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Abstract—We consider a system of essentially nonlinear differential equations that does not have
linear terms on the right-hand side in a neighbourhood of the rest point. Earlier, for this system,
the author proved the existence of two locally integral surfaces of so-called “stable” and “neutral”
types. In this article, we prove the existence of a foliation into surfaces of stable type in some
neighborhood of a neutral surface under the additional assumption that the zero solution on this
surface is Lyapunov uniformly stable. This result generalizes the well-known one for quasilinear
systems of ODEs. Instead of assumptions on the eigenvalues of the linear approximation, we use
conditions on the logarithmic norms of the Jacobi matrices of the right-hand sides. The result
obtained is important for describing the behavior of integral curves of complicated systems in a
neighborhood of a stationary point, for the theory of stability of solutions, for local equivalence of
ODEs.
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1. INTRODUCTION

Consider a system of essentially nonlinear differential equations

ẋ = X(t, z), ẏ = G(y) + F (x) + Y (t, z), (1)

where z = (x, y) ∈ R
p × R

q. We assume that this system satisfies the following assumptions:
1) The vector functions X,G,F , and Y are continuous in their arguments and continuously

differentiable with respect to x and y for ||z|| � a, t ∈ R . For all t ∈ R

X(t, 0) = 0, G(0) = F (0) = Y (t, 0) = 0

(i.e. x = 0, y = 0 is a solution to the system (1)).

2) G(y) is a homogeneous function of degree k > 1, where (−1)k = −1 (wherein k may be rational),
and there is a b > 0 such that

γ∗(G′(y)) � −b||y||k−1, (2)

where γ∗ denotes the so-called upper logarithmic norm generated by a given vector norm ||y|| in R
q

(see below for logarithmic norms and their properties).
3) F (x) is also a homogeneous function of degree m > k and there exist constants r1 > 0, r2 > 0,

such that

||F (x)|| � r1||x||m, ||F ′(x)|| � r2||x||m−1, (3)

where ||x|| is some norm in R
p.
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4) Finally, for ||z|| � a, t ∈ R, the functions X and Y satisfy the following inequalities:

||X ′
z(t, z)||, ||Y ′

z (t, z)|| � C1||z||m−1, (4)

||Y (t, x, 0)|| � C2||x||m+1, (5)

where C1, C2 � 0.
In this paper we choose norms ||x|| and ||y|| in such a way that conditions (2)–(5) are satisfied. As

for ||z||, by definition we put

||z|| def
= max(||x||, ||y||). (6)

The cases where system (1) is periodic with respect to t or autonomous are also treated in this article.

2. LOGARITHMIC NORMS

Definition 1. The number

γ∗(A)
def
= lim

h→+0

||E + hA|| − 1

h
,

where E denotes the identity matrix (q × q), is called the upper logarithmic norm of a (q × q) matrix
A.

The logarithmic norm is generated by a given vector norm ||y|| in R
q. In the right-hand side of the

definition of γ∗ we use the operator matrix norm generated by the norm ||y||.
Logarithmic norms were introduced by Lozinsky [1] and by Dahlquist [2] independently in order

to estimate the errors of numerical integration of differential equations. Lozinsky also proved some
estimates for the characteristic exponents of linear systems in terms of logarithmic norms. This led
to the widespread use of logarithmic norms in the theory of linear systems. However, logarithmic norms
can also be effectively applied to essentially nonlinear systems [3]. This application was developed
and demonstrated in papers [4–8]. We shall only note that logarithmic norms play the same role for
essentially nonlinear systems as spectral estimates for quasilinear systems. In this article, we need some
properties of logarithmic norms. For convenience, these properties are listed below (see proofs in [1, 3]):

1) γ∗(A+B) � γ∗(A) + γ∗(B);

2) γ∗(αA) = αγ∗(A), α � 0;

3) |γ∗(A)− γ∗(B)| � ‖A−B‖;

4) Let a continuous matrix function A(θ) be given on a finite interval 〈a, b〉 and suppose that

γ∗(A(θ)) � 0. Then γ∗

(
b∫
a
A(θ)dθ

)
≤

∫ b
a γ∗(A(θ))dθ.

Lower logarithmic norm is introduced alongside the upper one by the formula γ∗(A)
def
= −γ∗(−A).

The corresponding properties of γ∗ can be easily obtained from this definition. The key role of γ∗ and γ∗

is revealed in the following theorem [3]:
Theorem 1. Let y(t) be an arbitrary solution of the system ẏ = F (t, y)y + Y (t, y), where F is a

continuous matrix function and Y is a continuous vector function. Then

γ∗ (F (t, y(t))) ||y(t)|| − ||Y (t, y(t))|| � d+||y(t)||
dt

� γ∗ (F (t, y(t))) ||y(t)|| + ||Y (t, y(t))||.

In this theorem, ||y|| is an arbitrary vector norm, γ∗ and γ∗ are the lower and upper logarithmic
norms generated by this vector norm, and d+||y(t)||/dt is the right-hand derivative of the norm of the
solution (we shall note that this derivative always exists since the norm is a convex function). For
information about one-sided derivatives, differential inequalities, and other general questions of the
theory of differential equations, we refer to [9].
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3. FORMULATION OF THE MAIN THEOREM

In the paper [4] it is proven that system (1) has a locally integral surface of “stable” type. This surface
is defined by the equation x = h(t, y), where h has the following properties:

1) h ∈ C(R× {||y|| � a} �→ R
p);

2) h(t, 0) = 0 ∀t ∈ R;

3) ∀L ∈ (0, 1] ∃a(L) > 0 : ∀||y1||, ||y2|| � a(L) and ∀t ∈ R the inequality

||h(t, y1)− h(t, y2)|| � L||y1 − y2||
holds (i.e., h satisfies the Lipschitz condition with an arbitrarily small constant in a neighborhood
of y = 0);

4) any solution z(t) = (x(t), y(t)) that starts on the surface h (i.e., there exists a moment of time
t = t0 such that x(t0) = h(t0, y(t0))) stays on the surface x(t) = h(t, y(t)) for t � t0 and tends to
the origin as t → +∞, satisfying the following estimate

||z(t)|| � ||z(t0)||
(
1 +

b(k − 1)

2k
||z(t0)||k−1(t− t0)

) 1
1−k

; (7)

5) any solution that does not start on the surface h leaves the sector ||x|| � ||y|| as t grows.

In the paper [7] it is proven that for system (1) there also exists a locally integral surface of “neutral”
type defined by the equation

y = g(t, x), (8)

where the function g satisfies the following conditions:

1) g ∈ C(R× {||x|| � a} �→ R
q);

2) g(t, 0) = 0 ∀t ∈ R;

3)

||g(t, x1)− g(t, x2)|| � ||x1 − x2|| is true for ∀||x1||, ||x2|| � a and ∀t ∈ R; (9)

4)

||g(t, x) − f(x)|| � α/2||x||m/k , (10)

where f(x) is the only solution to the equation G(y) + F (x) = 0 and f(x) has the following properties:

1) f ∈ C1(Rp);

2) f is a homogeneous function of degree m/k;

3) there exist constants α > 0, β > 0, T > 0, such that

α||x||m/k � ||f(x)|| � β||x||m/k , (11)

||f ′(x)|| � T ||x||m/k−1. (12)
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The existence of this solution is proven in [7].
Remark 1. If system (1) is ω-periodic with respect to t, then the functions h and g are also ω-periodic

with respect to t. And if system (1) is autonomous, then h and g also do not depend on t.
Note that we are considering a system of ODEs of a somewhat special form due to the assumptions

about the existence of the functions G and F . However, it was shown in the paper [7] that these
assumptions are essential for the existence of a surface (8) of neutral type and the corresponding
counterexample is given.

In this article, we prove the existence of an invariant foliation into locally integral surfaces of stable
type for some neighborhood of the neutral surface g. This is proven under the additional assumption that
the zero solution is uniformly stable on the neutral surface, i.e., the zero solution for the system

ẋ = X(t, x, g(t, x)), (13)

is uniformly stable. Note that system (13) is a restriction of the original system (1) to the locally integral
surface g.

Theorem 2. Let the zero solution of system (13) be Lyapunov uniformly stable. Then the
surface (8) has a neighbourhood H(δ2), defined by formula (39) (see below), such that for
any solution zξ(t) = (xξ(t), yξ(t)), that lies on the surface (8) and in the neighborhood H(δ2)
simultaneously, there exists only one locally integral surface of the form x = h(t, y, ξ) passing
through this solution. All the solutions on this surface tend to the solution zξ(t) as t grows. The
surfaces x = h(t, y, ξ) fill the neighborhood H(δ2) completely.

Remark 2. If system (1) is periodic or autonomous, then the stability of the zero solution will
be uniform automatically, as is well known. In this case, the uniformity is no longer required in the
statement of the theorem.

The questions of the existence of integral surfaces and invariant foliations are one of the most
important in the qualitative theory of differential equations. These questions have been most fully studied
for quasilinear systems, i.e., systems with a linear approximation that is hyperbolic in some sense. On
the contrary, we still know very little about essentially nonlinear systems. When studying such systems,
we are faced primarily with two difficulties. First, we have to look for those conditions which will ensure
the existence of the required integral surfaces. It is desirable for the applications that these conditions
have a form testable via coefficients. In this article, this role is played by logarithmic norms. Secondly, we
have to look for the proof methods that will work effectively with essentially nonlinear systems. We will
use the so-called graph transformation method, which goes back to Hadamard. The proof in the present
article will be based on the scheme of application of this method, which was proposed by Pliss in [10,
11]. Note that since this method only works easy for the cases of quasilinear, periodic, and autonomous
systems, we will be forced to substantially adapt it in this article.

4. PROOF OF THEOREM 2

To prove the theorem we first prove that for each solution zξ(t) on the surface (8) there is a unique
“stable” locally integral surface of the required form passing through zξ(t) (Lemma 1). After that
we show that these surfaces fill the neighborhood H(δ2) from the statement of Theorem 2 completely
(Lemma 9). The proof of Lemma 1 is quite long, and therefore we split it into Lemmas 2–8.

Denote by z(t, t0, ξ) the solution to system (1) that lies on the surface (8) y = g(t, x) and passes
through the point t = t0, z = (ξ, g(t0, ξ)). By virtue of the uniform stability assumption, there exists
a �> 0 independent of t0 such that for any ||ξ|| <�, the solution z(t, t0, ξ) is extendable to [t0,+∞)
and satisfies the estimate ||z(t, t0, ξ)|| � 1. This estimate is introduced to simplify some of the further
calculations. Therefore, we assume that the condition ||x|| <� is satisfied everywhere. This allows, in
particular, to consider a � 1 without any loss of generality.

Let us define the set

H(t0, ξ)
def
= {(t, x, y) : ||x− x(t, t0, ξ)|| � ||y − y(t, t0, ξ)|| �

α

4
||x(t, t0, ξ)||

m
k ,

||y|| � ||x|| � a, t � t0}. (14)
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It follows from (10) and (11) that for the solution z(t, t0, ξ) located on the surface (8), the following
inequalities hold:

α

2
||x(t, t0, ξ)||

m
k � ||y(t, t0, ξ)|| �

(α
2
+ β

)
||x(t, t0, ξ)||

m
k . (15)

Taking into account that ||x(t, t0, ξ)|| � 1, we see that for any (t, x, y) ∈ H(t0, ξ)

α

4
||x(t, t0, ξ)||

m
k � ||y|| �

(
3α

4
+ β

)
||x(t, t0, ξ)||

m
k , (16)

||y|| � ||x|| �
(
1 +

α

4

)
||x(t, t0, ξ)||. (17)

Lemma 1. For sufficiently small ||ξ||, for each solution z(t, t0, ξ) there exists a unique locally
integral surface of system (1), that is located in the set H(t0, ξ) and passes through z(t, t0, ξ).
This surface is represented by the formula

x− x(t, t0, ξ) = hξ(y − y(t, t0, ξ), t, t0), (18)

where the function hξ : {(y, t, t0) : ||y|| � α
4 ||x(t, t0, ξ)||

m
k , t � t0} �→ R

p is continuous with respect
to y and t, h(0, t, t0) = 0, and for any L ∈ (0; 1] one can specify δ(L) > 0 such that if ||ξ|| � δ(L),
then

||hξ(y1, t, t0)− hξ(y2, t, t0)|| � L||y1 − y2||. (19)

Any solution z(t) of system (1) that lies on (18) satisfies the inequalities

||z(t) − z(t, t0, ξ)|| �
α

4
||x(t, t0, ξ)||

m
k , (20)

||z(t)− z(t, t0, ξ)|| � ||z(t0)− z(t0, t0, ξ)|| exp

⎛
⎝−ν

t∫
t0

||x(s, t0, ξ)||m−m
k ds

⎞
⎠ , (21)

where the constant ν is defined by formula (34) (see below) and t � t0.
Proof of Lemma 1. Let us make the change of variables in system (1): u = x− x(t, t0, ξ), v =

y − y(t, t0, ξ). As a result, we get the system

u̇ = U(t, w), v̇ = A(t, v) +B(t, u) + V (t, w), (22)

where w = (u, v), U(t, w) = X(t, w + z(t, t0, ξ))−X(t, z(t, t0, ξ)), A(t, w) = G(t, v + y(t, t0, ξ))−
G(t, y(t, t0, ξ)), B(t, u) = G(t, u+ x(t, t0, ξ))−G(t, x(t, t0, ξ)), V (t, w) = Y (t, w + z(t, t0, ξ))−
Y (t, z(t, t0, ξ)). With respect to the new variables u and v the set H(t0, ξ) takes the following form:

H̃(t0, ξ) = {(t, u, v) : ||u|| � ||v|| � α

4
||x(t, t0, ξ)||

m
k ,

||v + y(t, t0, ξ)|| � ||u+ x(t, t0, ξ)|| � a, t � t0}. (23)

To prove Lemma 1, it is sufficient to show that system (22) has a locally integral surface that can
be represented by the formula u = hξ(v, t, t0), lies in H̃(t0, ξ), and satisfies the required properties.
This proof is split into a sequence of Lemmas 2–8. We start by stating some estimates for A,B,U ,
and V on the set H̃(t0, ξ). Denote Δw = w1 − w2 = (Δu,Δv). We consider ||Δu|| � ||Δv||. Then,
according to our definition of ||z|| (formula (6)), ||Δw|| = ||Δv||. Also, the equality ||w + z(t, t0, ξ)|| =
||u+ x(t, t0, ξ)|| follows from the definition of H̃(t0, ξ). Taking (17) into consideration, we get

||w + z(t, t0, ξ)|| �
(
1 +

α

4

)
||x(t, t0, ξ)||. (24)

The following auxiliary inequality is also easily verified:

dmax{||y1||k−1, ||y2||k−1} �
1∫

0

||y2 + θΔy||k−1dθ � max{||y1||k−1, ||y2||k−1}, (25)
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where d
def
= min

{∫ 1
0 ||s2 + θΔ(s1 − s2)||k−1dθ : ||s1|| � 1, ||s1|| = 1

}
> 0.

Using the Mean Value Theorem, we get

||U(t, w1)− U(t, w2)|| �
1∫

0

||X ′
z(t, w1 + z(t, t0, ξ) + θΔw)||dθ ||Δw||

(25), (4)
� C1 max

i=1,2
||wi + z(t, t0, ξ)||m−1||Δv||

(24)
� C1

(
1 +

α

4

)m−1
||x(t, t0, ξ)||m−1||Δv||. (26)

Likewise,

||V (t, w1)− V (t, w2)|| � C1

(
1 +

α

4

)m−1
||x(t, t0, ξ)||m−1||Δv||. (27)

For B(t, u) we get

||B(t, u1)−B(t, u2)|| �
1∫

0

||F ′
x(u2 + x(t, t0, ξ) + θΔu)||dθ ||Δu||

(25), (3)
� r2 max

i=1,2
||ui + x(t, t0, ξ)||m−1||Δu||

(24)
� r2

(
1 +

α

4

)m−1
||x(t, t0, ξ)||m−1||Δv||. (28)

As for A(t, v), let us consider the system

dΔv

dt
= A(t, v1)−A(t, v2) =

1∫
0

A′
v(t, v2 + θΔv)dθ Δv.

Applying Theorem 1 and property 4 of the logarithmic norm, as well as formulas (2), (25) and (16), we
obtain

d+||Δv||
dt

�
1∫

0

γ∗(G′(v2 + y(t, t0, ξ) + θΔv))dθ ||Δv||

(2)
� − b

1∫
0

||v2 + y(t, t0, ξ) + θΔv||k−1dθ ||Δv||
(25)
� − bdmax

i=1,2
||vi + y(t, t0, ξ)||k−1||Δv||

(16)
� − bd

(α
4

)k−1
||x(t, t0, ξ)||m−m

k ||Δv||. (29)

Lemma 2. There exists a δ1 > 0 independent of t0 such that if ||ξ|| � δ1, then the surface
Π : ||u|| = ||v|| > 0 is a set of strict egress points from H̃(t0, ξ) for solutions of system (22) (i.e.,
strict ingress points if t is decreasing) (see Fig. 1).

Proof of Lemma 2. Concerning egress or ingress points, see [9]. Consider the function Φ(w) =
||u|| − ||v||. It is obvious that Φ|

˜H(t0,ξ)
< 0, Φ|Π = 0. Therefore, it is sufficient to show that D+Φ|Π > 0,

where D+ denotes the right-hand derivative due to system (22). Applying Theorem 1 and estimates
(26)–(29) with w1 = w,w2 = 0, we get

D+Φ|Π = D+||u|| −D+||v|| � −||U(t, w)||

+ bd
(α
4

)k−1
||x(t, t0, ξ)||m−m

k ||v|| − ||B(t, u)|| − ||V (t, w)||

�
[
bd

(α
4

)k−1
− (2C1 + r2)

(
1 +

α

4

)m−1
||x(t, t0, ξ)||

m
k
−1

]
||x(t, t0, ξ)||m−m

k ||v||.
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u

t

t0

H(t0, �)
~

�: ��u�� = ��  ��

P1: ��  �� =     ��x(t, t0, �)��m/k�
4

Fig. 1.

Since the zero solution is uniformly stable on the surface (8), there exists a δ1 > 0 independent of t0,
such that if ||ξ|| � δ1, then the inequality ||x(t, t0, ξ)|| � ε1 holds for t � t0. Here ε1 is defined by the
following formula:

ε1
def
=

(
0.5 bd

(α
4

)k−1
(2C1 + r2)

−1
(
1 +

α

4

)1−m
) k

m−k

. (30)

With this choice of ε1, the expression in square brackets will be � 0.5
(
bd

(
α
4

)k−1
)

. Then, for ||ξ|| � δ1,

we have D+Φ|Π > 0, and thus Lemma 2 is proven. �
Consider a pair of solutions to system (22): wi(t) = (ui(t), vi(t)), i = 1, 2.

Lemma 3. For any L ∈ (0; 1], a δ(L) > 0 can be specified so that for all ||ξ|| < δ(L) the following
statement is true: if (τ, wi(τ)) ∈ H̃(t0, ξ), i = 1, 2 for all τ ∈ [t0, t] and ||Δu(t)|| � L||Δv(t)|| holds,
then ||Δu(τ)|| � L||Δv(τ) for all τ ∈ [t0, t].

Proof of Lemma 3. To prove this lemma, it is sufficient to show that if the equation ||Δu(τ∗)|| =
L||Δv(τ∗)|| holds true for some τ∗ � t, then

d−||Δu(τ)||
dτ

− L
d−||Δv(τ)||

dτ

∣∣∣∣
τ=τ∗

< 0.

Since ||Δu(τ∗)|| � ||Δv(τ∗)||, from definition (6) and norm ||w|| we get ||Δw(τ∗)|| = ||Δu(τ∗)||.
Applying Theorem 1 and estimates (26)–(29), we see that

d−||Δu(τ)||
dτ

− L
d−||Δv(τ)||

dτ

∣∣∣∣
τ=τ∗

� ||U(τ∗, w1(τ
∗))− U(τ∗, w2(τ

∗))||

+ L
(
γ∗

⎛
⎝ 1∫

0

A′
v(τ

∗, v2(τ
∗) + θΔv(τ∗)) dθ

⎞
⎠ ||Δv(τ∗)||

+ ||B(τ∗, u1(τ
∗))−B(τ∗, u2(τ

∗))||+ ||V (τ∗, w1(τ
∗))− V (τ∗, w2(τ

∗))||
)

� −Lbd
(α
4

)k−1
||x(τ∗, t0, ξ)||m−m

k ||Δv(τ∗)||

+
(
(1 + L)C1 + Lr2

) (
1 +

α

4

)m−1
||x(τ∗, t0, ξ)||m−1||Δv(τ∗)||

=

[
−Lbd

(α
4

)k−1
+

(
(1 + L)C1 + Lr2

) (
1 +

α

4

)m−1
||x(τ∗, t0, ξ)||

m
k
−1

]
× ||x(τ∗, t0, ξ)||m−m

k ||Δv(τ∗)||.
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According to the uniform stability assumption, such a δ(L) > 0 independent of t0 can be found so
that for ||ξ|| � δ(L) and t � t0 the inequality ||x(t, t0, ξ)|| � εL holds, where εL is chosen according to
the condition

−Lbd
(α
4

)k−1
+

(
(1 + L)C1 + Lr2

) (
1 +

α

4

)m−1
εL

m
k
−1 < 0.

Therefore, for ||ξ|| � δ(L) the expression in square brackets will always be negative, and so
d−||Δu(τ)||

dτ − Ld−||Δv(τ)||
dτ

∣∣∣
τ=τ∗

< 0. Thus, Lemma 3 is proven. �

Lemma 4. The norm ||v|| decreases along solutions of system (22) in H̃(t0, ξ) for ||ξ|| � δ1,
where δ1 is taken from Lemma 2.

Proof of Lemma 4. Let us use Theorem 1 and estimates (27)–(29) again. We have

D+||v||
∣∣∣
˜H
� γ∗

⎛
⎝ 1∫

0

A′
vdθ

⎞
⎠ ||v||+ ||B(t, u)|| + ||V (t, w)||

�
(
−bd

(α
4

)k−1
+

(
C1 + r2

)(
1 +

α

4

)m−1
||x(t, t0, ξ)||

m
k
−1

)
||x(t, t0, ξ)||m−m

k ||v||.

According to the definition of δ1, from the condition ||ξ|| � δ1 it follows that ||x(t, t0, ξ)|| � ε1 for all
t � t0, where ε1 satisfies (30). Then

D+||v||
∣∣∣
˜H
�

(
−bd

(α
4

)k−1
+

(
C1 + r2

) (
1 +

α

4

)m−1
ε

m
k
−1

1

)
||x(t, t0, ξ)||m−m

k ||v||

� −0.5 bd
(α
4

)k−1
||x(t, t0, ξ)||m−m

k ||v||. (31)

This inequality proves Lemma 4. �
Lemma 5. If the solution w(t) = (u(t), v(t)) to system (22) is such that (t, w(t)) ∈ H̃(t0, ξ) for

t ∈ [t0, t1] and ||ξ|| � δ1, then for t ∈ [t0, t1] this solution satisfies the following estimates:

||w(t)|| � α

4
||x(t, t0, ξ)||

m
k , (32)

||w(t)|| � ||w(t0)|| exp

⎛
⎝−ν

t∫
t0

||x(s, t0, ξ)||m−m
k ds

⎞
⎠ , (33)

where

ν
def
= 0.5 bd

(α
4

)k−1
. (34)

Proof of Lemma 5. Estimate (32) follows directly from the definition (23) of the set H̃(t0, ξ). As
for estimate (33), it can be obtained by integrating inequality (31), taking the equation ||w|| = ||v|| into
account. Lemma 5 is proven. �

Lemma 6. Let u1 �= u2 and (t0, ui, v0) ∈ H̃(t0, ξ), where i = 1, 2. Then at least one of the
solutions w1(t) = w(t, t0, u1, v0) or w2(t) = w(t, t0, u2, v0) of system (22) leaves H̃(t0, ξ) as t
grows.

Proof of Lemma 6. Let us assume the opposite, i.e.. let both solutions w1(t) and w2(t) stay
in H̃(t0, ξ) for all t � t0. Denote wi(t) = (ui(t), vi(t)) and Δw(t) = (Δu(t),Δv(t)) = w1(t)− w2(t).
Since 0 = ||v0 − v0|| = ||Δv(t0)|| < ||Δu(t0)|| = ||u1 − u2|| �= 0, using Lemma 3 we get ||Δv(t)|| <
||Δu(t)|| for all t � t0. Hence, ||Δw(t)|| = ||Δu(t)||. The equation for Δu(t) takes the following form:

dΔu(t)

dt
=

1∫
0

U ′
w(t, w2(t) + θΔw(t)) dθ Δw(t).
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After using (26) we have

d+||Δu(t)||
dt

� −C1

(
1 +

α

4

)m−1
||x(t, t0, ξ)||m−1||Δu(t)||.

By integrating this inequality from t0 to t, we get

ln
||Δu(t)||
||Δu(t0)||

� −C1

(
1 +

α

4

)m−1
t∫

t0

||x(s, t0, ξ)||m−1ds. (35)

On the other side, applying (33), we can write

||Δu(t)|| �
2∑
1

||ui(t)|| �
2∑
1

||wi(t)||
(33)
�

2∑
1

||wi(t0)|| exp

⎛
⎝−ν

t∫
t0

||x(s, t0, ξ)||m−m
k ds

⎞
⎠

=
2∑
1

||vi(t0)|| exp

⎛
⎝−ν

t∫
t0

||x(s, t0, ξ)||m−m
k ds

⎞
⎠

(we use the fact that the equality ||w(t)|| = ||v(t)|| holds in H̃(t0, ξ)). Let us take the logarithm of this
inequality:

ln ||Δu(t)|| � ln

2∑
1

||vi(t0)|| − ν

t∫
t0

||x(s, t0, ξ)||m−m
k ds.

Combining it with the previously written inequality (35), we obtain

ln

2∑
1

||vi(t0)|| − ν

t∫
t0

||x(s, t0, ξ)||m−m
k ds � ln ||Δu(t0)|| − C1

(
1 +

α

4

)m−1
t∫

t0

||x(s, t0, ξ)||m−1ds.

This inequality can be rewritten in the following form:

t∫
t0

(
ν − C1

(
1 +

α

4

)m−1
||x(s, t0, ξ)||

m
k
−1

)
||x(s, t0, ξ)||m−m

k ds � C∗,

where C∗ is some positive constant. Here, the exact value of this constant is not important.

According to the choice of δ1 we made in the Lemma 2, for ||ξ|| � δ1 and t � t0 the inequality
||x(t, t0, ξ)|| � ε1 holds, where ε1 satisfies (30). Taking this in consideration alongside the definition
(34) of the constant ν, we have

ν − C1

(
1 +

α

4

)m−1
||x(s, t0, ξ)||

m
k
−1 � ν − C1

(
1 +

α

4

)m−1
ε1

m
k
−1

� 0.5 bd
(α
4

)k−1
− 0.5C1

(
1 +

α

4

)m−1
bd

(α
4

)k−1 1

r2 + 2C1

(
1 +

α

4

)1−m

� (0.5 − 0.25)bd
(α
4

)k−1
= 0.25 ν > 0.

Hence,

0.25 ν

t∫
t0

||x(s, t0, ξ)||m−m
k ds � C∗.
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In the paper [7] it is shown that the solution ||z(t, t0, ξ)|| that lies on the surface (8), satisfies the following
estimate for t � t0:

||z(t, t0, ξ)|| = ||x(t, t0, ξ)|| � ||ξ||
(
1 +

C1(m− 1)

m
||ξ||m−1(t− t0)

)− 1
m−1

.

This means that even if the solution lying on the neutral surface (8) tends to zero as t grows, then the
speed of the decrease is estimated from below by some negative power of (t− t0). Using this estimate
for ||x(s, t0, ξ)|| under the integral sign, we finally obtain that, assuming the opposite of Lemma 6, for all
t � t0 we will have

C∗ � 0.25 ν ||ξ||m−m
k

t∫
t0

(
1 +

C1(m− 1)

m
||ξ||m−1(s − t0)

)− 1
m−1

(m−m
k
)

ds.

However, 1
m−1 (m− m

k ) < 1. Hence, the integral on the right-hand side diverges as t → +∞ and
therefore cannot be bounded. This contradiction proves that at least one of the solutions w1(t) or w2(t)

must leave H̃(t0, ξ) as t grows. Thus, Lemma 6 is proven. �
Lemma 7. For ||ξ|| � δ1, the surface P1 : ||v|| = α

4 ||x(t, t0, ξ)||m/k is a set of strict ingress points

to the H̃(t0, ξ) (see Fig. 1).
Proof of Lemma 7. Similarly to the proof of Lemma 2, we define the function Φ(w) = ||v|| −

α
4 ||x(t, t0, ξ)||m/k , that vanishes on P1, and show that D+Φ

∣∣
P1

< 0.

It follows from the inequality D+||x|| � ||X(t, z)|| � C1
m ||z||m that D+||x(t, t0, ξ)|| �

C1
m ||x(t, t0, ξ)||m since ||z(t, t0, ξ)|| = ||x(t, t0, ξ)||. For D+||v||, we use the estimate obtained in
Lemma 4. Therefore,

D+Φ
∣∣
P1

� D+||v|| −
αm

4k
||x(t, t0, ξ)||m/k−1D+||x(t, t0, ξ)||

�
(
−bd

(α
4

)k−1
+

(
C1 + r2

) (
1 +

α

4

)m−1
||x(t, t0, ξ)||

m
k
−1

)
||x(t, t0, ξ)||m−m

k ||v||

+
αm

4k
||x(t, t0, ξ)||m/k−1C1

m
||x(t, t0, ξ)||m

(we take into account that ||v|| = α
4 ||x(t, t0, ξ)||m/k)

=

(
−bd

(α
4

)k−1
+

(
C1 + r2

)(
1 +

α

4

)m−1
||x(t, t0, ξ)||

m
k
−1

)
α

4
||x(t, t0, ξ)||m

+
αm

4k
||x(t, t0, ξ)||m/k−1C1

m
||x(t, t0, ξ)||m

=

[
−bd

(α
4

)k−1
+

((
C1 + r2

) (
1 +

α

4

)m−1
+

C1

k

)
||x(t, t0, ξ)||

m
k
−1

]
α

4
||x(t, t0, ξ)||m.

Comparing this inequality with the one obtained in the proof of Lemma 2, we see that[
−bd

(α
4

)k−1
+

((
C1 + r2

) (
1 +

α

4

)m−1
+

C1

k

)
||x(t, t0, ξ)||

m
k
−1

]

�
[
−bd

(α
4

)k−1
+ (2C1 + r2)

(
1 +

α

4

)m−1
||x(t, t0, ξ)||

m
k
−1

]
.

It was shown in the proof of Lemma 2 that for ||ξ|| � δ1, the second square bracket will be less than

−0.5
(
bd

(
α
4

)k−1
)

. Therefore, D+Φ
∣∣
P1

< 0, and thus Lemma 7 is proven. �
Define

δ̄(L)
def
= min{δ1, δ(L)}, (36)
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where δ1 is taken from Lemma 1 and δ(L) is taken from Lemma 3. Let us fix an arbitrary L ∈ (0; 1] and
an arbitrary solution z(t, t0, ξ) with ||ξ|| � δ̄(L). Define the space K(L, ξ, t, t0) of continuous functions
u = h(v) with the following properties:

h : {v : ||v|| � α

4
||x(t, t0, ξ)||m/k , t � t0} �→ R

p,

h(0) = 0, ||h(v1)− h(v2)|| � L||v1 − v2||.
We define a metric on K(L, ξ, t, t0) by formula ρ(h1, h2) = max ||h1(v) − h2(v)||, where max is taken
over all v from the domain, which is compact. It is easy to see that the space (K, ρ) is complete (i.e., is a
Cauchy space).

Let us introduce an operator Ft1,t2 , where t1 � t2 � t0, that assigns to each function h ∈
K(L, ξ, t, t0) the set

{(u, v) : (u, v) = w(t2, t1, h(p), p)}, (37)

where we assume that p runs over the entire domain of h and (τ, w(τ, t1, h(p), p)) ∈ H̃(t0, ξ) ∀τ ∈
[t2, t1]. The operator Ft1,t2 is a shift map from time t1 to time t2 along the solutions of system (22).
Note that we are considering a reverse shift, since t2 � t1.

Let us show that the operator Ft1,t2 acts from K(L, ξ, t1, t0) to K(L, ξ, t2, t0) in the sense that set
(37) is the graph of some function from K(L, ξ, t2, t0). Indeed, it follows from Lemma 3 and the general
theorem on the continuous dependence of solutions on the initial data that (37) is the graph of some
function satisfying the Lipschitz condition with constant L. The fact that the domain of this function is
the whole ball {v : ||v|| � α

4 ||x(t2, t0, ξ)||m/k} follows from Lemma 7.

Let us consider an arbitrary function

h : {v : ||v|| � α

4
(εL)

m
k , t � t0} �→ R

p,

such that h(0) = 0, ||h(v1)− h(v2)|| � L||v1 − v2|| ( εL here is taken from Lemma 3). It is easy to see
that the restriction of h on the set {v : ||v|| � α

4 ||x(t, t0, ξ)||m/k} belongs to K(L, ξ, t, t0) for any t � t0
and ||ξ|| � δ̄(L). Denote the function whose graph is given by formula (37) by Ft1,t2h.

Lemma 8. For any t � t0, there exists the limit of the sequence {Fn,th} as n → +∞ in the
metric of the space (K(L, ξ, t, t0), ρ).

Proof of Lemma 8. Let us notice that due to the Lipschitz condition, all the functions from
K(L, ξ, t, t0) are uniformly bounded and equicontinuous. Therefore, by the Arzela–Ascoli lemma, the
set (K(L, ξ, t, t0), ρ) is relatively compact. Thus, from the sequence {Fn,th} a converging subsequence
{Fnm,th} can be selected. Let us denote ht = lim

m→+∞
Fnm,th ∈ K(L, ξ, t, t0). Note that the solution

w(τ, t, ht(v0), v0) of system (22) stays in H̃(t0, ξ) for all τ � t. Indeed, if this is not the case, then

there exists a moment of time τ1 > t such that (τ1, w(τ1, t, ht(v0), v0)) �∈ H̃(t0, ξ). Since Fnm,th
ρ→ht for

m → +∞ and the set H̃(t0, ξ) is closed, then by the theorem on the continuous dependence of solutions
on the initial data there exists a natural M such that for all m > M ,

(τ1, w(τ1, t,Fnm,th(v0), v0)) �∈ H̃(t0, ξ). (38)

However, by the definition of Fnm,th, the solution w(τ, t,Fnm,th(v0), v0) belongs to H̃(t0, ξ) at least for
τ ∈ [t, nm]. Since nm → +∞, then for sufficiently large m, τ1 ∈ [t, nm] will hold true. Therefore (38) is
impossible, and we have arrived at a contradiction. Thus, (τ, w(τ, t, ht(v0), v0)) ∈ H̃(t0, ξ) for all τ � t.

Now let us consider the opposite to the statement of Lemma 8. Then from the sequence {Fn,th} we
can select another subsequence converging to some function h̃t ∈ K(L, ξ, t, t0) different from ht. Let v0
be such that h̃t(v0) �= ht(v0). Then at least one of the solutions w(τ1, t, ht(v0), v0) or w(τ1, t, h̃t(v0), v0)
should leave H̃(t0, ξ) as τ grows according to Lemma 6. But this contradicts the fact that both of them,
as was shown above, must remain in H̃(t0, ξ). This contradiction proves Lemma 8. �
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Let us define a vector-function hξ(v, t, t0) that represents the required locally integral surface by the
relation

hξ(v, t, t0)
def
= lim

n→+∞
Fn,th(v).

It follows from the equality Ft1,t2hξ(v, t1, t0) = hξ(v, t2, t0) that the surface u = hξ(v, t, t0) is indeed
locally integral, i.e., it consists of arcs of integral curves. Moreover, this equality and the theorem on
the continuous dependence of solutions on the initial data imply the continuity of hξ with respect to t.
Since hξ satisfies the Lipschitz condition with respect to v uniformly with respect to t, then hξ will be
continuous with respect to the set of variables (v, t).

Any solution starting on the surface u = hξ(v, t, t0) remains in H̃(t0, ξ) for all t � t0 and, according to
Lemma 5, satisfies estimates (20) and (21). The uniqueness of the found surface follows from Lemma 6.
Formula (19) follows from Lemma 3, where δ(L) is defined. As a result, Lemma 1 is completely
proved. �

Let us move on to the proof of the fact that the found surfaces completely fill some neighborhood of the
neutral surface (8) y = g(t, x). Note that the uniqueness of hξ implies that for fixed t and t0, the function

hξ continuously depends on ξ in the metric ρ introduced before Lemma 8, i.e., hξ
ρ→hξ∗ as ξ → ξ∗ for

all ||ξ∗|| � δ̄(L). Let Lξ denote the smallest Lipschitz constant for hξ. It follows from Lemma 1 that
Lξ → 0 for ||ξ|| → 0.

Let us define the following set:

H(δ) =
⋃

t0∈R, ||ξ||�min{δ̄(L),δ}

H(t0, ξ). (39)

Note that δ̄(L) defined by the formula (36) does not depend on t0. The set H(δ) is some neighborhood
of the surface (8). Proving the following lemma is sufficient to complete the proof of Theorem 2.

Lemma 9. There exists a δ2 > 0 such that for any solution z(t) = z(t, t0, z0) of system (1) with
initial data (t0, z0) ∈ H(δ2) there exists a ξ : ||ξ|| � δ2 such that the solution z(t) is located on
some surface of the form (18) passing through z(t, t0, ξ), i.e.,

x(t)− x(t, t0, ξ) = hξ(y(t)− y(t, t0, ξ), t, t0). (40)

Proof of Lemma 9. Since the surface hξ is integral, equality (40) holds for all t � t0 if it holds for
t = t0:

x0 − ξ = hξ(y0 − g(t0, ξ), t0, t0), (41)

where z0 = (x0, y0), z(t0, t0, ξ) = (ξ, g(t0, ξ)). Let us consider (41) as the equations for finding the
unknown ξ ∈ R

p from the known z0 ∈ R
p+q. We associate equation (41) with the mapping

Φ(ξ)
def
= x0 − hξ(y0 − g(t0, ξ), t0, t0). (42)

Obviously, the root of equation (41) is a fixed point of the map Φ, and vice versa. Thus, it is sufficient to
prove that there exists a δ2 > 0 such that for (t0, z0) ∈ H(δ2) and ||ξ|| � δ2 the map Φ has a fixed point.
To prove this, let us consider the ball

B = {ξ : ||ξ − x0|| � ||y0 − g(t0, x0)||}
and show that for sufficiently small ||ξ||, the map Φ takes B into itself. Applying the Lipschitz conditions
for hξ and g to show that

||Φ(ξ)− x0|| = ||hξ(y0 − g(t0, ξ), t0, t0)||
(19)
� Lξ||y0 − g(t0, ξ)||

� Lξ

(
||y0 − g(t0, x0)||+ ||g(t0, x0)− g(t0, ξ)||

)(8.2)
� Lξ

(
||y0 − g(t0, x0)||+ ||x0 − ξ||

)
(taking the definition of the ball B into account)

� 2Lξ||y0 − g(t0, x0)||.
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Since Lξ → 0 as ||ξ|| → 0, there exists a δ2 > 0 such that for ||ξ|| � δ2, the inequality Lξ � 1/2 holds,
and at the same time we can immediately assume that δ2 � δ̄(L), where δ̄(L) is taken from (36). Then

||Φ(ξ)− x0|| � ||y0 − g(t0, x0)||,
which means that the continuous mapping Φ takes the closed ball B into itself. It follows from the
Bohl–Brauer theorem that Φ has a fixed point in B. This proves Lemma 9. �

Lemma 9 completes the proof of Theorem 2. �
To characterise the neighborhood H(δ2) for which the existence of an invariant foliation is proved, we

can make the following remark.
Remark 3. The set

H̃(δ2)
def
= {(t, x, y) : ||y − g(t, x)|| � α

4
||x||mk , ||y|| � ||x|| � δ2, t ∈ R}

lies entirely in the H(δ2).

Indeed, let (t0, x0, y0) ∈ H̃(δ2). Then, if ξ = x0, we have

||y0 − y(t0, t0, x0)|| = ||y0 − g(t0, x0)|| �
α

4
||x0||

m
k =

α

4
||x(t0, t0, x0)||

m
k .

This means that (t0, x0, y0) ∈ H(t0, x0) ⊂ H(δ2). Thus, H̃(δ2) ⊂ H(δ2).
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