	94	Можаров Я.М.	100	Плукчи К.Р.	55
Кошелев А.В.	307	Мозгова В.А.	211	Погиба А.А.	106
Кошенскова К.А.	202	Мокрушин А.С.	49	Подоляко И.А.	275
Кречуняк Н.В.	262	Мосалёв П.О.	309	Полковниченко А.В.	335
Крот А.Д.	203	Москалев А.В.	140	Полякова С.К.	276
Крохичева П.А.	355	Москалев К.Д.	269	Пономарёва П.А.	56

