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Abstract: 1,2,4-Oxadiazole is an essential motif in drug discovery represented in many experimental,
investigational, and marketed drugs. This review covers synthetic methods that allow the conversion
of different types of organic compounds into 1,2,4-oxadiazole at ambient temperature and the practical
application of the latter approaches for the preparation of pharmaceutically important molecules. The
discussed methods are divided into three groups. The first combines two-stage protocols requiring
the preliminary preparation of O-acylamidoximes followed by cyclization under the action of organic
bases. The advantages of this route are its swiftness, high efficiency of the cyclization process, and
uncomplicated work-up. However, it requires the preparation and isolation of O-acylamidoximes as
a separate preliminary step. The second route is a one-pot synthesis of 1,2,4-oxadiazoles directly from
amidoximes and various carboxyl derivatives or aldehydes in aprotic bipolar solvents (primarily
DMSO) in the presence of inorganic bases. This recently proposed pathway proved to be highly
efficient in the field of medicinal chemistry. The third group of methods consists of diverse oxidative
cyclizations, and these reactions have found modest application in drug design thus far. It is
noteworthy that the reviewed methods allow for obtaining 1,2,4-oxadiazoles with thermosensitive
functions and expand the prospects of using the oxadiazole core as an amide- or ester-like linker in
the design of bioactive compounds.

Keywords: 1,2,4-oxadiazole; room temperature; base catalyzed cyclization; oxidative cyclization;
amidoximes; bioactive compounds; bioisosteres

1. Introduction

1,2,4-Oxadiazole is an essential motif in drug discovery, which is incorporated in many
experimental, investigational, and marketed drugs, for example, ataluren [1], naldeme-
dine [2], amenamevir [3], ozanimod [4], azilsartan medoxomil [5], and opicapone [6].
Moreover, progress in the synthesis and medicinal application of the 1,2,4-oxadiazole core
is being regularly reported (for recent reviews see Refs. [7–12]). The interesting feature of
the 1,2,4-oxadiazole moiety from a medicinal chemistry viewpoint is its potential coverage
of a broad spectrum of therapeutic areas, including oncology [13–15], immunology [16],
neurology [17–20], infectious diseases [21–24], metabolism and endocrinology [25–28], urol-
ogy [29,30], gastroenterology [31], cardiology [32], rheumatology [33], and respirology [34].
Such versatility of the 1,2,4-oxadiazole motif, in our opinion, is due to its recognition as
the hydrolytically stable bioisostere of the amide and ester bonds [35–39]. There are many
studies on the 1,2,4-oxadiazole ring acting as an amide-like linker with a suitable ADMET
profile [40,41].

In addition, the popularity of 1,2,4-oxadiazoles in biomedical studies is, to a certain
degree, associated with synthetic factors. The 1,2,4-oxadiazole core assembly consists of two
stages (the O-acylation of amidoximes and the intramolecular cyclization [42]). The first
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is very similar to the amide bond formation in terms of starting reagents (acids and their
derivatives) and conditions. Particularly, amidoximes have reactivity comparable to amines
and can be acylated by a wide range of activated carboxylic acids (or their derivatives)
at RT. In other words, the majority of methods utilized in the amide coupling [43] can
also be employed for the synthesis of O-acylamidoximes, including the solid-support
or combinatorial chemistry [44,45]. At the same time, the cyclization step commonly
requires prolonged high-temperature (up to 140 ◦C) heating [42]). The necessity of thermal
activation for the 1,2,4-oxadiazole ring closing is one of the main and the most disappointing
limitations on the way to medicinal utilization of this heterocyclic motif. Thus, there was
a need for new synthetic methods that allow the transformation of amidoximes to 1,2,4-
oxadiazoles at ambient temperature. The first of these methods was developed by Gangloff,
Rice, and colleagues in 2001 [46], and after a few years, it was in demand in the synthesis
of potential pharmaceuticals [47].

Therefore, this review has two goals: on the one hand, to describe the progress
and recent achievements in synthetic methodology in this field, and on the other hand,
to consider issues related to the practical use of this approach for the preparation of
biologically active 1,2,4-oxadiazoles.

2. Base-Induced Cyclodehydration of O-acylamidoximes
2.1. Tetrabutylammonium Fluoride (TBAF)

As mentioned above, the first room-temperature synthesis of 3,5-disubstituted 1,2,4-
oxadiazoles was reported by Gangloff, Rice, and colleagues in 2001. Upon treatment with
TBAF (in stoichiometric or catalytic amounts), O-acylamidoximes underwent mild and
facile conversion into 1,2,4-oxadiazoles in THF at room temperature (Scheme 1) [46].
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Scheme 1. Room-temperature cyclization of O–acylamidoximes under TBAF catalysis.

TBAF functions as a strong base in dry THF [48,49]. The reaction proceeds via interme-
diate A formation (Scheme 2). This intermediate can be isolated by flash chromatography
if the reaction is quenched at 0 ◦C. The authors demonstrated that the intermediate A is
stable in solution by itself, but rapidly dehydrates under the action of TBAF.
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Nishiwaki, Ariga et al. described the synthesis of carbamoyloxadiazoles from O-
acylamidoximes (Scheme 3) [51]. The authors compared several protocols for the 1,2,4-
oxadiazole core formation and found that the addition of a catalytic amount of TBAF in
an acetonitrile solution gave the best results. The O-alkanoylamidoximes were trans-
formed into the corresponding oxadiazoles in either quantitative (R = Alk) or good
(R = EtO2CCH2CH2) yields at room temperature even though bulky alkanoyl groups
were employed. However, in cases of aroylamidoximes, corresponding oxadiazoles could
be prepared effectively only by heating at 50–80 ◦C.
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Lukyanov et al. described the synthesis of sterically hindered 3-(1,2,4-oxadiazol-3-yl)
pyridines via a two-step process from substituted N-hydroxy-pyridine-3-carboximidamides
and acyl chlorides using the room-temperature cyclization of O-acylamidoximes with TBAF
in MeCN as the second step (Scheme 4) [52]. Note that O-aroylamidoximes cyclized as well
as O-alkanoylamidoximes.
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The mild reaction conditions (room temperature and the absence of hydrolyzing
agents) allowed Huck and colleagues to use this method in the synthesis of the oxadiazole-
bearing Boc-protected amino group from acetyl amidoxime and N-Boc-α-methyl-β-alanine-
N-carboxyanhydride (Scheme 5) [53]. For the synthesis of analogous derivatives from
other amidoximes RC(NH2)OH (R = Ph, t-BuO2CCH2, CH2C(NH2)OH), the authors sug-
gested adding to the reaction mixture 1 eq of triethylamine (TEA) alongside TBAF. Then,
the process can be carried out without isolating O-acylamidoxime intermediates.
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The experimental procedure proposed by Gangloff, Rice, and colleagues [46] has not
changed significantly since then, and it has been used “as is” in the laboratory practice for
the preparation of many pharmaceutically relevant scaffolds containing the 1,2,4-oxadiazole
ring. We found approximately thirty works related to this topic, and in the context of this
review, it is redundant to discuss the synthesis of each scaffold in detail. The general exper-
imental procedure is the O-acylation of an amidoxime with an acyl chloride, an anhydride,
or an activated carboxylic acid (most commonly) in a suitable solvent, followed by cyclo-
condensation of the O-acylamidoxime to 1,2,4-oxadiazole in the presence of TBAF/THF
at RT. The cyclocondensation time correlates with the amount of TBAF (0.1–1.4 eq) and
typically ranges from 1 to 12–16 h (overnight). It is important that in almost all cases
it was necessary to isolate the intermediate O-acylamidoximes. Table 1 illustrates the
diversity and complexity of biologically active scaffolds available through TBAF. There are
anticancer, antimicrobial, and antiviral agents, neuroprotectors, immunomodulators, as
well as metabolic regulators.

Table 1. Bioactive 1,2,4-oxadiazoles synthesized using TBAF.

Activity Scaffold Ref.

Potential angiotensin II receptor antagonist (biological
evaluation was not performed) [54]

Inhibitors of Dengue virus nonstructural protein 5 (NS5)
polymerase
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Table 1. Cont.
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In addition to its extensive medicinal applications, the fluoride-induced cycloconden-
sation of O-acylamidoximes into 1,2,4-oxadiazoles at room temperature was used for the
design of anion receptors [80]. Malkondu et al. synthesized non-light-emitted pyrene-
substituted O-acylamidoxime, which closed into the corresponding 1,2,4-oxadiazole with
blue-light fluorescence in the presence of fluoride (Scheme 6). This feature allows selective
recognition of fluoride among a wide of range other anions, including chloride, bromide,
acetate, nitrate, perchlorate, and hydrogen sulfate, as well as dihydrogen phosphate.
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Scheme 6. Sensing of fluoride based on the O-acylamidoxime cyclocondensation.

Vidal with coworkers reported that TBAF catalysis can be combined with thermal
activation [81]. Particularly, they investigated the cyclodehydration of the carbohydrate-
substituted O-acylamidoxime into the corresponding 1,2,4-oxadiazole in the presence of
TBAF at RT, 110 ◦C (conventional heating), and 150 ◦C (MW) (Scheme 7). Although the
thermal activation drastically decreased the reaction time, the same product yield (97–99%)
was achieved in all conditions. Notably, the target 1,2,4-oxadiazole was not formed in the
absence of the catalyst.
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In conclusion, the TBAF-mediated approach [46] demonstrates a very high efficiency
for the overall cyclization of O-acylamidoximes to 1,2,4-oxadiazoles, including a wide range
of heterocycles with different functional groups. This process is highly productive, and the
work-up procedure is relatively simple. The reactions are carried out under mild conditions
at temperatures from 0 ◦C to room temperature. However, the use of O-acylamidoximes
as starting materials is associated with additional labor costs for their preparation and
isolation, which complicates the synthesis and reduces the overall yield of 1,2,4-oxadiazoles.

2.2. Tetrabutylammonium Hydroxide (TBAH)

In 2014, Otaka with coworkers from Dainippon Sumitomo Pharma Co., Ltd. (Osaka,
Japan) suggested an alternative to the TBAF-base catalyst for the cyclodehydration of O-
acylamidoximes into 1,2,4-oxadiazoles [82]. During the drug discovery process, the authors
faced difficulties with the large-scale synthesis of 1,2,4-oxadiazoles, which were caused by
the high corrosive action of the fluorine anion on conventional reaction vessels. To solve
this problem, they performed a study for researching an alternative catalyst that would be
more suitable for production scale. A wide range of compounds including tetrabutylammo-
nium derivatives with different anions (chloride, bromide, cyanide, hydrogen sulfate, and
hydroxide), TEA, and DBU was examined, and tetrabutylammonium hydroxide (TBAH)
was recognized as the most effective (Scheme 8). Other tetraalkylammonium hydroxides
(Pr4NOH, Et4NOH, and Me4NOH) also displayed good catalytic activity. Moreover, a
moderate product yield (65%) was obtained using NaOH as a hydroxide source. In ad-
dition to the base nature, the authors also studied the solvent effect on cyclodehydration.
The reaction in most aprotic solvents (DMF, THF, DCM, MeCN, and acetone) and non-
primary alcohols (i-PrOH and t-BuOH) resulted in excellent (88–95%) isolated yields of
1,2,4-oxadiazole, whereas toluene (trace), ethyl acetate (30%), water (trace), MeOH (0%),
and EtOH (19%) were found to be unsuitable for this transformation.
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The reaction scope investigation revealed some advantages of TBAH in comparison with
TBAF: the shorter reaction time (10 min instead 1 h) and the compatibility with silyl-protecting
groups (for example, TBS). Nevertheless, despite this being known for the 8 past years, we
found only one mention of 1,2,4-oxadiazole core synthesis in the presence of TBAH [83]. Maybe
it is due to the lack of awareness or some conservatism of the synthetic community. The lesser
availability of TBAH in comparison with TBAF, perhaps, also has a contribution.

2.3. Alkali Metal Bases

To the best of our knowledge, the first example of the inorganic base-induced 1,2,4-
oxadiazole ring formation at room temperature was reported by Fershtat et al. [84]. They
developed the protocol for the synthesis of 1,2,4-oxadiazol/1,2,5-oxadiazole 2-oxide hybrids
via the cyclocondensation of furoxanylamidoximes with acyl chlorides in the presence of
Cs2CO3 in MeCN at 20 ◦C for 10–36 h (Scheme 9). The other important feature of this work
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is that it is also the first example of the one-pot room temperature procedure: all 22 prod-
ucts were obtained in good to excellent yields without the O-acylamidoxime isolation.
The structural diversity of products mostly was provided by the varying acyl chlorides,
whereas the amidoxime scope was represented by only two 1,2,5-oxadiazole 2-oxide deriva-
tives. The cytotoxic effect of several synthesized hybrids against human cancer cell lines
was evaluated, but the tested compounds did not demonstrate any significant activity [85].

Int. J. Mol. Sci. 2023, 24, 5406 9 of 33 
 

 

N
O

NO

R1
N

NH2

OH

R2COCl, 
Cs2CO3 (2 eq)

MeCN, RT, 10–24 h

R1 = Me

N
O

NO

Me N

O
N R2

R2 = MeOCH2, BnOCH2, Ph, 
4-MeOC6H4, 4-NO2C6H4, 3-NO2C6H4,
2-NO2C6H4, 2-furyl, 4-Py,

N N
Me

Ph
N

O
NO

Ph

R2 N
O

N

N
O

N

R1 = C(NOH)NH2

R2COCl, 
Cs2CO3 (2 eq)

MeCN, RT, 24–36 h

N

O
N R2

O

R2 = MeOCH2, BnOCH2, Ph, 
4-MeOC6H4, 4-NO2C6H4, 3-NO2C6H4, 
2-NO2C6H4, 2-furyl, 4-Py

N N
Me

Ph

N
O

NO

Ph

70–91%

,
,

72–95%

 
Scheme 9. Preparation of various 1,2,4-oxadiazol-furoxan hybrids. 

In 2016, Baykov et al. studied cyclocondensation of O-benzoylbenzamidoxime in the 
presence of a wide range of bases, including alkali metal hydroxides (LiOH, NaOH, and 
KOH), carbonates, and bicarbonates (Na2CO3, K2CO3, Cs2CO3, NaHCO3, and KHCO3), as 
well as sodium acetate and TEA in DMSO at RT (Scheme 10) [86]. It was found that all 
hydroxides demonstrated comparable activity and provided 
3,5-diphenyl-1,2,4-oxadiazole in a good yield of about 98% for 10 min. Additionally, 
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11) [87]. It was found that the result of the reaction strongly depends on the type and 
position of a double bond. Particularly, 1,2,4-oxadiazoles with the terminal double bond 
attached directly to the heterocyclic core (R2 = CH2=CH, CH2=C(Me)) were obtained in 
very poor yields (11% and 15% correspondingly) only, presumably, due to the 
KOH-initiated anionic polymerization. Derivatives of crotonic and methyl crotonic acids, 

Scheme 9. Preparation of various 1,2,4-oxadiazol-furoxan hybrids.

We did not reveal any further evolution of this method.
In 2016, Baykov et al. studied cyclocondensation of O-benzoylbenzamidoxime in the

presence of a wide range of bases, including alkali metal hydroxides (LiOH, NaOH, and
KOH), carbonates, and bicarbonates (Na2CO3, K2CO3, Cs2CO3, NaHCO3, and KHCO3),
as well as sodium acetate and TEA in DMSO at RT (Scheme 10) [86]. It was found that all
hydroxides demonstrated comparable activity and provided 3,5-diphenyl-1,2,4-oxadiazole
in a good yield of about 98% for 10 min. Additionally, slightly lower product yields were
obtained with Cs2CO3 (86%) and K2CO3 (71%), whereas only a trace amount of the 1,2,4-
oxadiazole was detected in cases of other bases. In addition, the catalytic effect of the base
was proved by the reaction with 0.1 eq of KOH. To examine the reaction scope, the authors
synthesized 22 1,2,4-oxadiazoles bearing diverse functionalities in KOH/DMSO medium.
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In the next work of the same group, the cyclocondensation of O–acylamidoximes bear-
ing carbon–carbon double bonds in KOH/DMSO medium was investigated (Scheme 11) [87].
It was found that the result of the reaction strongly depends on the type and position of
a double bond. Particularly, 1,2,4-oxadiazoles with the terminal double bond attached
directly to the heterocyclic core (R2 = CH2=CH, CH2=C(Me)) were obtained in very poor
yields (11% and 15% correspondingly) only, presumably, due to the KOH-initiated anionic
polymerization. Derivatives of crotonic and methyl crotonic acids, also, turned out to be sen-
sitive to basic conditions; however, corresponding 1,2,4-oxadiazoles were isolated in good
yields by using 0.1 eq of KOH. At the same time, derivatives of cinnamic and 4-vinylbenzoic
acids were synthesized mostly in a good yield according to the general conditions without
any difficulties. For example, Vasilyev et al. reported the triflic acid-catalyzed hydroaryla-
tion of the carbon–carbon double bond in 5-(2-arylethenyl)-3-aryl-1,2,4-oxadiazoles, which
were prepared preliminarily under KOH/DMSO conditions [88].
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Moreover, MOH/DMSO (M = Na or K) system was found to be an essential medium
for synthesis of 1,2,4-oxadiazoles containing nitro-groups [89,90]. Particularly, Dalinger et al.
demonstrated that O-acylamidoximes substituted by 3-nitro-pyrazole moiety closed into corre-
sponding oxadiazoles in the NaOH/DMSO system for 4 h in a good yield (Scheme 12), whereas
prolonged (over 24 h) refluxing in the presence of TEA in MeCN was unsuccessful [89].
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The cyclocondensation of O–acylamidoximes in KOH/DMSO medium was mentioned
in several medicinal chemistry studies to date (Scheme 13) [91–94]. To discover new potent
and selective human carbonic anhydrase (hCA) inhibitors, Krasavin et al. prepared a
series of 1,2,4-oxadiazoles bearing primary arylsulfonamide at position 5 of the hetero-
cyclic core [91]. Obtained compounds demonstrated significant activity toward cytosolic
hCA II and membrane-bound hCA IX isoforms. Guzel et al. obtained three methyl jas-
monate derivatives with 1,2,4-oxadiazole motif as hexokinase-II inhibitors for anticancer
therapy [92] The therapeutic potential of these heterocycles was proven by the enzyme inhi-
bition assay followed by cytotoxicity experiments on A549 and SKOV-3 cell lines. Notably,
exactly the 1,2,4-oxadiazole core was found most active among the considered heterocyclic
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motifs (isomeric 1,3,4-oxadiazole, isoxazole, and thiazole). To the same purpose, 2′-deoxy-
C-nucleosides decorated by a 1,2,4-oxadiazole periphery were synthesized and evaluated
toward five tumor cell lines, namely, HeLa, MDAMB-231 (breast cancer), PANC-1 (pan-
creatic cancer), PC3 (prostate cancer), and SK-OV-3 (ovarian cancer) [93]. Finally, Tu et al.
used the KOH/DMSO medium in the development of fluorine-18 radiotracer [18F]FS1P1
for imaging sphingosine-1-phosphate receptor 1 [94].
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medium [91–93].

As mentioned above, the cyclocondensation of O-acylamidoximes is a not so attractive
method, and one-pot protocols, which start from amidoximes, are much more desirable,
primarily, for drug discovery. The possibility of carrying out the reaction in a “two-step,
one-pot” manner is the main advantage of the MOH/DMSO system (M = Li, Na, K) in
comparison with TBAF-involved methods, and it was realized in several works [95–103]. It
is most convenient to discuss these methods by dividing them by the type of used carboxyl
function sources: esters, acids, acyl chlorides, anhydrides, dicarboxylic acid anhydrides,
aldehydes, and even N-acyl benzotriazoles.

Esters as the carboxyl function source are the most favorable reagents for the 1,2,4-
oxadiazole core assembly in basic conditions. In this case, a base promoted both O-acylation
and intramolecular cyclocondensation stages and any special additives usually are not
required. It was demonstrated that the condensation of esters and amidoximes into 1,2,4-
oxadiazoles occurs in the MOH/DMSO medium (M = Li, Na, K) at RT and typically takes
from 4 to 16 h depending on the reagent structure (Scheme 14) [95]. The optimization of
reaction conditions revealed NaOH as the most suitable base for this process.
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The reaction scope includes a broad spectrum of alkyl, aryl, and hetaryl amidoximes
and esters, as well as many functional groups; nevertheless, some limitations were recog-
nized. Namely, derivatives of NH-heterocycles (R2 = pyrrole-2-yl, indole-5-yl, piperidine-
4-yl) gave significantly lower yield (11%, 14%, and 30%, respectively). In addition, aryl
esters bearing strong electron-donating substituents such as hydroxyl or amino groups
at the para-position of the aromatic ring are not reactive in these conditions. Later, Yun
Young Go et al. [104] and Kinzhalov et al. [105] showed that mild heating (30–60 ◦C) led
to obtaining 1,2,4-oxadiazoles with unprotected primary arylamino functionalities. At
the same time, Teleb with colleagues successfully performed the reaction with salicylic
esters at RT [106]. One more limitation is the presence of a high CH-acidic methylene
group. Particularly, the acetoacetic ester and methyl 2-(p-tolyl)acetate did not afford the
desired heterocycles. Interestingly, ethyl 2-(1-oxophthalazin-2(1H)-yl)acetate provided the
corresponding 1,2,4-oxadiazole with a yield of 79%.

The synthetic capabilities of this reaction in areas of organic and medicinal chemistry
were explored by several research groups (Scheme 15) [106–110]. The abovementioned
Teleb’s work [106] was dedicated to preventing oxidative stress and carcinogenesis via the
indirect activation of the nuclear factor erythroid 2 p45-related factor 2 (Nrf2). For this
goal, the authors investigated the inhibition of Nrf2 suppressors: thioredoxin reductase 1
(TrxR1), inhibitory kappa B kinase α (IKKα), and nuclear factor kappa B (NF-kB) by 1,2,4-
oxadiazole derivatives. It is noteworthy that according to the results of their enzyme and cell
experiments, the most potent compounds in the series were 2-substituted phenols. Novikov
et al. synthesized a number of 1,2,4-oxadiazoles as starting materials for the transformation
into 5-sulfonamidoimidazoles [107] or 2H-1,3,5-oxadiazines [108] via metal-carbenoid-
induced ring cleavage. Shetnev et al. obtained 1,2,4-oxadiazole/2-imidazoline hybrids and
demonstrated their prospect for the treatment of bacterial infections and pancreatic ductal
adenocarcinoma [109]. Moreover, the same scaffold showed a significant inhibitory action
toward monoamine oxidase B (MAO-B) in combination with good monoamine oxidase A
(MAO-A) selectivity [110].
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There are a few examples of carrying out this reaction with other bases. Manjunatha et al.
designed and synthesized a series of 1,2,4-oxadiazol-3-yl)piperazines with anti-inflammatory
activity (Scheme 16). The heterocyclic core assembly was performed in DMSO in the pres-
ence of powdered K2CO3 for 13 h [111].
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Recently, Boyarskiy with coworkers reported that the reaction between amidoximes
and maleic esters in NaOH/DMSO medium provided 1,2,4-oxadiazin-5(6H)-ones instead
of the expected 1,2,4-oxadiazoles (Scheme 17). The base replacement to t-BuONa and
increasing the amidoxime amount up to 2.5 eq allowed them to obtain hybrid 3-(aryl)-6-((3-
(aryl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadiazin-5(6H)-ones [112].
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Scheme 17. Synthesis of 1,2,4-oxadiazin-5(6H)-ones from amidoximes and maleic dimethyl ester.

Carbonyldiimidazole (CDI) was found to be the appropriate activating agent for the
synthesis of 1,2,4-oxadiazoles from amidoximes and carboxylic acids in the NaOH/DMSO
medium [97]. Ethyl and isobutyl chloroformates in combination with organic bases (TEA or
pyridine) also can be used instead of CDI; however, the yield of 1,2,4-oxadiazoles will be less.
The reaction scope was demonstrated by 26 different examples (Scheme 18). This protocol
was used by Arifuddin et al. for the preparation of coumarins bearing the 1,2,4-oxadiazole
moiety as selective inhibitors of cancer-related hCA IX and XII isoforms [113].
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Since “esters” and “acids” routes complement each other, allowing wider variation of
initial reagents (esters or acids), in some works both routes are applied [14,114,115]. For
example, Boyarskiy et al. reported the successful synthesis of 1,2,4-oxadiazoles substituted by
pyridine N-oxides [115], and the N-oxide functionality was compatible with both “ester” and
“acid” protocols. Furthermore, these N-oxides were converted into corresponding N-pyridyl
ureas [115,116], which are valuable “masked isocyanates” [117,118] and ligands of metal-based
anticancer drugs [119,120]. Krasavin et al. continued the exploration of 1,2,4-oxadiazole motif for
the design of carbonic anhydrase inhibitors [14,114]. They discovered a number of compounds
with the sub-nanomolar inhibition level against hCA IX isoform. The selected hits selectively
kill pancreatic cancer (PANC-1) and melanoma (SK-MEL-2) cells in the hypoxic environment.

The reaction of amidoximes with acyl chlorides and anhydrides in the NaOH/DMSO
medium directly provided only moderate yields of 1,2,4-oxadiazoles [96]; however, the
yield can be improved by using other solvents (for example, DCM) for the acylation step
(Scheme 19). Although in this case, the more complicated work-up associated with the
isolation of O–acylamidoxime is required, the latter does not require additional purification
before the cyclocondensation step. This technique was utilized by Postnikov and coauthors
to create structural diversity of 3-substituted 1,2,4-oxadiazolones [121].
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The synthesis of 1,2,4-oxadiazole bearing carboxylic functionality via the one-pot con-
densation of amidoximes and dicarboxylic acid anhydrides is one of the major benefits from
the exploitation of the MOH/DMSO medium [98–102]. Notably, successful examples of the
base-catalyzed condensation of O-acylamidoximes containing carboxylic functionality are
not described. Moreover, the inapplicability of TBAF for this purpose was demonstrated
by Nishiwaki with colleagues [51].
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The general reaction conditions include the treatment of amidoximes with an anhy-
dride in DMSO for 1–18 h (depending on the anhydride reactivity) followed by the addition
of NaOH to perform cyclocondensation (~3 h) (Scheme 20). The method allows obtain-
ing 1,2,4-oxadiazole derivatives of succinic, glutaric, adipic, phthalic, and homophthalic
anhydrides in moderate to excellent yields. Several derivatives of biphenylcarboxylic
acid prepared according to this procedure have shown modest antibacterial action against
Escherichia coli [102].
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Moreover, previously undescribed 1,2,4-oxadiazole/norborna(e)ne hybrids were syn-
thesized from norbornene and norbornane dicarboxylic acids anhydrides according to
this procedure (Scheme 21) [99]. The feature of this reaction is an epimerization and the
mentioned 1,2,4-oxadiazole/norborna(e)ne hybrids were obtained as trans-diastereomers,
whereas the starting anhydrides had cis-conformation. The same inversion was also
observed for the reaction of amidoximes with anhydrides of cyclohexane- and cyclohexene-
1,2-dicarboxylic acids [100]. Although the detailed mechanism of epimerization is not clear
hitherto, strong basic conditions are of key importance. For example, the same reaction in
the presence of K2CO3 in 1,4-dioxane provides cis-isomers (Scheme 21) [99,100].
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Unfortunately, these conditions are not suitable for maleic anhydride, probably due to
the carbon–carbon double bond. However, the corresponding 1,2,4-oxadiazole substituted
acrylic acids were synthesized via the ring-opening/ring-closing/retro-Diels-Alder reaction
sequence from amidoximes and exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride in
DMSO medium (Scheme 22) [101]. As in the cases of other bridged anhydrides, the cis- to
trans-epimerization occurred and the isolated products have E-conformation.
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In addition, after a minor optimization, the method was expanded on isatoic anhy-
drides [122] and used for the preparation of the library of 2-(1,2,4-oxadiazol-5-yl)anilines
(Scheme 23), which were recognized as a new scaffold for blue-light-emitted materials [123].
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It was shown that the reaction of aromatic and heteroaromatic aldehydes with ami-
doximes in NaOH/DMSO medium in air (open flask) leads to 3,5-disubstituted-1,2,4-
oxadiazoles (Scheme 24) [103].
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Ott et al. reported the formation of the 1,2,4-oxadiazole core via the condensation of
amidoximes with N-acyl benzotriazoles in t-BuOK/DMSO system at RT [124].

Finally, a few reports indicated that DMSO can be replaced by DMF or
DMA [125–128]. Straniero et al. obtained two new 1,2,4-oxadiazole-based inhibitors
of filamentous temperature-sensitive protein Z (FtsZ) for the treatment of drug-resistant
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bacterial infections (Scheme 25A) [125]. The synthesis concluded in the one-pot reaction
of the starting benzodioxane-substituted amidoxime with acetic or propionic anhydrides
followed by the NaOH-catalyzed cyclocondensation of O-acylamidoxime intermediates
at RT for 18 h. Disappointingly, despite the prolonged reaction time, product yields were
only 9% and 37% for acetic and propionic derivatives, respectively. Zhu et al. described the
room temperature condensation of 4H-3,1-benzoxazinones with amidoximes in KOH/DMF
medium (Scheme 25B) [126]. The resulting anthranilic diamides bearing the incorporated
1,2,4-oxadiazole moiety were obtained in moderate to good yields. Recently, Sidneva et al.
developed the one-pot protocol for the synthesis of 1,2,4-oxadiazole at room tempera-
ture via the reaction of cinnamic acids activated by ethyl chloroformate with amidoximes
in the presence of KOH in dimethylacetamide (DMA) (Scheme 25C) [127]. In this case,
yields of final heterocycles were comparable with previously reported data for reactions
in DMSO. Another recent example of successful 1,2,4-oxadiazole synthesis in DMA is the
t-BuONa-promoted one-pot condensation between esters bearing the primary sulfonamide
functionality and amidoximes reported by Shetnev with coworkers [128].
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3. Oxidative Cyclization

More recently, a new approach to the low-temperature synthesis of 1,2,4-oxadiazoles
has emerged, which can be called oxidative cyclization. In this case, the heterocyclic core is
formed due to the oxidative coupling of the N–H and O–H or C–H bonds.
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Jiang and colleagues reported obtaining a wide range of 3,5-disubstituted-1,2,4-
oxadiazoles in moderate to good yields from amidines and methylarenes using a one-
step copper-catalyzed cascade reaction under mild conditions (Scheme 26) [129].
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The reaction is a one-pot oxidation–amination–cyclization tandem process and in-
volves radical C–H bond oxidation by TBHP and copper-catalyzed oxidative C–N/C–O/N–
O bonds formation (Scheme 27).
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Yoshimura, Zhdankin et al. described an oxidative cycloaddition reaction of aldoximes
with nitriles promoted by 2-iodosylbenzoic acid triflate as an oxidant [130,131]. The authors
demonstrated that the oxidant could be generated in situ from 2-iodobenzoic acid and
m-chloroperoxybenzoic acid (m-CPBA) in the presence of TfOH. This fact allowed them
to develop a synthetic protocol for the preparation of 1,2,4-oxadiazoles in the presence
of catalytic amounts of 2-iodobenzoic acid and stoichiometric amounts of m-CPBA and
TfOH (Scheme 28). The reaction proceeds at room temperature, affording corresponding
1,2,4-oxadiazoles in good yields (62–84%). Later, Wirth and colleagues reported [132] that
this reaction can be carried out in a stoichiometric variant, using the presynthesized oxidant
2-iodosylbenzoic acid tosylate based on more accessible and cheap TsOH instead of TfOH.
In this case, the reaction time can be reduced to 1 h. Unfortunately, the mechanism of
this multistage reaction has not been studied by researchers, so the sequence of its stages
remains unclear.
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Despite the fact that the oxidative cycloaddition of aldoximes with nitriles has not been
described until recently, the method has already found application in medicinal chemistry.
Anan and colleagues obtained orally bioavailable cyclohexanol-based NR2B-selective
NMDA receptor antagonists with analgesic activity through the oxidative cycloaddition in
a low yield with chloramine T as an oxidant (Scheme 29) [133].
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Scheme 29. Synthesis of orally bioavailable cyclohexanol-based NR2B-selective NMDA receptor
antagonists with analgesic activity.

Indirectly, some light on how such a reaction can proceed is shed by Madabhushi
et al. [134]. The authors used N-chlorosuccinimide (NCS) as an oxidant and the coupling
partner for a base-catalyzed one-pot three-component synthesis of alkyl 3-(3-aryl-1,2,4-
oxadiazol-5-yl)propanoates (AAOPs, the precursors for the preparation of CB2 agonists)
from aryl aldoximes at RT (Scheme 30). The key intermediate is nitrile oxide, which is
formed from aryl aldoxime under the reaction conditions.
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Among other papers devoted to oxidative cyclization affording 1,2,4-oxadiazoles, it is
possible to distinguish two groups according to the type of bonds formed during coupling.
Zhao, Gong et al. described an efficient and mild protocol for the synthesis of 3-amino-
1,2,4-oxadiazoles in moderate to good yields by cyclizing aromatic N-acylguanidines with
PhI(OAc)2 (PIDA) as an oxidant (Scheme 31) [135]. The process proceeds in DMF at room
temperature for 5 h.
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The reaction is an example of the N–O oxadiazole bond oxidative formation.
The proposed mechanism based on the literature analogs and an N-iodinated intermediate
involved are shown in Scheme 32.
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A similar reaction was reported by Yu, Chang, and colleagues for N-acyl amidines [136].
The authors describe an NBS-promoted oxidative cyclization of N-acyl amidines with ethyl
acetate as the solvent at RT, which allows affording substituted 1,2,4-oxadiazoles in almost
quantitative yields (91–99%) (Scheme 33). This process proceeds through the formation of
N-bromination intermediate followed by the N–O bond formation as a result of dehydro-
bromination under basic conditions.
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Another group described the oxidative formation of the C–O bond. Vadagaonkar,
Chaskar et al. reported the synthesis of 1,2,4-oxadiazoles from N-benzyl amidoximes by us-
ing such oxidizers as NBS or I2 in the presence of a base (Scheme 34) [137].
The NBS/DBU system achieves a few higher yields (54–84%) than the I2/K2CO3 sys-
tem (50–80%). The reaction presumably occurs through N-halogenation of an amidoxime
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to form a halogenated derivative which in the presence of a base undergoes dehydrohalo-
genation and forms imine intermediate B. Intermediate B via cyclization-aromatization
sequence offers 1,2,4-oxadiazole.
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Jakubiec and Walczak reported a procedure for easy access to 5-substituted uracil 

derivatives, possessing the 1,2,4-oxadiazole ring on carbon C5 of the uracil ring [139]. The 
1,3-dipolar cycloaddition reaction was applied for the construction of the heterocyclic 
ring (Scheme 36). The [2+3]-cycloaddition of nitrile oxides (formed in situ from the ap-
propriate chlorinated 4-substituted benzaldoximes under basic conditions) with 
5-cyanouracil as a dipolarophile gave the corresponding 
5-(3-substituited-1,2,4-oxadiazol-5-yl)uracils in yields of 19–60% at RT. The similar 
1,3-dipolar cycloaddition reaction was used by Grygorenko et al. for the preparation of 
1,2,4-oxadiazole-substituted phosphonates (Scheme 36) [140]. 

Scheme 34. Oxidative cyclization of N-benzyl amidoximes.

Ye, Hu, and colleagues described an environmentally benign and sustainable approach
for the synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from N-benzyl amidoximes by the
electro-oxidation method (Scheme 35) [138]. The transformation proceeds via the generation
of the iminoxy radical through anodic oxidation, 1,5-hydrogen atom transfer (1,5-HAT),
the second anodic oxidation, and cyclization/aromatization.
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4. Miscellaneous

In addition to those mentioned above, several more scattered works on the low-
temperature synthesis of 1,2,4-oxadiazoles by various methods have been published.

Jakubiec and Walczak reported a procedure for easy access to 5-substituted uracil
derivatives, possessing the 1,2,4-oxadiazole ring on carbon C5 of the uracil ring [139].
The 1,3-dipolar cycloaddition reaction was applied for the construction of the hetero-
cyclic ring (Scheme 36). The [2+3]-cycloaddition of nitrile oxides (formed in situ from
the appropriate chlorinated 4-substituted benzaldoximes under basic conditions) with
5-cyanouracil as a dipolarophile gave the corresponding 5-(3-substituited-1,2,4-oxadiazol-
5-yl)uracils in yields of 19–60% at RT. The similar 1,3-dipolar cycloaddition reaction was
used by Grygorenko et al. for the preparation of 1,2,4-oxadiazole-substituted phosphonates
(Scheme 36) [140].
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Nikodemiaka and Koert found a novel pathway to 3,5-disubstituted 
1,2,4-oxadiazoles via the metal-catalyzed [2+3]-cycloaddition of a substituted silyl nitro-
nate (t-butyldimethylsilyl cyclohexenemethyleneazinate) and chloroacetonitrile (Scheme 
38) [142]. The reaction is catalyzed by AgOTf. The silyl nitronate/nitrile cycloaddition 
step is followed by the elimination of TBSOH to deliver the 1,2,4-oxadiazole. The authors 
reported that the reaction proceeds at room temperature with a good yield (74%), but 
heating to 100 °C can fundamentally reduce the reaction time. 

Scheme 36. Synthesis of 5-(1,2,4-oxadiazol-5-yl)pyrimidine-2,4(1H,3H)-dienes and diethyl (1,2,4-
oxadiazol-5-yl)phosphonates via 1,3-dipolar cycloadditions.

Kivrak and Zora described a synthesis of 1,2,4-oxadiazoles by cyclization of substi-
tuted N’-((3-oxoprop-1-en-1-yl)oxy)benzimidamides in the presence of NaH along with
acetaldehyde or acetophenone as side products (Scheme 37) [141]. The reaction proceeds
at RT, but heating is required to receive the starting compounds from amidoximes and
α,β-alkynic aldehydes or ketones.
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Scheme 37. Synthesis of 1,2,4-oxadiazoles by cyclization of substituted N’-((3-oxoprop-1-en-1-
yl)oxy)benzimidamides.

Nikodemiaka and Koert found a novel pathway to 3,5-disubstituted 1,2,4-oxadiazoles
via the metal-catalyzed [2+3]-cycloaddition of a substituted silyl nitronate
(t-butyldimethylsilyl cyclohexenemethyleneazinate) and chloroacetonitrile (Scheme 38) [142].
The reaction is catalyzed by AgOTf. The silyl nitronate/nitrile cycloaddition step is fol-
lowed by the elimination of TBSOH to deliver the 1,2,4-oxadiazole. The authors reported
that the reaction proceeds at room temperature with a good yield (74%), but heating to
100 ◦C can fundamentally reduce the reaction time.
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Another example of the room temperature condensation of amidoximes with or-
thoester is the synthesis of 2-(1,2,4-oxadiazol-3-yl)propan-2-amine and its deuterated 
analog in AcOH (Scheme 41) [145,146]. These compounds are employed in the prepara-
tion of pan-genotypic HCV NS5B polymerase inhibitors BMS-986139 and BMT-052. 

Scheme 38. Metal-catalyzed [2+3]-cycloaddition of silyl nitronate and chloroacetonitrile.

Vasilyev and colleagues reported obtaining a wide range of 3,5-disubstituted-1,2,4-
oxadiazoles in yields of 28–96% by tandem reaction of nitroalkenes with arenes and nitriles
under the superelectrophilic activation conditions in TfOH (Scheme 39) [143]. The synthesis
proceeds at diminished temperatures via generation of cations from various nitroalkenes
under their reactions with arenes in TfOH and subject these species to consequent attack
with nitriles, as N-nucleophiles.
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Scheme 39. Synthesis of 3,5-disubstituted-1,2,4-oxadiazoles from nitroalkenes, arenes, and nitriles
under the superelectrophilic activation.

Wang et al. found that 2-(5-nitro-2H-tetrazol-2-yl)acetamidoxime can serve as a start-
ing compound for the preparation of the corresponding oxadiazoles at room temperature
in good yields in both acidic and basic media (Scheme 40) [144]. The choice of conditions
depends on which carboxyl derivative is the second reaction partner. The reaction with the
orthoester is catalyzed by BF3, and with BrCN—by KHCO3.
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Another example of the room temperature condensation of amidoximes with or-
thoester is the synthesis of 2-(1,2,4-oxadiazol-3-yl)propan-2-amine and its deuterated ana-
log in AcOH (Scheme 41) [145,146]. These compounds are employed in the preparation of
pan-genotypic HCV NS5B polymerase inhibitors BMS-986139 and BMT-052.
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In 2018, Zarei [148] found that the Vilsmeier reagent activates both carboxylic acids 
for the O-acylation of amidoximes and O-acylamidoxime intermediates for the cy-
clocondensation into 1,2,4-oxadiazoles (Scheme 44). The reaction occurs in the presence 
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carboxylic acids in CH2Cl2 solution at RT.  
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The condensation of amidoximes with orthoester can also occur at room tempera-
ture under the catalysis of scandium triflate (Sc(OTf)3) (Scheme 42) [84]. The obtained
compounds were evaluated as potential NO donors for cancer therapy [85].
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Scheme 42. Sc(OTf)3-catalyzed condensation of amidoximes with orthoester.

Darehkordi and colleagues reported the synthesis of a new series of trifluoromethyl-
1,2,4-oxadiazoles (Scheme 43) [147]. 3-Aryl-5-(trifluoromethyl)-1,2,4-oxadiazoles were
synthesized by reaction of aryl amidoximes and trifluoroacetimidoyl chlorides in a one-pot
manner in the presence of NaH and titanium dioxide nanoparticle as the catalyst.
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In 2018, Zarei [148] found that the Vilsmeier reagent activates both carboxylic acids
for the O-acylation of amidoximes and O-acylamidoxime intermediates for the cyclo-
condensation into 1,2,4-oxadiazoles (Scheme 44). The reaction occurs in the presence of
trimethylamine in CH2Cl2 at RT for 3 h. Moreover, based on this finding, the author
developed the one-pot procedure for the synthesis of 1,2,4-oxadiazoles from nitriles and
carboxylic acids in CH2Cl2 solution at RT.
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5. Conclusions

The efficient synthesis of 3,5-disubstituted-1,2,4-oxadiazoles is an important goal in
organic chemistry due to their wide application in drug discovery as bioisosteres of amide
and ester functionalities. In the last two decades, the synthetic approaches towards 1,2,4-
oxadiazole core have been significantly revised. Namely, novel methods that allow us to
obtain these compounds at room temperature have been developed. This opens an avenue
for the investigation of oxadiazoles with thermosensitive functions. Moreover, the new
methods facilitate the use of the oxadiazole core as a linker in the design of pharmaceutically
relevant molecules.

The methods discussed in this review are divided into three groups. The first of them
are two-stage protocol requiring the preliminary preparation of O-acylamidoximes followed
by cyclization under the action of organic bases (TBAF or TBAH). This approach emerged
20 years ago and has already won the recognition of researchers in the field of medicinal
chemistry and material science. With its use, anticancer, antimicrobial, and antiviral agents,
neuroprotectors, immunomodulators, and metabolic regulators were obtained. The said
route exhibits noticeable efficiency in the complete cyclization of O-acylamidoximes to
1,2,4-oxadiazoles, including a wide range of heterocycles with various functional groups.
The advantages of this method are swiftness, convenience, and simplicity of the process,
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and the reactions are carried out under mild conditions at 0 ◦C to room temperature.
However, the use of O-acylamidoximes as starting materials is associated with the need for
their preliminary preparation and isolation, which complicates the synthesis and reduces
the overall yield of 1,2,4-oxadiazoles from amidoximes.

The second approach comprises the assembly of 1,2,4-oxadiazoles from amidoximes
and various carboxyl derivatives or aldehydes in aprotic bipolar solvents (primarily DMSO)
in the presence of inorganic bases. This approach profoundly simplifies the synthesis and
increases the yield of oxadiazoles based on amidoximes. Methodologically, this pathway is
close to the CuAAC reaction, ensuring the bridging of two molecular fragments into one
molecule with an oxadiazole linker at mild conditions. Expectedly, this recently proposed
approach found multiple applications in the design of bioactive molecules. The third
group of methods includes diverse oxidative cyclizations. These reactions have not been
widely used in drug design so far. We believe that the present review will stimulate interest
and further advances in the synthesis and medicinal application of 1,2,4-oxadiazole-based
small molecules.
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