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Abstract—Within the series of singular spectrum analysis (SSA) methods, there exist several versions
of forecasting algorithms for signals corrupted by additive noise. In this paper, a technique is proposed
to estimate the asymptotic accuracy of the recurrent version of such forecasting when the length of a
series tends to infinity. Most elements of this construction can be reduced to already studied and pub-
lished results, although some of them are hard to implement in specific situations. The article brings
together all these elements and augments and comments on them. Several examples of determining
estimates of accuracy for a recurrent forecast are given for specific signals and noises. The computa-
tional experiments carried out confirm the theoretical results.
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1. INTRODUCTION
Several variants of application of singular spectrum analysis (SSA) to forecast signals corrupted by

additive noise were considered in ([1], Ch. 2) (see also [2]). Among them, the main one is the so-called
recurrent forecast. However, by all accounts, there are still no theoretical results concerning the forecast
accuracy for large noise (not in the linearized formulation of the problem). In the present study, we make
an attempt to fill this gap.

Without going into details (a full description and discussion can be found in Section 3 of this paper),
we note that a recurrent forecast is carried out by a specially constructed linear recurrent formula applied
to a signal reconstructed by the SSA method. In this sense, this method is similar to a usual linear forecast
(see, for example, [3]). The differences, however, are significant, and the most important of them is that
a linear forecast is applied to the entire observed series, whereas a recurrent forecast is applied to its
“noisy” additive component (signal). That is why it is required to additionally estimate (“reconstruct”)
this signal, which is done by the SSA method. In addition, the coefficients of the recurrent formula in the
forecasting under consideration are expressed in terms of the projection onto the signal subspace (dis-
turbed by noise), which makes it possible to apply the theory of [4] to their estimation.

In this paper, we propose a method for estimating the accuracy of a recurrent forecast when the length
of the series tends to infinity. We note that almost all components of this method are already known and
published, although some of them are difficult to apply in specific situations. Let us describe these com-
ponents.

First, these are the verticality coefficients introduced in ([1], § 5.2); they are described and illustrated
in detail in Section 2 of this paper. The examples given show that the study of the asymptotic behavior of
the verticality coefficients as the series length tends to infinity is quite realistic.

The second component is the sine of the largest principal angle between perturbed and unperturbed linear
subspaces of the signal (see [4] for a detailed description and the corresponding mathematical technique).
Numerous examples in [4] convince that the asymptotic behavior of this characteristic can also be studied
for a wide class of signals and noise.

The last component is the accuracy of signal reconstruction by SSA. Although a general approach to esti-
mating this accuracy was published in [4], the procedure is generally quite laborious, and at present there
are only a few examples of its application.

In this paper, we bring together all these components and supplement and comment on them.
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36 NEKRUTKIN
Section 2 of the paper is devoted to the definition and asymptotic properties of the verticality coeffi-
cients of signals governed by linear recurrent formulas (LRFs). In Section 3 we discuss the definition and
properties of a recurrent forecast, as well as a method for estimating its accuracy.

In Subsection 3.4 we give examples of the application of this estimate, and, in the Appendix, the results
of computational experiments illustrating the theoretical constructions.

The content and style of these examples are determined by the variants of signals and noise studied in
previous works. The signals include series that have a simple structure from the viewpoint of SSA but, at
the same time, are often encountered in practice as models of trends and periodic components.

We note that the approach to recurrent forecasting in this paper is somewhat different from that pro-
posed in ([1], Ch. 2). Namely, here the so-called approximate LRF (see Subsection 3.1) is constructed
using a window of length M, which may differ from the window length L used to obtain reconstruction
errors. A similar approach was used in computational experiments in [5]. At the same time, in ([1], Ch. 2),
the authors considered only the case of L = M, which is more convenient for practical implementation.

However, for L ~ αN and M ~ βN with α, β ∈ (0, 1), the asymptotic result for forecast errors at the
series length N → ∞ will be largely similar.

2. VERTICALITY COEFFICIENTS AND LRF
2.1. Definition and Examples

Let  be a linear subspace of  of dimension d = dim . We denote by Π the orthogonal projector
onto  and set  = (0, 0, …, 0, 1)T ∈ .

We call the number ϑ =  the verticality coefficient of  and note that ϑ is the cosine of the angle
between the vector  and the linear space . If ϑ = 1 (in other words, if  ∈ ), then  is said to be
vertical.

Let P1, …, Pd be an orthonormal basis in ; then πi = (Pi, ) is the last coordinate Pi and

(1)

The series {yn, n ≥ 1} is said to be governed by a LRF with the coefficient vector R = ( , …, c1)T if the
following relation holds for n ≥ K:

Lemma 1. We suppose that the series F = ( f1, …, fn, …) is governed by the LRF:

(2)

For 1 ≤  ≤ k, we set  = ( , …, fk)T and denote by  a linear space with the generators { ,

n ≥ 1}. Then  is not vertical.
Proof. We set R(M) = ( , …, b1)T. Then (2) takes the form

i.e., ZM is orthogonal to . Since (ZM, ) = 1, it follows that  ∉ .
Now, we suppose that the series F = ( f1, …, fn, …) is governed by a minimal LRF of order d,

(3)

and the term minimal means that there does not exist a LRF of order d ′ < d that governs the series F.
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Taking M ≥ d, as before, we denote by  the linear vector space spanned by { , n ≥ 1}.

Moreover, let  be the orthogonal projector . Then dim  = d and ϑM =

 < 1.

We consider P1, …, Pd, which is a basis in , and denote X = [P1 : … : Pd]. Then it is easy to see that

(4)

Using (4), we present examples of the asymptotic behavior of  as M → ∞ for several variants of fn,
namely, for exponential, polynomial, and trigonometric series. In this case, we will omit some elementary
but cumbersome calculations.

2.1.1. Verticality coefficients. Examples
1. Exponential series. Here

(5)

with ai > 1 and βi ≠ 0. Thus, dim  = p for M ≥ p, and the vectors  =  with  = (1,

, …, )T and  = 1, …, p form the basis of the space .
We denote X = [P1 : … : Pp]. If M → ∞, then XTX → C, where C is a p × p matrix with entries cij =

. Similarly,  →  := DT and  →  = DTC–1D.

When p = 1, the equality  = 1 –  holds.
2. Scheme of series for exponential series. This case was studied in detail from the viewpoint of SSA in [6].

For T > 0, we consider the scheme of series for the series fn =  = , where a > 1, n = 1, …, N,
and N = 1, 2, ….

Here d = 1, X = (1, , …, )T for M < N,

Since N → ∞, it follows that 1 –  ~ 2ln(a)T/N. We consider the case of M → ∞. If M/N → β > 0,
then  → 2ln(a)T(1 – ). If M = o(N), then  → 0.

3. Polynomial series. Here

In this case, dim  = p + 1 for M ≥ p + 1, and vectors  =  with  = , , …,

 form a basis in the linear space .

We set X = [P0, …, Pp]. Then  ~  and  → C1, where C1 is a (p + 1) × (p +
1) positive definite matrix with the entries

Let Ap := . Then  →  and  →  > 0 as M → ∞.

If p = 1, then  → 1/4 as M → ∞.
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38 NEKRUTKIN
4. Trigonometric series. We consider the series

where ωj ≠ ωi for j ≠ i. If M ≥ 2p, then dim  = 2p.

We set  = ,  = ,

and X = [  : … :  :  : … : ]. Then  → , where Ik is the k × k unit matrix.

Similarly, . Therefore,  ~ 4p/M as M → ∞.

We note that if 0 ∈ {ω1, …, ωp} and/or 1/2 ∈ {ω1, …, ωp}, then  ~ c/M with some c > 0 as before. In

particular,  = 1/M for fn = c = const ≠ 0.

2.2. Construction of a LRF

We consider the series F = ( f1, …, fn, …) and assume that the linear space  with dim  = d

is not vertical for some M > 1. We define  as an orthogonal complement of , and P0 = P0(M),
as an orthogonal projector onto . Moreover, we introduce an (M – 1) × M matrix GM by the equal-
ity

The following proposition in somewhat different notation can be found in ([1], Theorem 5.2 and Prop-
osition 5.3). We present a shorter proof of this fact.

Proposition 1. We set

(6)

Then

(7)

Moreover,

(8)

Proof. We note that the vector P0Y is orthogonal to  for any Y ∈ . Therefore, ( ,
) = 0 for n ≥ M.
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Since the equalities (Q, ) = 0 and fn = ( , ) are equivalent, we arrive at a LRF of the form

(7), which governs the series F. Thus, it remains to prove that the choice of Y =  leads to zM = 1 – .

This follows from formula (1): ( , ) =  = 1 – , and equality (7) follows. Using the formula

we arrive at (8).

3. RECURRENT FORECAST AND ITS ACCURACY
In ([1], Subsection 2.1), the authors used formula (6) to obtain an approximation of the vector R in the

case when the series F is corrupted by additive noise, i.e., the series E.
Let the “signal” F = ( f1, …, fn, …) be governed by the minimal LRF (3) of order d. In addition, we con-

sider the “noise” series E = (e1, …, en, …), set FN = ( f1, …, fN), EN = (e1, …, eN), and finally XN = ( f1 +
δe1, …, fN + δeN), where δ is a formal perturbation parameter. It is assumed that the series XN is known,
and the goal is to forecast the values , …,  of the series F for some S ≥ 1.

To explain how this is done, we start by approximating the coefficient vector of the LRF (6).

3.1. Approximating LRF
In ([1], Ch. 2.), the authors described the following method for obtaining an approximating LRF.
1. Embedding. After choosing the window length M < N, the series XN is transformed into an M × K

Hankel matrix H(δ) with the entries H(δ)[ij] = , 1 ≤ i ≤ M, 1 ≤ j ≤ K := N – M + 1. In addition, it is
assumed that min(M, K) ≥ d.

2. Singular value decomposition and special grouping. We seek the best (with respect to the Frobenius
norm) approximation  of the matrix H(δ) among all M × K matrices of rank d. This is done by sin-
gular value decomposition of the matrix H(δ) and summation of the d principal elementary matrices of
this decomposition.

We denote the linear space spanned by the columns of the matrix  by , and its orthogonal
complement, by U0(δ). In addition, we consider  and P0(δ), which are orthogonal projections onto
these subspaces.

3. If the space  is not vertical, then the vector

is proposed as an approximation of the vector R introduced in (6).
The following proposition (see ([4], Proposition 5.1)) is used to estimate the accuracy of this approxi-

mation.

Proposition 2. We denote ΔP(δ) = , where ||A|| is the spectral norm of the matrix A. If

ΔP(δ) < , then  is not vertical and

Remark 1. Proposition 2 gives sufficient conditions for the convergence ||R(δ) – R|| → 0 in terms of
 and ϑM as M → ∞. Namely, if

(1) lim infMϑM < 1;

(2)  → 0 as M → ∞, then ||R(δ) – R|| = O  → 0. As follows from the examples
in Subsection 2.1, the first condition looks quite natural. As for the second condition, many examples of
its implementation are given in ([4], Subsection 3.2).
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40 NEKRUTKIN
3.2. Recurrent Forecast
Let us describe how a recurrent forecast is constructed on the basis of the approximation of the LRF

considered in the previous section.
Since (see formula (7)),  = (R, ) with  = ( , …, fN)T, it follows that, to

obtain a forecast  of the value  with the help of the approximating LRF R(δ), one should have a
good approximation  = ( , …, )T of the vector .

Then the number

(9)
is called the one-step forecast of the series FN. For k > 1, the k-step forecast of the series FN is defined recur-

sively (see [1], Subsection 2.1). For example,  := (R(δ), ) with  = ( , …,
, )T.

There are many ways to estimate the values fi of the signal FN. In the basic version of the SSA forecast,
this is done as follows. First of all, one chooses a new window length L, which plays exactly the same role
as the window length M in Subsection 3.1. We note that only the case of L = M is described in [1] and [2].

Next, the first two points of constructing the approximating LFR (embedding, singular value decom-
position, and special grouping) described in Section 3.1 are implemented with M replaced by L. As before,
the resulting L × K matrix with K = N – L + 1 is denoted by .

Then a Hankel matrix  closest to  in the Frobenius norm is constructed. Finally, applying the
inverse of the embedding, we obtain the series FN(δ) = ( f1(δ), …, fN(δ)), which is considered as an approx-
imation to FN.

It is this choice of approximation  of the vector  in formula (9) that leads to a one-
step recurrent forecast of the series FN by the SSA method.

3.3. Forecast Accuracy. Basic Formula

Let us now turn to estimating the accuracy of the recurrent forecast. Denoting  =  –
 and Δ(R) = R(δ) – R, we obtain

(10)

Thus, the upper bound of the one-step forecast accuracy depends on:
(1) the absolute values of the signal fi for i = N – M + 1, …, N;
(2) the norm ||R|| [see (6)]. According to (8), this norm is expressed in terms of the verticality coefficient

ϑM. In particular, if ϑM → 0 as M → ∞, then ||R|| ~ ϑM;
(3) the accuracy Δ(R) = R(δ) – R of the approximating LRF. In view of Proposition 2 and Remark 1,

it is natural to expect that ||R(δ) – R|| = O . As already mentioned, many examples concern-

ing the convergence rate of  to zero can be found in ([4], Subsection 3.2);

(4) the absolute values of the approximation errors ri(δ) =  – fi for the last M values of the signal FN.
In this case, the general approach to theoretical estimation of the quantities |ri(δ)| as N → ∞ by the SSA

was published in [4]. Although this procedure may be quite laborious, below we give some examples of its
application.

3.4. Accuracy of Recurrent Forecasting. Examples
As already mentioned, inequality (10) makes it possible to obtain an upper bound for the one-step fore-

cast accuracy for the series FN. In this section we provide a number of examples where all components of
this estimate can be theoretically analyzed for large N, L, and M.

Example 1. Exponential signal and harmonic noise.
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REMARK ON THE ACCURACY OF RECURRENT FORECASTING 41
We consider fn = an with a > 1 and en = cos(2πωn + ϕ) with ω ∈ (0, 1/2).
Theoretical results.

1.  → 1 – 1/a2 as M → ∞ (see Subsection 2.1.1 of this paper).

2. If M/N → β ∈ (0, 1), then, for any δ, ΔP(δ) ~  with some c > 0, see ([4], Subsection 3.2.1)).

3. If L ≤ K and L/N → α ∈ (0, 1/2], then rj(δ) =  + , where

(11)

for any δ. This result was published in [6].
Upper bound for .

We consider the second term ||R|| || || = ||R||  on the right-hand side of (10).

According to (8), ||R||2 =  –  → const > 0 as M → ∞.
From (11) it is easy to find that || || does not tend to zero as N → ∞. Therefore, under these

conditions, the right-hand side of (10) does not tend to zero either. Of course, this does not imply that the
left-hand side of (10) does not tend to zero, but computer experiments (see the Appendix) confirm this
hypothesis.

Example 2. Scheme of series for exponential signal and harmonic noise.

Here fn =  =  with a > 1, 0 < n ≤ N, N ≥ 1, and en = cos(2πωn + ϕ) with 0 < ω < 1/2.
Theoretical results.

1. If M/N → β ∈ (0, 1), then  → const > 0 (see Subsection 2.1.1).

2. Under the same conditions, there exists δ0 > 0 such that ΔP(δ) =  for |δ| < δ0.

3. If L/N → α ∈ (0, 1), then there exists  > 0 such that  =  for |δ| < .
The proof of both assertions can be found in [6].
Upper bound for .
Let L/N → α and M/N → β, α, β ∈ (0, 1).
Since

and

the first term J1 =  on the right-hand side of (10) has the form J1 =  = .

Similarly, ||R||2 ~  = O(1/M) and

Therefore, we obtain the estimate J2 =  for the second term J2 =  on the right-hand
side of (10). Since Δ(R) = , it follows that  = .

Example 3. Linear signal and harmonic noise.
Here fn = an + b and en = cos(2πωn + ϕ), 0 < ω < 1/2.
Theoretical results.

1. If M → ∞, then  → const > 0 (see Subsection 2.1.1).
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42 NEKRUTKIN
2. If N → ∞ is odd and M = (N + 1)/2, then ΔP(δ) = O(N–2) for any δ.
3. For odd N and L = (N + 1)/2,  = O(N–1) for any δ.
Both assertions follow from the results published in [7]. General considerations and computer experi-

ments suggest that similar asymptotics for ΔP(δ) and  should remain valid as M/N → β and
L/N → α if α, β ∈ (0, 1).

Upper bound for .
Since fn ~ an, we have

and  =  as N → ∞. Since  = O(N–1),

and  = .

Further, ||R(δ)) – R|| = O(ΔP(δ)) = O(1/N2), and ||R||2 ~  = O(1/M), i.e., ||R|| = .
Therefore,

and, since ||R(δ)) – R|| = o(||R||), the one-step forecasting error is O(N–1/2).
Example 4. Constant signal and sawtooth noise.
Here fn = 1 and en = (–1)n.
Theoretical results.

1. If M → ∞, then  → const > 0 (see Subsection 2.1.1).
2. If M/N → β ∈ (0, 1), then there exists a δ0 > 0 such that ΔP(δ) = O(N–1) for |δ| < δ0.

3. If L/N → α ∈ (0, 1), then there exists a  > 0 such that  = O(N–1) for |δ| < . Both
results can be found in ([4], Subsection 5.3.1).

Computer experiments give hope that similar results will hold for fn = cos(2πω1n + ϕ1) and en =
cos(2πω2n + ϕ2), where ω1, ω2 ∈ (0, 1/2) and ω1 ≠ ω2.

Upper bound for .
Since all theoretical results for this case are analogous to those already described in Example 2, we have

 = .

APPENDIX.
COMPUTER EXPERIMENTS

In this section we present several variants of computer experiments that illustrate the theoretical results
of Subsection 3.4. As already mentioned, the considered series have the form xn = fn + δen, 1 ≤ n ≤ N, and
the problem lies in forecasting the signal value , k ≥ 1.

We consider three variants of the signal fn:
1. Exponential signal (EXP): fn = an, a = 1.01, and δ = 1.
2. Linear signal (LIN): fn = an + b, a = 0.5, b = 1, and δ = 0.5.

3. Harmonic signal (COS): fn = cos(2πω0n) with ω0 = , and δ = 0.5.

In all cases, the noise has the form en = cos(2πωn) with ω = .

As before,  denotes the value of the recurrent forecast of , and  =  is the
k-step forecast error.
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Fig. 1. k-Step forecast errors for exponential (EXP), harmonic (COS) and linear (LIN) signals as a function of k,
k = 1(1)50.
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Fig. 2. One-step forecast errors as a function of the series length N for the EXP signal.
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Fig. 3. One-step forecast errors as a function of the series length N for the LIN signal.
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Fig. 4.  multiplied by one-step forecast errors as a function of the series length N for the LIN signal.
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Fig. 5. Mean of the errors for k = 1(1)10 forecast steps as a function of the series length N for the COS signal.
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k-Step forecast, 1 ≤ k ≤ 50. Figure 1 is of preliminary character. It shows k-step forecasting errors for
exponential (EXP), harmonic (COS), and linear (LIN) signals for N = 500, L = M = 250, and k = 1(1)50.
We note that these errors exhibit very smooth behavior for EXP and LIN, while  strongly oscillates
for COS.

Therefore, below we illustrate the behavior of  as a function of N for exponential and linear sig-

nals, and take the characteristic  to illustrate the forecasting behavior for a harmonic
signal.

We note that in all the following experiments, we use the series lengths N = 50(50)1000 and L = M =
N/2.

Exponential signal. Figure 2 shows the behavior of one-step forecasting errors as a function of the series
length N for an exponential signal and harmonic noise.
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Fig. 6. N multiplied by the mean of the errors for k = 1(1)10 forecast steps as a function of the series length N for the COS
signal.
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The theoretical results of Section 3.4 show that  = O(1). Judging by Fig. 2, this estimate is quite
accurate: starting from about N = 300, the values of  do not show an obvious tendency toward a
decrease.

Linear signal. As already mentioned, for a linear signal, the expected estimate for  is O(N–1/2).
Figures 3 and 4 confirm this theoretical result.

Harmonic signal. According to the results of Subsection 3.4, the expected upper bound for one-step
forecast errors for a harmonic signal is O(N–1/2). Figures 5 and 6 show that the actual convergence rate
may be O(N–1).
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