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Abstract
Monoamine oxidase (MAO) are flavoenzymes that metabolize neurotransmitter, dietary and xenobiotic amines to their corre-
sponding aldehydes with the production of hydrogen peroxide. Two isoforms, MAO-A and MAO-B, are expressed in humans 
and mammals, and display different substrate and inhibitor specificities as well as different physiological roles. MAO inhibi-
tors are of much therapeutic value and are used for the treatment of neuropsychiatric and neurodegenerative disorders such 
as depression, anxiety disorders, and Parkinson’s disease. To discover MAO inhibitors with good potencies and interesting 
isoform specificities, the present study synthesized a series of 2,1-benzisoxazole (anthranil) derivatives and evaluated them as 
in vitro inhibitors of human MAO. The compounds were in most instances specific inhibitors of MAO-B with the most potent 
MAO-B inhibition observed for 7a (IC50 = 0.017 µM) and 7b (IC50 = 0.098 µM). The most potent MAO-A inhibition was 
observed for 3l (IC50 = 5.35 µM) and 5 (IC50 = 3.29 µM). It is interesting to note that 3-(2-aminoethoxy)-1,2-benzisoxazole 
derivatives, the 1,2-benzisoxazole, zonisamide, as well as the isoxazole compound, leflunomide, have been described as 
MAO inhibitors. This is however the first report of MAO inhibition by derivatives of the 2,1-benzisoxazole structural isomer.
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Introduction

The monoamine oxidase (MAO) enzymes are flavoenzymes 
that are bound to the outer membranes of mitochondria [1]. 
MAO catalyzes the α-carbon oxidation of neurotransmitter, 
dietary, and xenobiotic amines to yield the corresponding 
aldehydes, ammonia (for primary amine substrates) and 
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hydrogen peroxide [2]. Two isoforms, MAO-A and MAO-
B, are expressed in humans and mammals and are products 
of distinct genes [3, 4]. The two isoforms exhibit different 
tissue distributions, substrate and inhibitor specificities and 
physiological roles. For example, serotonin is a specific sub-
strate for MAO-A, while benzylamine and phenethylamine 
are MAO-B specific substrates [5]. Certain amine com-
pounds such as dopamine, epinephrine, norepinephrine, and 
tyramine are substrates for both MAO isoforms. Since MAO 
metabolizes neurotransmitters and other biogenic amines, 
they are of physiological and therapeutic importance. In 
this respect, MAO-A inhibitors have been used for decades 
for the treatment of depression and anxiety disorders while 
MAO-B inhibitors are used for Parkinson’s disease therapy, 
often in combination with levodopa, the metabolic precursor 
of dopamine [5]. In Parkinson’s disease, MAO-B inhibitors 
provide symptomatic benefit by reducing the MAO-medi-
ated metabolism of dopamine in the brain [6, 7]. The use of 
MAO-A inhibitors in depression is based on the monoam-
ine hypothesis of depression, and an antidepressant effect is 
obtained by enhancing central serotonin and norepinephrine 
levels [8–10].

Although MAO inhibitors act by increasing the biological 
half-lives of monoamine neurotransmitters, they also reduce 
the formation of the metabolic by-products of the MAO 
catalytic cycle. Hydrogen peroxide that is generated by the 
reduction of molecular oxygen during MAO catalysis may 
be converted to injurious oxygen species in the brain, and 
may contribute to neurodegeneration in Parkinson’s disease 
[2]. MAO-B inhibitors have thus been advocated as poten-
tial neuroprotective agents that may delay neurodegenera-
tion by reducing oxidative damage to susceptible neuronal 
tissues. The production of hydrogen peroxide by MAO-A in 
the heart and resultant oxidative damage to mitochondria, 
in turn, have been linked to heart failure [11, 12]. MAO-A 
inhibitors may thus have a future role in the treatment of 
cardiovascular disease. Finally, growth and metastasis of 
prostate cancer is reduced by MAO inhibitors in pre-clinical 
models while clinical evidence has demonstrated that MAO 
inhibitors (e.g., phenelzine) may represent a new treatment 
for prostate cancer [13, 14].

Based on their current and future clinical applications 
as well as an academic interest in the discovery of new 
MAO inhibitors [15], the present study synthesized a series 
of 2,1-benzisoxazole (anthranil) derivatives and evaluated 

them as in vitro inhibitors of human MAO (Fig. 1). This is 
the first report of MAO inhibition by 2,1-benzisoxazoles, 
however, derivatives of the structural isomer, 1,2-benzisox-
azole, have been reported to inhibit MAO. For example, 
3-(2-aminoethoxy)-1,2-benzisoxazole derivatives (e.g., 
RS-1636), the 1,2-benzisoxazole, zonisamide, as well as 
the isoxazole compound, leflunomide, have been described 
as MAO inhibitors [16–18]. Zonisamide is of particular 
interest since the X-ray crystal structure of this compound 
in complex with human MAO-B has been reported [19]. 
Zonisamide is a competitive inhibitor of human MAO-B 
(Ki = 3.1 μM) and binds reversibly to the substrate cavity of 
the enzyme. Interestingly, like safinamide bound to MAO-
B, zonisamide binds to MAO-B with the Ile-199 gating 
residue in the “open” conformation [20]. In contrast, when 
the small molecule inhibitor, isatin, binds to MAO-B, the 
Ile-199 residue adopts the “closed” conformation [21]. This 
study synthesized a series of 2,1-benzisoxazole derivatives 
with divergent structures with respect to the substituents 
and substitution patterns. The selection of the derivatives 
was primarily based on synthetic feasibility and derivatives 
were obtained by a method developed by us earlier. While 
the 2,1-benzisoxazole derivatives were not designed with 
a specific medicinal chemistry rationale in mind, this is an 
exploratory study to evaluate the possibility that the 2,1-ben-
zisoxazole moiety could be used as scaffold for the future 
design of MAO inhibitors.

Results and discussion

Chemistry

A variety of clinically used drugs are benzisoxazole deriva-
tives (e.g., leflunomide, oxacillin, dicloxacillin, danazol, 
risperidone, and zonisamide). Several methods are known 
for the synthesis of 2,1-benzisoxazoles from ortho-substi-
tuted benzene derivatives that contain substituents suitable 
for cyclization to yield the fused isoxazole ring [22, 23]. In 
this work, an experimental series of 2,1-benzisoxazoles was 
obtained by our earlier developed method of condensation of 
nitroaromatic substrates with arylacetonitriles by heating in 
an alcoholic alkaline medium (Fig. 2) [24]. This transforma-
tion proceeds smoothly only if there is a substituent on the 
para-position of nitroaromatic substrate 1. In addition, the 

Fig. 1   The general structure of 
the 2,1-benzisoxazole deriva-
tives that were investigated in 
this study as well as the struc-
tures of 3-(2-aminoethoxy)-
1,2-benzisoxazole derivative 
RS-1636, zonisamide and 
leflunomide
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formation of 2,1-benzisoxazoles is not observed for nitro 
compounds containing donor groups on the para-position, 
such as primary, secondary or tertiary amino groups, methyl 
or hydroxyl groups. In addition, the substituent should not 
be an active nucleofuge under the reaction conditions or eas-
ily enters into nucleophilic addition reactions. Despite these 
limitations, this reaction was used to synthesize a diverse 
series of 2,1-benzisoxazole derivatives 3a–o that are suitable 
for probing the structure–activity relationships of this class. 
The bis-condensation product 5 was obtained in a similar 
manner.

For the synthesis of 7a–c, a new approach was used with 
4-cyanophenylmethyl-substituted triazole as reagent instead 
of an arylacetonitrile (Fig. 3). It is postulated that during the 
reaction, the 1,2,4-triazole fragment stabilizes the carbanion 
of the methylene group of reagent 6 due to its electron-with-
drawing properties, and during the second stage it acts as a 
leaving group. As a result, the ring closes to form the ben-
zisoxazole compounds 7a–c. We believe that this synthetic 
protocol is the more accessible and safe modification of that 
reported in Fig. 2 due to the absence of cyanide-containing 
waste. Also, Reagent 6 is a commercially available inter-
mediate used in the synthesis of the active pharmaceutical 
ingredient letrozole [25]. Similar N-alkylated triazoles are 
readily available by reaction between sodium triazolate and 
the corresponding benzyl halide [26]. It should be noted that 
for this transformation, the same restrictions on the struc-
ture of the nitroaromatic substrates apply as described for 
Fig. 2. The structures of all the synthesized compounds were 
confirmed by NMR spectroscopy and high-resolution mass 

spectrometry. Moreover, the structure of 3c was established 
by X-ray diffraction analysis (Fig. 4).

MAO inhibition studies

The MAO inhibition properties of the 2,1-benzisoxazole 
derivatives were investigated using the commercially avail-
able recombinant human MAO-A and MAO-B enzymes 
with kynuramine serving as substrate [27, 28]. MAO oxi-
dizes kynuramine to yield 4-hydroxyquinoline, which was 
measured by fluorescence spectrophotometry [27, 28]. By 
measuring MAO catalytic rate in the presence of a range of 
inhibitor concentrations (0.003–100 µM), sigmoidal plots 
of rate versus the logarithm of inhibitor concentration were 
constructed from which IC50 values were estimated (Fig. 5). 
The IC50 values are presented in Table 1 and show that the 
2,1-benzisoxazole derivatives are indeed MAO inhibitors.

From the MAO-B inhibition data, the following obser-
vations and structure–activity relationships are appar-
ent: (a) The most potent MAO-B inhibition was observed 
for 7a (IC50 = 0.017 µM) and 7b (IC50 = 0.098 µM) while 
the most potent MAO-A inhibition was observed for 5 
(IC50 = 3.29 µM) and 3l (IC50 = 5.35 µM); (b) With the 
exception, of 5 and 3l, all compounds displayed specific-
ity for the MAO-B isoform. Compounds 7a and 7b may 
be highlighted as displaying high specificity and potency 
for MAO-B; (c) The most potent MAO-B inhibition was 
observed for the p-benzonitrile substituted compounds 7a–c, 
which demonstrates that this group is more optimal than the 
other aryl groups considered. Thus, 7b was at least 12-fold 

Fig. 2   The synthesis of 2,1-ben-
zisoxazole derivatives 3a–o and 
the bis-condensation product 5 

Fig. 3   The synthesis of 2,1-ben-
zisoxazole derivatives 7a–c 



	 Molecular Diversity

1 3

more potent than the corresponding p-tolyl (3c), phenyl (3j), 
p-Br-phenyl (3m), p-Cl-phenyl (3n) and p-OCH3-phenyl 
(3o) homologues. Similarly, 7c was more potent than the 
phenyl homologue 3e; (d) Among the iodo derivatives, the 
p-OCH3-phenyl (3a), p-Cl-phenyl (3b) and tolyl (3i) sub-
stituted compounds were the most potent MAO-B inhibi-
tors with IC50 < 6.59 µM. Weaker MAO-B inhibition was 
observed with the phenyl (3h; IC50 < 16.3 µM) which dem-
onstrates the requirement of a substituent on the phenyl; (e) 
Among the halogens on C5, chloro substitution (3j) led to 
slightly more potent MAO-B inhibition than bromo substi-
tution (3g), while iodo substitution (3h) resulted in com-
paratively weak inhibition. Larger groups such as 1,3-diox-
olanyl (e.g., 3l) on C5 also yielded lower potency MAO-B 
inhibitors; (f) Interestingly, the two compounds substituted 
with the large 5-methyl-1,2,4-oxadiazolyl group (3e and 7c) 
displayed good MAO-B inhibition potency. In fact, 7c was 
the third most potent MAO-B inhibitor of the series. This 
finding shows that a large group on C6 is well tolerated for 
MAO-B inhibition.

From the MAO-A inhibition data, the following obser-
vations and structure–activity relationships are apparent: 
(a) The most potent MAO-A inhibition was observed for 

5 (IC50 = 3.29 µM) and 3l (IC50 = 5.35 µM). Compound 5 
is the bis-condensation product; (b) As mentioned above, 
only 5 and 3l displayed specificity for the MAO-A isoform, 
although only by a small degree; (c) Among the C5 chloro 
substituted compounds the p-tolyl (3c) and phenyl (3j) sub-
stituted compounds were more optimal than the other aryl 
groups considered [e.g., p-Br-phenyl (3m), p-Cl-phenyl 
(3n) and p-benzonitrile (7b)]; (d) The C5 iodo and bromo 
derivatives proved to be relatively weak MAO-A inhibitors 
with IC50 > 17.7 µM; (e) Among the halogens on C5, chloro 
substitution (3j) led to more potent MAO-A inhibition than 
iodo (3h) and bromo substitution (3g); (f) Interestingly, 
the 1,3-dioxolanyl substituted compound (3l) yielded good 
MAO-A inhibition (IC50 = 5.35 µM).

Competitive mode of MAO inhibition

To obtain insight into the modes of inhibition of the 
2,1-benzisoxazoles, Lineweaver–Burk plots for the inhi-
bition of MAO-A and MAO-B by 3l and 7a, respectively, 
were constructed. These two compounds represent potent 
MAO inhibitors among the study compounds. For each 
compound, a set of Lineweaver–Burk plots were con-
structed at the following inhibitor concentrations: 0 × IC50, 
¼ × IC50, ½ × IC50, ¾ × IC50, 1 × IC50 and 1¼ × IC50. Each 
line of the Lineweaver–Burk plots was constructed with the 
kynuramine concentration ranging from 15 to 250 μM. The 
Lineweaver–Burk plots for the inhibition of MAO by 3l and 
7a are presented in Fig. 6 and show that in both instances the 
lines intersect on the y-axis which is indicative of competi-
tive and therefore reversible inhibition. From a replot of the 
slopes of the Lineweaver–Burk plots versus inhibitor con-
centration, a Ki value of 0.46 µM is estimated for the inhibi-
tion of MAO-A by 3l (Ki = −x when y = 0). For the inhibi-
tion of MAO-B by 7a, a Ki value of 0.0062 µM is estimated. 
The Ki values have also been determined by global (shared) 
fitting of the inhibition data to the Michaelis–Menten equa-
tion: 0.50 ± 0.024 µM (3l, MAO-A) and 0.010 ± 0.0015 µM 
(7a, MAO-B).

Fig. 4   OLEX2 view of 3c 
displaying thermal ellipsoids at 
50% probably level
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Fig. 5   Plots of MAO-B catalytic rate versus inhibitor concentration 
(log[I]) for 7a (filled circles) and 7c (open circles)
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Table 1   The human MAO 
inhibition potencies of 
2,1-benzisoxazole derivatives 
3a–o, 5, 7a–c and reference 
compounds

IC50 (µM ± SD)a

MAO-A MAO-B SIb

3a

 

19.4 ± 2.58 3.03 ± 0.184 6.4

3b

 

77.7 ± 5.97 6.59 ± 0.111 12

3c

 

8.76 ± 0.058 2.63 ± 0.178 3.3

3d

 

71.6 ± 3.08 7.92 ± 0.684 9.0

3e

 

8.95 ± 0.581 3.55 ± 0.037 2.5

3f

 

NIc 25.1 ± 2.412 –

3g

 

19.5 ± 3.20 5.79 ± 0.013 3.4

3h

 

17.7 ± 0.424 16.3 ± 0.113 1.1

3i

 

43.9 ± 11.3 3.49 ± 0.056 13

3j

 

10.6 ± 0.049 4.43 ± 0.120 2.4

3k

 

NIc 5.56 ± 0.730 –
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a Values are given as the mean ± standard deviation (SD) of triplicate determinations
b Selectivity index: SI = IC50(MAO-A)/IC50(MAO-B)
c No inhibition observed at 100 µM
d Reference MAO inhibitor

Table 1   (continued) IC50 (µM ± SD)a

MAO-A MAO-B SIb

3l

 

5.35 ± 0.211 27.3 ± 2.16 0.20

3m

 

83.2 ± 33.3 1.18 ± 0.022 71

3n

 

81.3 ± 28.7 2.07 ± 0.381 39

3o

 

8.49 ± 0.017 2.34 ± 0.055 3.6

5

 

3.29 ± 0.254 10.0 ± 0.949 0.33

7a

 

19.0 ± 1.20 0.017 ± 0.0045 1138

7b

 

61.0 ± 9.19 0.098 ± 0.0036 622

7c

 

NIc 0.139 ± 0.044 –

Harmined 0.0041 ± 0.00007 NIc –
Isatind 12.3 ± 1.74 4.86 ± 0.707 2.5
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Molecular docking

As mentioned, the X-ray crystal structure of zonisamide, 
a 1,2-benzisoxazole compound, in complex with MAO-B 
has been reported [19]. Zonisamide binds within the sub-
strate cavity of the enzyme with the Ile-199 gating residue 
in the “open” conformation [20]. A molecular docking study 
was carried out with the Discovery Studio software accord-
ing to the reported protocol with the aim of predicting the 
binding orientation of 7a to MAO-B, using the structure of 
zonisamide bound to MAO-B (PDB code: 3PO7) [28]. The 
result shows that the binding of 7a differs significantly from 
zonisamide with 7a extending much deeper into the entrance 
cavity (Fig. 7). The 2,1-benzisoxazole ring thus binds within 
the entrance cavity where stabilization occurs via van der 
Waals interactions. Within the entrance cavity, the contribu-
tion of the chloro groups to inhibitor stabilization appears to 
be additive since 7a is a more potent MAO-B inhibitor than 
7b, the mono-chloro substituted compound. The benzonitrile 
moiety is placed in the substrate cavity where the nitrile may 
undergo hydrogen bonding with a water molecule. This polar 
interaction by the nitrile may explain the finding that the 
p-benzonitrile substituted compounds 7a–c were the most 

potent MAO-B inhibitors of this study. Other stabilizing 
interactions include π···π stacking and lp(S)···π interactions 
of both the phenyl and isoxazole with Tyr-326 and Cys-172, 
respectively, as well as a π···σ interaction the fused phenyl 
of the 2,1-benzisoxazole ring with Ile-199.

The binding of 3l, a potent MAO-A inhibitor of this study, 
was also investigated by molecular docking, using the X-ray 
crystal structure of harmine bound to MAO-A (PDB code: 
2Z5X) [28, 29]. Compound 3l binds in the MAO-A active 
with the 1,3-dioxolanyl ring in proximity to the FAD, while 
the phenyl extends towards the entrance of the active site. 
While no hydrogen bonding is predicted, a lp(S)···π interac-
tion between the phenyl substituent and Cys-323 may occur. 
Most interactions, however, are van der Waals interactions 
with active site residues.

Conclusion

In conclusion, this study discovers three p-benzonitrile sub-
stituted compounds (7a–c) with submicromolar MAO-B 
inhibition potencies. While the 2,1-benzisoxazole ring con-
tributes to inhibitor stabilization via π···π stacking, lp···π 

Fig. 6   Lineweaver–Burk plots 
for the inhibition of MAO-A 
and MAO-B by 3l (a) and 7a 
(b), respectively. The following 
inhibitor concentrations were 
used: 0 × IC50 (filled squares), 
¼ × IC50 (open squares), 
½ × IC50 (filled circles), ¾ × IC50 
(open circles), 1 × IC50 (trian-
gles) and 1¼ × IC50 (diamonds). 
The insets are replots of the 
slopes of the Lineweaver–Burk 
plots versus inhibitor concentra-
tion. The Ki value equals the 
negative of the x-axis intercept 
when y = 0
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and van der Waals interactions, it does not seem to be a 
privileged structure for MAO-B inhibition. The 2,1-ben-
zisoxazole ring, however, is suitable as a scaffold on which 
appropriate groups could be substituted. For MAO-B inhi-
bition, p-benzonitrile substitution on the isoxazole ring and 
choro substitutions on C5 and C7 of the fused phenyl of the 
2,1-benzisoxazole moiety are appropriate for potent MAO-B 
inhibition. 2,1-Benzisoxazole compounds such as 7a may 
represent good leads for the future design of MAO-B spe-
cific inhibitors. To assess the possibility that 7a might be 
developed as a drug, key physicochemical and pharmacoki-
netic properties were estimated with the SwissADME web 
tool provided by the Swiss Institute of Informatics (www.​
swiss​adme.​ch) [30]. 7a is predicted to have a log P of 3.89, 
to display moderate aqueous solubility, high absorption 
from the gastrointestinal track and to be able to penetrate the 
blood–brain barrier. Based on these calculations, 7a could 
be an orally active MAO inhibitor with activity in the central 
nervous system, and this compound would therefore be a 
good candidate for preclinical studies.

Experimental section

Reagents and instrumentation

All reagents and solvents were obtained from commer-
cial sources and were used without purification. DMSO 
was dried over molecular sieves (4 Å). Reactions were 
monitored by analytical thin layer chromatography (TLC) 
using Macherey–Nagel TLC sheets (Silufol UV-254) and 
the developed sheets were visualized under UV light. 
NMR spectra were recorded on Bruker AVANCE DPX 
400 at 400 MHz and 101 MHz for 1H and 13C, respectively. 
Chemical shifts are reported as parts per million (δ, ppm) 
and were referenced to the residual solvent peaks for 1H 
spectra (7.26 ppm for CDCl3 and 2.50 ppm for DMSO-d6) 
and to carbon peaks of the solvent for 13C (39.52 ppm for 
DMSO-d6 and 77.16 ppm for CDCl3). Multiplicities are 
abbreviated as follows: s, singlet; d, doublet; t, triplet; q, 
quartet; m, multiplet; br, broad. Coupling constants, J, are 
reported in Hertz (Hz). Melting points were determined 
in open capillary tubes with an Electrothermal IA 9300 
series digital melting point apparatus. High-resolution 
mass spectra (HRMS) were recorded with a Bruker maXis 
HRMS-ESI-QTOF instrument (ESI mode).

X-ray diffraction data were collected at a Rigaku Super-
Nova diffractometer using Cu–Kα (λ = 0.154184  nm) 
radiation. The structure has been solved with the ShelXT 
structure solution program using Intrinsic Phasing and 
refined with the ShelXL refinement package incorporated 
in the OLEX2 program package using Least Squares 
minimization [31–33]. The carbon-bound H atoms were 
placed in calculated positions. Empirical absorption cor-
rection was applied in the CrysAlisPro program complex 
(Agilent Technologies, 2014) using spherical harmonics, 
implemented in SCALE3 ABSPACK scaling algorithm. 
Supplementary crystallographic data have been deposited 
at Cambridge Crystallographic Data Centre: 2,220,356. It 
can be obtained free of charge via www.​ccdc.​cam.​ac.​uk/​
data_​reque​st/​cif (accessed on 18 November 2022).

For the MAO inhibition studies, a Varian Cary Eclipse 
fluorescence spectrophotometer was employed. Micro-
somes from insect cells containing recombinant human 
MAO-A and MAO-B (5 mg protein/mL) and kynuramine 
dihydrobromide were obtained from Sigma-Aldrich.

Synthesis and characterization of 2,1‑benzisoxa‑
zoles (3a–o, 5)

In a flat-bottom flask, a mixture of finely powdered sodium 
hydroxide (5 g, 0.125 mol) and isopropyl alcohol (40 mL) 
was stirred for 30 min. Arylacetonitrile (0.015 mol) and a 

Fig. 7   The predicted binding of 3l (a) and 7a (b) to MAO-A and 
MAO-B, respectively. The orientations of harmine in MAO-A and 
zonisamide in MAO-B are shown in magenta lines, while the FAD is 
shown in green sticks. Hydrogen bonding is indicated by the dashed 
lines

http://www.swissadme.ch
http://www.swissadme.ch
http://www.ccdc.cam.ac.uk/data_request/cif
http://www.ccdc.cam.ac.uk/data_request/cif
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p-substituted nitroarene (0.012 mol) were added sequen-
tially to the flask. The reaction mixture was vigorously 
stirred at room temperature until the completion of the 
reaction (TLC monitoring, 8–24 h). The reaction was 
poured into 400 mL water and the precipitate that formed 
was removed by filtration and washed with water. The fil-
trate was treated with hydrochloric acid until the pH tested 
acidic, and the precipitate that formed was collected by 
filtration. The product was purified by recrystallization 
from isopropanol [22, 23].

5‑Iodo‑3‑(4‑methoxyphenyl)benzo[c]isoxazole (3a)

Orange solid, 61% (2.57 g) yield, m.p. 112–114 °C. 1H NMR 
(400 MHz, DMSO-d6) δ 8.53 (s, 1H), 8.09 (d, J = 8.7 Hz, 
2H), 7.62 (d, J = 9.3 Hz, 1H), 7.48 (d, J = 9.3 Hz, 1H), 7.17 
(d, J = 8.8 Hz, 2H), 3.88 (s, 3H) [34].

3‑(4‑Chlorophenyl)‑5‑iodobenzo[c]isoxazole (3b)

Brown solid, 71% (3.1 g) yield, m.p. 185–187 °C. 1H NMR 
(400 MHz, DMSO-d6) δ 8.59 (s, 1H), 8.17 (d, J = 8.6 Hz, 
2H), 7.73—7.59 (m, 3H), 7.55 (d, J = 9.3 Hz, 1H) [24].

5‑Chloro‑3‑(p‑tolyl)benzo[c]isoxazole (3c)

Beige solid, 63% (1.86 g) yield, m.p. 136–138 °C.1H NMR 
(400 MHz, DMSO-d6) δ 8.22 (s, 1H), 8.02 (d, J = 8.2 Hz, 
2H), 7.74 (d, J = 9.4 Hz, 1H), 7.48—7.40 (m, 3H), 2.42 (s, 
3H) [24].

3‑Phenyl‑5‑(phenylethynyl)benzo[c]isoxazole (3d)

Yellow solid, 57% (2.02 g) yield, m.p. 143–144 °C. 1H NMR 
(400 MHz, DMSO-d6) δ 8.39 (s, 1H), 8.19 (d, J = 6.6 Hz, 
2H), 7.76 (d, J = 9.2 Hz, 1H), 7.79—7.61 (m, 5H), 7.59—
6.71 (m, 4H). 13C NMR (101 MHz, DMSO-d6) δ 165.0, 
156.6, 134.1, 131.9, 131.5, 130.1, 129.5, 129.3, 127.5, 
127.2, 125.3, 122.5, 119.3, 116.1, 114.2, 91.0, 89.8..HRMS 
(ESI) calcd for C21H13NO [M + Na]+ 357.9699, found 
357.9696 [24].

5‑Chloro‑6‑(5‑methyl‑1,2,4‑oxadia‑
zol‑3‑yl)‑3‑phenylbenzo[c]isoxazole (3e)

Beige solid, 72% (2.68 g) yield, m.p. 171–172 °C. 1H NMR 
(400 MHz, DMSO-d6) δ 8.52 (s, 1H), 8.22 (d, J = 22.5 Hz, 
3H), 7.71 – 7.62 (m, 3H), 2.74 (s, 3H). 13C NMR (101 MHz 
DMSO-d6) δ 177.8, 166.7, 165.5, 155.7, 131.8, 130.2, 
130.0, 127.7, 127.3, 127.1, 123.0, 120.2, 114.4, 12.4..HRMS 
(ESI) calcd for C16H10ClN3O2 [M + Na]+ 334.0354, found 
334.0350.

3‑(3‑Chlorophenyl)‑5‑(2‑methyl‑1,3‑dioxolan‑2‑yl)
benzo[c]isoxazole (3f)

Beige solid, 58% (2.19 g) yield, m.p. 175–177 °C. 1H 
NMR (400 MHz, DMSO-d6) δ 8.11—8.05 (m, 2H), 7.93 
(t, J = 1.2 Hz, 1H), 7.72—7.65 (m, 2H), 7.65—7.58 (m, 
1H), 7.49 (dd, J = 9.3, 1.5 Hz, 1H), 4.09—3.98 (m, 2H), 
3.87–3.74 (m, 2H), 1.64 (s, 3H). 13C NMR (101 MHz, 
DMSO-d6) δ 164.79, 157.59, 140.35, 131.24, 130.69, 
130.19, 127.85, 126.98, 116.23, 115.78, 113.74, 108.23, 
64.72, 26.90. HRMS (ESI) calcd for C17H14ClNO3 
[M + Na]+ 304.0944, found 304.0950 [24].

5‑Bromo‑3‑phenylbenzo[c]isoxazole (3g)

Yellow solid, 74% (3.04 g) yield, m.p. 116–118 °C. 1H 
NMR (400 MHz, DMSO-d6) δ 8.42 (s, 1H), 8.15 (dd, 
J = 7.9, 1.6 Hz, 2H), 7.70—7.64 (m, 1H), 7.64—7.56 (m, 
3H), 7.55 (dd, J = 9.4, 1.6 Hz, 1H) [35].

5‑Iodo‑3‑phenylbenzo[c]isoxazole (3h)

Yellow solid, 67% (3.2 g) yield, m.p. 112–115 °C. 1H 
NMR (400 MHz, DMSO-d6) δ 8.58 (s, 1H), 8.13 (dd, 
J = 7.7, 1.6 Hz, 2H), 7.65—7.63 (m, 1H), 7.63—7.47 (m, 
3H), 7.54 (d, J = 9.3 Hz, 1H) [35].

5‑Iodo‑3‑(p‑tolyl)benzo[c]isoxazole (3i)

Beige solid, 78% (3.12 g) yield, m.p. 109–110 °C. 1H 
NMR (400 MHz, DMSO-d6) δ 8.56 (s, 1H), 8.11 – 7.98 
(m, 3H), 7.64 (d, J = 9.3 Hz, 1H), 7.51 (d, J = 9.3 Hz, 1H), 
7.44 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H). 13C NMR (101 MHz, 
DMSO-d6) δ 163.8, 156.1, 141.6, 134.0, 139.2, 130.6, 
129.9, 127.0, 125.4, 124.8, 117.2, 115.9, 21.6. HRMS 
(ESI) calcd for C14H10INO [M + Na]+ 357.9699, found 
357.9687.

5‑Chloro‑3‑phenylbenzo[c]isoxazole (3j)

Yellow solid, 76% (4.2 g) yield, m.p. 115–117 °C. 1H 
NMR (400  MHz, DMSO-d6) δ 8.25 (s, 1H), 8.13 (d, 
J = 6.6 Hz, 2H), 7.77 (d, J = 9.4 Hz, 1H), 7.69—7.52 (m, 
3H), 7.45 (dd, J = 9.5, 1.5 Hz, 1H) [36].

6‑Dichloro‑3‑phenylbenzo[c]isoxazole (3k)

Beige solid, 64% (2.03 g) yield, m.p. 157–159 °C. 1H 
NMR (400 MHz, DMSO-d6) δ 8.55 (s, 1H), 8.20 (s, 1H), 
8.16 (dd, J = 7.4, 2.1 Hz, 2H), 7.71—7.58 (m, 3H). 13C 
NMR (101 MHz, DMSO-d6) δ 165.4, 156.3, 135.4, 131.8, 
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130.1, 128.5, 127.3, 127.0, 122.8, 116.7, 113.1. HRMS 
(ESI) calcd for C13H7Cl2NO [M + Na]+ 285.9797, found 
285.9799 [24].

5‑(1,3‑Dioxolan‑2‑yl)‑3‑phenylbenzo[c]isoxazole (3l)

Beige solid, 62% (1.98 g) yield, m.p. 137–138 °C. 1H NMR 
(400 MHz, DMSO-d6) δ 8.17—8.08 (m, 3H), 7.75—7.63 (m, 
3H), 7.63 – 7.56 (m, 1H), 7.46 (d, J = 9.3 Hz, 1H), 5.82 (s, 1H), 
4.20—4.04 (m, 2H), 4.04—3.93 (m, 2H). 13C NMR (101 MHz, 
DMSO-d6) δ 165.1, 158.0, 135.5, 131.4, 130.5, 130.1, 127.7, 
127.0, 120.1, 115.9, 113.6, 103.1, 65.6..HRMS (ESI) calcd for 
C16H13NO3 [M + Na]+ 304.0944, found 304.0950 [37].

3‑(4‑Bromophenyl)‑5‑chlorobenzo[c]isoxazole (3m)

Beige solid, 76% (1.40 g) yield, m.p. 230–232 °C. 1H NMR 
(400 MHz, DMSO-d6) δ 8.24 (s, 1H), 8.06 (t, J = 19.0 Hz, 
2H), 7.98—7.59 (m, 3H), 7.46 (d, J = 9.5 Hz, 1H) [34].

5‑Chloro‑3‑(4‑chlorophenyl)benzo[c]isoxazole (3n)

White solid, 73% (1.26  g) yield, m.p. 229–232  °C. 1H 
NMR (400 MHz, DMSO-d6) δ 8.23 (s, 1H), 8.19—8.07 
(m, 2H), 7.77 (dd, J = 12.6, 3.1 Hz, 1H), 7.76—7.57 (m, 
2H), 7.49—7.40 (m, 1H).13C NMR (101 MHz, DMSO-d6) 
δ 163.4, 156.4, 136.2, 133.2, 130.4, 130.1, 128.7, 126.3, 
119.7, 117.7, 114.6..HRMS (ESI) calcd for C13H7Cl2NO 
[M + Na]+ 285.9803, found 285.9798 [24].

5‑Chloro‑3‑(4‑methoxyphenyl)benzo[c]isoxazole 
(3o)

Yellow solid, 68% (2.06 g) yield, m.p. 174 °C. 1H NMR 
(400 MHz, CDCl3) δ 7.91 (s, 1H), 7.82 (d, J = 29.8 Hz, 
1H), 7.54 (d, J = 9.4 Hz, 1H), 7.32—7.14 (m, 3H), 7.03 (t, 
J = 19.9 Hz, 1H), 4.15—3.66 (m, 2H) [22].

5,5'‑Oxybis(3‑phenylbenzo[c]isoxazole) (5)

White solid, 63% (3.05 g) yield, m.p. 190–192 °C. 1H NMR 
(400 MHz, DMSO-d6) δ 8.02 (d, J = 7.5 Hz, 4H), 7.81 (d, 
J = 9.6 Hz, 2H), 7.56 (dd, J = 16.8, 9.6 Hz, 7H), 7.41 (d, 
J = 9.5 Hz, 2H), 7.41 (d, J = 9.5 Hz, 1H) [38].

Synthesis and characterization of 2,1‑benzisoxa‑
zoles (7a–c)

In a flat-bottom flask, a mixture of finely powdered sodium 
hydroxide (5 g, 0.125 mol) and isopropyl alcohol (40 mL) 
was stirred for 30 min. 1-(4-Cyanobenzyl)-1H-1,2,4-triazole 
(0.015 mol) and a p-substituted nitroarene (0.012 mol) were 
added sequentially to the flask. The reaction mixture was 

vigorously stirred at room temperature until the completion 
of the reaction (TLC monitoring, 20 h). The reaction was 
poured into 400 mL water and the precipitate that formed 
was removed by filtration and washed with water. The filtrate 
was treated with hydrochloric acid until the pH tested acidic, 
and the precipitate that formed was collected by filtration. 
The product was purified by recrystallization from isopro-
panol, and then from N,N-dimethylformamide.

4‑(5,7‑Dichlorobenzo[c]isoxazol‑3‑yl)benzonitrile 
(7a)

Light yellow solid, 53% (0.77 g) yield, m.p. 240–241 °C. 
1H NMR (400 MHz, DMSO-d6) δ 8.33 (d, J = 8.4 Hz, 3H), 
8.07 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 17.6 Hz, 1H). 13C NMR 
(101 MHz, DMSO-d6) δ 164.4, 154.9, 133.9, 132.3, 130.6, 
127.9, 121.9, 119.3, 118.7, 116.3, 113.8. HRMS (ESI) calcd 
for C14H6Cl2N2O [M + Na]+ 310.9749, found 310.9740.

4‑(5‑Chlorobenzo[c]isoxazol‑3‑yl)benzonitrile (7b)

Yellow solid, 67% (2.05 g) yield, m.p. 236–237 °C. 1H 
NMR (400 MHz, DMSO-d6) δ 8.33 (d, J = 1.6 Hz, 3H), 8.07 
(s, 2H), 7.82 (s, 1H), 7.49 (s, 1H). 13C NMR (101 MHz, 
DMSO-d6) δ 162.4, 156.4, 133.9, 133.5, 131.3, 131.0, 127.7, 
119.8, 118.8, 118.0, 115.6, 113.3. HRMS (ESI) calcd for 
C14H7ClN2O [M + Na]+ 277.0139, found 277.0133.

4‑(5‑Chloro‑6‑(5‑methyl‑1,2,4‑oxadiazol‑3‑yl)
benzo[c]isoxazol‑3‑yl)benzonitrile (7c)

Yellow solid, 65% (2.62 g) yield, m.p. 257–258 °C. 1H NMR 
(400 MHz, DMSO-d6) δ 8.58 (s, 1H), 8.38 (d, J = 7.4 Hz, 
2H), 8.30 (s, 1H), 8.09 (d, J = 8.1  Hz, 2H). 13C NMR 
(101 MHz, DMSO-d6) δ 164.3, 155.0, 133.9, 132.3, 130.6, 
127.9, 121.9, 119.3, 118.7, 116.3, 113.8. HRMS (ESI) calcd 
for C17H9ClN4O2 [M + Na]+ 359.0306, found 359.0301.

MAO inhibition—determination of IC50 values

IC50 values for the inhibition of MAO were measured as 
described previously [28]. Microsomes from insect cells 
containing recombinant human MAO-A and MAO-B (5 mg 
protein/mL) served as enzyme sources (Sigma-Aldrich) 
while kynuramine was used as non-specific MAO substrate. 
The enzyme reactions (200 µL reactions prepared in 96-well 
microtiter plates) contained phosphate buffer (100 mM, pH 
7.4), 50 µM kynuramine and the test inhibitors at concentra-
tions of 0.003–100 µM. Stock solutions of the test inhibitors 
were dissolved in DMSO and added to the enzyme reactions 
to give a final DMSO concentration of 4% (v/v). The reac-
tions were initiated with addition of MAO-A (0.0075 mg 
protein/mL) or MAO-B (0.015 mg protein/mL) and after 
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20 min of incubation at 37 °C, the reactions were terminated 
by the addition of 80 µL NaOH (2 N). The concentration of 
4-hydroxyquinoline, the product of kynuramine oxidation 
by MAO, was measured by fluorescence spectrophotom-
etry (λex = 310 nm; λem = 400 nm). IC50 values were esti-
mated from sigmoidal plots of enzyme catalytic rate versus 
the inhibitor concentration (log[I]) which were constructed 
with the Prism software package (GraphPad). IC50 values 
were estimated in triplicate determinations from these 
plots and are expressed as mean ± standard deviation (SD). 
Global (shared) fitting of the kinetic data yielded the follow-
ing Km and Vmax values for kynuramine: Km = 49.8 ± 3.07 
and 32.4 ± 3.73 µM for MAO-A and MAO-B, respectively; 
Vmax = 34.0 ± 0.80 and 8.39 ± 0.28 nmol/min.mg protein, for 
MAO-A and MAO-B, respectively.

MAO inhibition—Lineweaver–Burk plots

For each of the selected test inhibitors, a set of six 
Lineweaver–Burk plots were constructed using the follow-
ing inhibitor concentrations: 0 × IC50, ¼ × IC50, ½ × IC50, 
¾ × IC50, 1 × IC50 and 1¼ × IC50. For each line, the concen-
tration of kynuramine ranged from 15–250 µM. The reac-
tions were carried out as described above for the IC50 value 
determinations with the exception that the final MAO con-
centrations in the reactions were 0.015 mg protein/mL for 
both MAO-A and MAO-B. Linear regression was carried 
out with the Prism software package.

Molecular docking

Molecular docking was carried out with the Discovery Stu-
dio 3.1 software package as described previously [28]. The 
X-ray crystal structures of MAO-A (PDB code: 2Z5X) and 
MAO-B (PDB code: 3PO7) with harmine and zonisamide, 
respectively, bound to the active sites were selected as pro-
tein models [19, 29]. Illustrations were prepared with the 
PyMOL molecular graphics system [39].
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