= ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ =

УДК 544.032.4+544.35.032.72

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ НА ОСНОВЕ ОКСИДОВ ГАФНИЯ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ

© 2023 г. В. А. Ворожцов^{а, b}, В. Л. Столярова^{а, *}, С. А. Кириллова^{b, c}, С. И. Лопатин^{а, b}

^аСанкт-Петербургский государственный университет, Университетская наб., 7—9,

Санкт-Петербург, 199034 Россия

^bИнститут химии силикатов им. И.В. Гребенщикова РАН, наб. Адмирала Макарова, 2,

Санкт-Петербург, 199034 Россия

^сСанкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), ул. Профессора Попова, 5, лит. Ф, Санкт-Петербург, 197022 Россия

> *e-mail: v.stolyarova@spbu.ru Поступила в редакцию 01.07.2022 г. После доработки 29.08.2022 г. Принята к публикации 31.08.2022 г.

Рассмотрены полученные ранее экспериментальные данные о процессах испарения и термодинамические свойства керамики на основе оксидов гафния и редкоземельных элементов при высоких температурах. Масс-спектрометрическим эффузионным методом Кнудсена впервые изучена система La₂O₃-Sm₂O₃ при температуре 2323 К. В результате идентифицирован состав пара над исследованными образцами керамики, определены концентрационные зависимости парциальных давлений молекулярных форм пара над рассматриваемой системой и термодинамических свойств в конденсированной фазе, таких как активности компонентов и избыточная энергия Гиббса. С привлечением полинома Вильсона определена энтальпия образования из оксидов и избыточная энтропия системы La_2O_2 -Sm₂O₃ при указанной температуре. На основе полученных данных рассчитаны термодинамические свойства в четырехкомпонентных системах La₂O₃-Sm₂O₃-Y₂O₃-HfO₂ и La₂O₃-Sm₂O₃-ZrO₂-HfO₂ по данным о равновесиях в соответствующих бинарных системах полуэмпирическими методами Колера, Редлиха-Кистера и Вильсона при температуре 2330 К. Результаты выполненного расчета сопоставлены с соответствующими величинами, оцененными ранее полуэмпирическими методами на примере систем $La_2O_3 - Y_2O_3 - ZrO_2 - HfO_2$ и $Sm_2O_3 - Y_2O_3 - ZrO_2 - HfO_2$. Показано, что в системах $La_2O_3 - Sm_2O_3 - Y_2O_3 - HfO_2$ и $La_2O_3 - Sm_2O_3 - ZrO_2 - HfO_2$ наилучшее соответствие с экспериментальными значениями активностей оксидов лантаноидов может быть получено при расчете на основе метода Вильсона.

Ключевые слова: испарение, термодинамические свойства, оксид лантана, оксид самария, высокотемпературная масс-спектрометрия

DOI: 10.31857/S0044457X22601055, EDN: LOJKSH

введение

Системы на основе оксидов циркония, гафния и редкоземельных элементов (**P3Э**) являются составной частью многокомпонентной керамики, представляющей значительный интерес для создания современных материалов высшей огнеупорности, благодаря высоким температурам плавления, низкой летучести, устойчивости к высокотемпературному окислению и высокотемпературной фазовой стабильности [1–5]. В частности, введение оксидов лантана и самария для стабилизации фазового состава керамики на основе ZrO_2 и HfO₂ перспективно для разработки материалов нового поколения, предназначенных для литья лопаток газотурбинных двигателей на ос-

нове никелевых сплавов и ниобиевых композитов [6, 7], а также для получения современных термобарьерных покрытий с повышенной термической стабильностью [8–10]. Однако повышение эксплуатационных температур выше 2000 К может приводить к избирательному испарению оксидов лантаноидов из указанных высокотемпературных материалов на основе оксидов гафния, циркония и РЗЭ, что, как правило, сопровождается изменением комплекса физико-химических свойств и потерей эксплуатационных характеристик керамики высшей огнеупорности.

При высокотемпературном изучении процессов испарения и термодинамических свойств многокомпонентных систем, содержащих оксиды гафния, циркония и РЗЭ, показано [11], что наиболее легколетучими компонентами являются оксиды лантаноидов, в частности оксиды лантана и самария. Этим продиктована необходимость изучения процессов испарения и термодинамических свойств системы La2O3-Sm2O3 с целью получения достоверной информации для дальнейшего исследования и разработки огнеупорных материалов на основе ZrO_2 и HfO₂, содержащих указанные оксиды лантаноидов. Полученные данные могут быть востребованы при синтезе керамических покрытий на основе рассматриваемых систем, например методами осаждения из газовой фазы, при выборе составов и условий применения получаемых материалов, а также для прогнозирования физико-химических свойств многокомпонентной оксидной керамики в рамках различных модельных подходов, включая моделирование фазовых равновесий в рамках подхода CALPHAD [12].

Фазовые равновесия в системе La₂O₃-Sm₂O₃ были неолнократно изучены экспериментально [13-15], а также рассчитаны в рамках подхода CALPHAD [16] с использованием только данных о фазовых равновесиях и в предположении о том, что термодинамические свойства всех твердых фаз подчиняются модели регулярных растворов, а расплав представляет идеальный раствор. В системе La₂O₃-Sm₂O₃ наблюдались твердые растворы на основе полиморфных модификаций индивидуальных оксидов. Полиморфные модификации, известные как у La_2O_3 , так и у Sm_2O_3 , такие как низкотемпературная гексагональная модификация A-La₂O₃ и A-Sm₂O₃, высокотемпературная гексагональная модификация H-La₂O₃ и H-Sm₂O₃, а также высокотемпературная кубическая модификация X-La₂O₃ и X-Sm₂O₃, формируют на фазовой диаграмме непрерывные твердые растворы от одного до второго компонента рассматриваемой системы [13–15]. Твердый раствор на основе моноклинной фазы B-Sm₂O₃, неизвестной для La₂O₃, имеет ограниченную область гомогенности и отделен от твердого раствора на основе А-модификаций оксидов лантаноидов двухфазной областью А + В. Показано [13–15], что максимальная температура существования моноклинного раствора в рассматриваемой системе соответствует температуре полиморфного превращения между моноклинной и гексагональной модификациями индивидуального Sm₂O₃, равной 2173 ± 30 К [16]. При оптимизации фазовых равновесий в системе La₂O₃-Sm₂O₃ наблюдались положительные отклонения от идеального поведения во всех твердых растворах, существующих в данной системе [16].

Известно [17], что индивидуальные оксиды лантана и самария испаряются с диссоциацией до

монооксида лантаноида и кислорода. В паре над Sm₂O₃ также идентифицирован атомарный самарий:

$$[Ln_2O_3] = 2(LnO) + (O), \qquad (1)$$

$$[Sm_2O_3] = 2(Sm) + 3(O),$$
(2)

где Ln = La или Sm, формулы в круглых и квадратных скобках отвечают газовой и конденсированной фазе соответственно.

Температурная зависимость парциального давления молекулярной формы LaO в паре над La₂O₃ неоднократно изучалась ранее [18–23]. Процессы испарения индивидуального Sm₂O₃, включая температурные зависимости парциального давления пара SmO и Sm, определены массспектрометрическим эффузионным методом Кнудсена в работе [24].

Таким образом, в настоящей работе проиллюстрированы потенциальные возможности полуэмпирических методов Колера, Редлиха–Кистера и Вильсона для расчета термодинамических свойств четырехкомпонентных систем на основе оксидов гафния и РЗЭ по данным о равновесиях в бинарных системах. Имеющаяся экспериментальная информация об изученных ранее бинарных системах на основе оксидов РЗЭ дополнена впервые полученными сведениями о высокотемпературном поведении системы La₂O₃–Sm₂O₃.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы в системе $La_2O_3-Sm_2O_3$ получены методом твердофазного синтеза на основе индивидуальных оксидов лантана и самария (ООО "Неваторг", Санкт-Петербург, Россия). Количество реагентов, взятых для синтеза, выбирали таким образом, чтобы получить образцы следующего химического состава (в мол. д.): $0.70La_2O_3-0.30Sm_2O_3$ (образец 1) и $0.30La_2O_3-0.70Sm_2O_3$ (образец 2).

Синтез образцов проводили по традиционной методике. Оксиды лантана и самария в выбранных соотношениях перетирали в присутствии этилового спирта в агатовой ступке. Продолжительность перетирания составила 1 ч на 1 г смеси порошков. Для получения таблеток образцов перед термической обработкой порошки прессовали под давлением 5 МПа. Термическую обработку образцов проводили в закрытых платиновых тиглях на воздухе в муфельной печи. Термическую обработку продолжали 24 ч при температуре 1573 К. Для дополнительной гомогенизации химического и фазового состава образцы подвергали повторному перетиранию с последующей термической обработкой. После промежуточного перетирания и прессования образцов в таблетки проводили отжиг в муфельной печи при температуре 1793 К в течение 10 ч. Охлаждение образцов

Рис. 1. Дифрактограммы изученных образцов в системе La_2O_3 - Sm_2O_3 , полученные в настоящей работе методом рентгенофазового анализа: *1* – экспериментальный спектр образца **1** 0.66 La_2O_3 -0.34 Sm_2O_3 (мол. д.), *2* – штрих-диаграмма эталона La_2O_3 (номер эталона в картотеке JCPDS #83-1345), *3* – штрих-диаграмма эталона $La(OH)_3$ (JCPDS #75-1900), *4* – экспериментальный спектр образца **2** 0.27 La_2O_3 -0.73 Sm_2O_3 (мол. д.), *5* – штрих-диаграмма эталона $(Sm_2O_3)_{0,77}(La_2O_3)_{0,23}$ (JCPDS #77-2316), *6* – штрих-диаграмма эталона Sm_2O_3 (JCPDS #42-1464).

осуществляли в режиме закалки на воздухе при комнатной температуре.

Элементный анализ синтезированных образцов в системе La₂O₃-Sm₂O₃ выполняли с использованием программно-аналитического комплекса на основе портативного рентгенофлуоресцентного кристалл-дифракционного сканирующего спектрометра Спектроскан МАКС-GF2E (НПО "Спектрон", Санкт-Петербург, Россия). Определенное содержание компонентов в изученных образцах, пересчитанное на формулы устойчивых оксидов лантаноидов, составило для образцов 1 и 2 0.66La₂O₃-0.34Sm₂O₃ и 0.27La₂O₃-0.73Sm₂O₃ (мол. д.) соответственно. Меньшее, чем предполагалось по синтезу, содержание La₂O₃ в исследованных образцах может быть связано с повышенной гигроскопичностью этого оксида и, как следствие, присутствием в нем абсорбированной воды, учет которой при расчете масс навесок для синтеза не проводился.

Фазовый состав полученных образцов идентифицирован методом рентгенофазового анализа на рентгеновском дифрактометре Rigaku Corporation SmartLab 3 (Rigaku Corporation, Токио, Япония) с Си K_{α} -излучением. Идентификация пиков на порошкограммах выполнена на основе программного комплекса PDWin 4.0 и пакета Crystallographica Search-Match (порошковая база данных ICDD PDF-2). Качественный и полуколичественный анализ фазового состава исследуемых образцов также проводился с использованием программы Rigaku SmartLab Studio II и базы данных Crystallography Open Database (COD). Полученные дифрактограммы изучаемых образцов системы La_2O_3 -Sm $_2O_3$ приведены на рис. 1.

На рентгеновской дифрактограмме образца 1 присутствуют рефлексы, соответствующие твердому раствору на основе гексагональной модификации A-La₂O₃. Для сопоставления на рис. 1 приведена штрих-диаграмма эталона A-La₂O₃ (номер эталона в картотеке JCPDS — #83-1345). Кроме того, по форме дифрактограммы образца 1 можно предположить частичную гидратацию образца из-за контакта с влагой атмосферы с образованием фазы La(OH)₃.

На рентгеновской дифрактограмме образца 2 идентифицированы рефлексы, соответствующие фазе $(Sm_2O_3)_x(La_2O_3)_{1-x}$ (твердый раствор на основе моноклинной модификации B-Sm₂O₃). На рисунке приведена штрих-диаграмма эталона (Sm₂O₃)_{0.77}(La₂O₃)_{0.23} (JCPDS #77-2316) как наиболее близкая по мольному соотношению содержания ионов металлов Sm^{3+} : La³⁺. Несмотря на некоторое несоответствие соотношений интенсивностей пиков, топология дифрактограммы отвечает указанной фазе. Несоответствие соотношений интенсивностей рефлексов на порошкограмме образца и штрих-диаграмме эталона $(Sm_2O_3)_{0.77}(La_2O_3)_{0.23}$ может быть связано с тем, что состав образца 2, как показано выше, отличается по соотношению содержания ионов Sm^{3+} : La³⁺ от указанного в карточке эталона. Кроме того, возможна частичная гидратация изученного образца.

Таким образом, результаты рентгенофазового анализа свидетельствуют о том, что фазовый состав полученных образцов 1 и 2 не противоречит известным данным о фазовых равновесиях в системе $La_2O_3-Sm_2O_3$. Это позволило использовать указанные образцы для изучения термодинамических свойств рассматриваемой системы массспектрометрическим эффузионным методом Кнудсена [25, 26].

Основные сведения о применении масс-спектрометрического эффузионного метода Кнудсена и особенности использованного оборудования для изучения процессов испарения и термодинамических свойств труднолетучих оксидных систем неоднократно приводились ранее [25–28]. По этой причине ниже будут описаны только наиболее важные особенности методики исследования, выполненного в настоящей работе.

Парциальное давление молекулярных форм пара над изученными образцами было определено методом сравнения ионных токов [25, 29] с использованием индивидуального La₂O₃ в качестве внешнего стандарта:

$$p_{i} = p_{s} \frac{I_{i^{+}} T_{i} \sigma_{s} \gamma_{s^{+}} f_{s^{+}}}{I_{s^{+}} T_{s} \sigma_{i} \gamma_{i^{+}} f_{i^{+}}},$$
(3)

где индексы *i* и *s* относятся к исследуемому образцу и индивидуальному La₂O₃ соответственно, p_i – парциальное давление молекулярной формы пара *i* над образцом, T_i – температура испарения образца, σ_i – сечение ионизации молекулярной формы пара *i*, γ_{i^+} – коэффициент конверсии вторичного электронного умножителя, f_{i^+} – изотопное распределение иона *i*⁺, полученного в массспектре пара при ионизации молекулярной формы *i*.

Сечения ионизации σ_i , необходимые для получения парциального давления молекулярных форм пара над образцами системы La₂O₃–Sm₂O₃ по уравнению (3), определяли согласно рекомендациям из работы [26]. Коэффициенты вторичного электронного умножителя γ_{i^+} приняты пропорциональными обратному квадратному корню из молекулярной массы иона i^+ .

Парциальное давление молекулярной формы пара LaO над La₂O₃ (p_s) может быть найдено из литературных данных [18–23]. При температуре 2323 К соответствующая величина составляет 0.56 [18], 0.61 [19], 1.11 [20], 1.40 [21], 1.61 [22], 2.21 [23] и 2.24 Па [20]. Из-за существенного разброса приведенных литературных значений $p_{s, LaO}$ целесообразно определить парциальное давление пара LaO над La₂O₃ в настоящей работе по уравнению (3) с использованием золота [30] в качестве внутреннего стандарта. Полученное значение $p_{s, LaO}$ над La₂O₃ составило (1.11 ± 0.09) Па при температуре 2323 К. Указанная величина использована в настоящей работе для определения парциального давления пара над системой $La_2O_3-Sm_2O_3$ по уравнению (3) с использованием La_2O_3 в качестве внешнего стандарта.

Активности La_2O_3 в изученной системе определены методом дифференциальной масс-спектрометрии [25, 29]:

$$a_{\text{La}_{2}\text{O}_{3}} = \frac{p_{\text{La}0}^{2} p_{\text{O}}}{p_{1 \alpha 0}^{\circ 2} p_{\text{O}}^{\circ \circ}},$$
(4)

где символ "о" соответствует индивидуальному La_2O_3 ; парциальное давление пара LaO над образцами исследуемой системы и стандартом было получено по уравнению (3), как отмечено выше;

парциальное давление кислорода $p_{\rm O}$ и $p_{\rm O}^{\circ}$ найдено

с использованием величин p_{LaO} и p_{LaO}° по уравнению Герца—Кнудсена, модифицированному Цайфертом [29, 31].

Преимущественное избирательное испарение La_2O_3 из образцов системы La_2O_3 — Sm_2O_3 позволило оценить тенденцию изменения состава конденсированной фазы при изотермической выдержке образцов при температуре 2323 К методом полного изотермического испарения [32, 33]. Для оцененных составов конденсированной фазы системы La_2O_3 — Sm_2O_3 было определено парциальное давление молекулярных форм пара и активности La_2O_3 при указанной температуре по уравнениям (3) и (4) соответственно.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изучение термодинамических свойств системы La₂O₃—Sm₂O₃

В масс-спектрах пара над образцом 1 системы La₂O₃-Sm₂O₃ начиная с температуры 2030 К идентифицированы ионы LaO⁺ и La⁺ с соотношением интенсивностей ионных токов 12 ± 2 при энергии ионизирующих электронов 25 эВ. При увеличении температуры до 2323 К в масс-спектре пара над указанным образцом зарегистрированы ионы LaO⁺ и La⁺ с соотношением интенсивностей ионных токов 10 ± 1, а также ионы SmO⁺ и Sm⁺ с соотношением интенсивностей ионных токов 1.1 ± 0.1 . Указанное соотношение интенсивностей ионных токов LaO⁺ и La⁺ в массспектре пара над образцом 1 не противоречит соответствующему соотношению в масс-спектре пара над индивидуальным La2O3, которое при температуре 2323 К составило 10.3 ± 0.9 . Как и ранее [23, 24], показано, что ионы LaO⁺, SmO⁺ и Sm⁺ соответствуют прямой ионизации молекулярных форм пара LaO, SmO и Sm над образцами системы La₂O₃-Sm₂O₃. Ионы La⁺ в масс-спектрах пара над изученными образцами керамики признаны осколочными, т.е. образовавшимися в

Рис. 2. Временные зависимости интенсивностей ионных токов в масс-спектрах пара над образцами **1** (а) и **2** (б), содержащими $0.66La_2O_3-0.34Sm_2O_3$ и $0.27La_2O_3-0.73Sm_2O_3$ соответственно (мол. д.): $1 - LaO^+$, $2 - La^+$, $3 - SmO^+$, $4 - Sm^+$. Числа в верхней части рисунка соответствуют мольной доле La_2O_3 , оцененной в конденсированной фазе системы методом полного изотермического испарения [33].

результате диссоциации LaO при ионизации электронами. Следовательно, состав газовой фазы над исследованными образцами соответствует молекулярным формам в паре над индивидуальными La₂O₃ и Sm₂O₃ [17].

Интенсивности ионных токов в масс-спектрах пара над образцами **1** и **2** измеряли до полного испарения указанных образцов, что позволило оценить методом полного изотермического испарения [32, 33] динамику изменения состава конденсированной фазы исследуемой системы La₂O₃–Sm₂O₃ в результате преимущественного испарения La₂O₃. Временные зависимости интенсивностей ионных токов в масс-спектрах пара над образцами **1** и **2** представлены на рис. 2.

Вследствие преимущественного испарения La_2O_3 из образца 1 (рис. 2а) мольная доля La_2O_3 в конденсированной фазе системы $La_2O_3-Sm_2O_3$, определенная методом полного изотермического испарения [32, 33], уменьшается от 0.66 до 0.02 при температуре 2323 К. Это позволило получить концентрационную зависимость парциального давления молекулярных форм пара LaO, SmO и Sm в системе $La_2O_3-Sm_2O_3$ по уравнению (3), приведенную в табл. 1.

Как следует из данных табл. 1, парциальное давление пара LaO над системой La₂O₃–Sm₂O₃ при температуре 2323 К уменьшается по мере обеднения конденсированной фазы оксидом лантана. При снижении мольной доли La₂O₃ в конденсированной фазе от 0.57 до 0.02 соотношение парциального давления молекулярной формы пара LaO к сумме парциальных давлений пара SmO и Sm уменьшается от 7 ± 1 до 1.7 ± 0.3. Следовательно, при температуре 2323 К наблюдается

преимущественное испарение La_2O_3 из образцов системы La_2O_3 – Sm_2O_3 при обогащении конденсированной фазы Sm_2O_3 .

Активности La_2O_3 в системе La_2O_3 —Sm₂O₃ определены по уравнению (4) при температурах 2323 и 2370 К при испарении образцов $0.66La_2O_3$ — $0.34Sm_2O_3$ и $0.27La_2O_3$ — $0.73Sm_2O_3$ (мол. д.) соответственно. Полученные данные свидетельствуют об отрицательном отклонении от идеальности в изученной системе.

Для определения активностей Sm_2O_3 и избыточной энергии Гиббса в исследованной системе проведена аппроксимация экспериментальных значений активностей La_2O_3 полиномами Редлиха—Кистера [34] и Вильсона [35, 36] в предположении о существовании непрерывного твердого раствора в изученных концентрационных и температурных интервалах системы La_2O_3 -Sm₂O₃:

$$\ln \frac{a_{\text{La}_2\text{O}_3}}{x_{\text{La}_2\text{O}_3}} = x_{\text{Sm}_2\text{O}_3}^2 [B + C(4x_{\text{La}_2\text{O}_3} - 1) + D(x_{\text{La}_2\text{O}_3} - x_{\text{Sm}_2\text{O}_3})(5x_{\text{La}_2\text{O}_3} - x_{\text{Sm}_2\text{O}_3})],$$

$$\ln \frac{a_{\text{La}_2\text{O}_3}}{x_{\text{La}_2\text{O}_3}} = -\ln(x_{\text{La}_3\text{O}_2} + \Lambda_{1.5}x_{\text{Sm}_2\text{O}_3}) + 0$$
(5)

$$+ x_{\mathrm{Sm}_{2}\mathrm{O}_{3}} \left(\frac{\Lambda_{\mathrm{LS}}}{x_{\mathrm{La}_{2}\mathrm{O}_{3}} + \Lambda_{\mathrm{LS}} x_{\mathrm{Sm}_{2}\mathrm{O}_{3}}} - \frac{\Lambda_{\mathrm{SL}}}{x_{\mathrm{Sm}_{2}\mathrm{O}_{3}} + \Lambda_{\mathrm{SL}} x_{\mathrm{La}_{2}\mathrm{O}_{3}}} \right),$$
(6)

где x_i — мольная доля компонента *i*; *B*, *C* и *D* — коэффициенты полинома Редлиха—Кистера, Λ_{LS} и Λ_{SL} — коэффициенты полинома Вильсона.

Показано, что при использовании полинома Редлиха–Кистера с тремя коэффициентами коэффициенты *С* и *D* становятся статистически не-

214

Содержание компонентов, мол. д.			a_{LaO}				
La ₂ O ₃	Sm ₂ O ₃	LaO	SmO	Sm	О		
0.57	0.43	0.80 ± 0.06	0.07 ± 0.01	0.038 ± 0.006	0.16 ± 0.01	0.46 ± 0.11	
0.55	0.45	0.78 ± 0.06	0.07 ± 0.01	0.038 ± 0.006	0.15 ± 0.01	0.42 ± 0.10	
0.53	0.47	0.74 ± 0.06	0.06 ± 0.01	0.034 ± 0.006	0.15 ± 0.01	0.36 ± 0.09	
0.49	0.51	0.73 ± 0.06	0.07 ± 0.01	0.036 ± 0.006	0.15 ± 0.01	0.35 ± 0.09	
0.45	0.55	0.67 ± 0.05	0.07 ± 0.01	0.035 ± 0.006	0.136 ± 0.009	0.28 ± 0.07	
0.42	0.58	0.58 ± 0.05	0.07 ± 0.01	0.035 ± 0.006	0.120 ± 0.008	0.18 ± 0.05	
0.39	0.61	0.58 ± 0.05	0.06 ± 0.01	0.035 ± 0.006	0.120 ± 0.009	0.18 ± 0.05	
0.34	0.66	0.48 ± 0.04	0.06 ± 0.01	0.025 ± 0.003	0.098 ± 0.007	0.10 ± 0.03	
0.28	0.72	0.46 ± 0.04	0.05 ± 0.01	0.027 ± 0.003	0.095 ± 0.007	0.09 ± 0.02	
0.26	0.74	0.44 ± 0.04	0.05 ± 0.01	0.027 ± 0.003	0.092 ± 0.007	0.08 ± 0.02	
0.23	0.77	0.36 ± 0.04	0.05 ± 0.01	0.027 ± 0.003	0.080 ± 0.006	0.05 ± 0.01	
0.23*	0.77*	_	_	_	_	$0.09\pm0.02^*$	
0.21*	0.79*	_	_	_	_	$0.09\pm0.02^*$	
0.20	0.80	0.32 ± 0.03	0.041 ± 0.004	0.020 ± 0.002	0.067 ± 0.006	$(3.0 \pm 0.9) \times 10^{-2}$	
0.20*	0.80*	—	_	_	_	$0.06\pm0.02^*$	
0.17*	0.83*	—	-	—	—	$(2.9 \pm 0.8) \times 10^{-2*}$	
0.15	0.85	0.28 ± 0.03	0.040 ± 0.004	0.020 ± 0.002	0.062 ± 0.005	$(2.3 \pm 0.7) \times 10^{-2}$	
0.14	0.86	0.26 ± 0.03	0.044 ± 0.009	0.021 ± 0.002	0.059 ± 0.005	$(1.8 \pm 0.6) \times 10^{-2}$	
0.14*	0.86*	—	_	_	—	$(1.6 \pm 0.4) \times 10^{-2*}$	
0.13*	0.87*	—	_	_	—	$(9 \pm 2) \times 10^{-3*}$	
0.12*	0.88*	_	_	_	_	$(1.0 \pm 0.3) \times 10^{-2*}$	
0.11	0.89	0.22 ± 0.02	0.056 ± 0.009	0.024 ± 0.002	0.053 ± 0.004	$(1.1 \pm 0.3) \times 10^{-2}$	
0.10*	0.90*	_	_	_	_	$(5.6 \pm 1.5) \times 10^{-3*}$	
0.09*	0.91*	—	_	_	—	$(2.2 \pm 0.6) \times 10^{-3*}$	
0.08*	0.92*	—	_	_	—	$(9.7 \pm 2.6) \times 10^{-4*}$	
0.07	0.93	0.19 ± 0.02	0.040 ± 0.004	0.020 ± 0.002	0.047 ± 0.003	$(8\pm2)\times10^{-3}$	
0.05	0.95	0.15 ± 0.01	0.040 ± 0.004	0.022 ± 0.002	0.042 ± 0.003	$(4.5 \pm 1.2) \times 10^{-3}$	
0.04	0.96	0.13 ± 0.01	0.040 ± 0.004	0.025 ± 0.003	0.040 ± 0.003	$(3.3 \pm 0.9) \times 10^{-3}$	
0.02	0.98	0.12 ± 0.01	0.044 ± 0.009	0.027 ± 0.006	0.039 ± 0.004	$(2.4 \pm 0.7) \times 10^{-3}$	

Таблица 1. Парциальные давления (p_i) молекулярных форм пара LaO, SmO, Sm, O и активности La₂O₃ ($a_{La_2O_3}$) в системе La₂O₃—Sm₂O₃, полученные в настоящей работе масс-спектрометрическим эффузионным методом Кнудсена при испарении образца **1** при температуре 2323 К и образца **2** при температуре 2370 К

* Данные, полученные при испарении образца 2 при температуре 2370 К.

Рис. 3. Концентрационные зависимости: а – активностей $La_2O_3(1, 2)$ и $Sm_2O_3(3, 4)$, б – избыточной энергии Гиббса (5, 6) в системе $La_2O_3-Sm_2O_3$ при температуре 2323 К согласно полиномам Редлиха–Кистера (1, 3, 5) и Вильсона (2, 4, 6). \blacksquare и \bigcirc – значения активности La_2O_3 , полученные масс-спектрометрическим эффузионным методом Кнудсена при испарении образцов 1 и 2 соответственно.

значимыми на уровне значимости 0.05. По этой причине для описания концентрационной зависимости активностей La₂O₃ в исследованной системе в уравнении (5) целесообразно использовать два ненулевых коэффициента *B* и *C*, равных 2.47 \pm 0.23 и 0.87 \pm 0.39 соответственно. В этом случае корень квадратный из оценки дисперсии ошибок σ равен 0.54 для натурального логарифма коэффициента активности La₂O₃ и 0.02 для активностей La₂O₃. Коэффициент детерминации R^2 для активностей La₂O₃ составил 0.98.

Значения коэффициентов полинома Вильсона (уравнение (6)) составили $\Lambda_{LS} = 2.040$ и $\Lambda_{SL} = 3.768$. Корень квадратный из оценки дисперсии ошибок σ равен 0.56 для натурального логарифма коэффициента активности La₂O₃ и 0.03 для активностей La₂O₃. Коэффициент детерминации R^2 для активностей La₂O₃ составил 0.98.

Концентрационные зависимости активностей La_2O_3 и Sm_2O_3 в системе La_2O_3 — Sm_2O_3 при температуре 2323 К, полученные в соответствии с полиномами Редлиха—Кистера и Вильсона, представлены на рис. За в сопоставлении с экспериментально найденными значениями активности La_2O_3 из табл. 1.

Полиномы Редлиха—Кистера (5) и Вильсона (6) для активностей La_2O_3 соответствуют следующим концентрационным зависимостям избыточной энергии Гиббса в системе La_2O_3 —Sm₂O₃ при температуре 2323 К (рис. 3б):

$$\Delta G^{E} = RT x_{\text{La}_{2}\text{O}_{3}} x_{\text{Sm}_{2}\text{O}_{3}} [B + C(x_{\text{La}_{2}\text{O}_{3}} - x_{\text{Sm}_{2}\text{O}_{3}})], \quad (7)$$

 $\Delta G^{E} = RT(-x_{\text{La}_{2}\text{O}_{3}} \ln(x_{\text{La}_{2}\text{O}_{3}} + \Lambda_{\text{LS}}x_{\text{Sm}_{2}\text{O}_{3}}) - x_{\text{Sm}_{2}\text{O}_{3}} \ln(\Lambda_{\text{SL}}x_{\text{La}_{2}\text{O}_{3}} + x_{\text{Sm}_{3}\text{O}_{3}})),$ (8)

где значения коэффициентов *B*, *C*, Λ_{LS} и Λ_{SL} равны соответствующим величинам в уравнениях (5) и (6).

Ранее показано [34], что полином Редлиха-Кистера с двумя коэффициентами В и С однозначно соответствует концентрационной зависимости избыточной энергии Гиббса бинарной системы в рамках модели субрегулярных растворов [37]. Следовательно, величины термодинамических свойств в системе La₂O₃-Sm₂O₃, полученные в настояшей работе при температуре 2323 К. свидетельствуют об отрицательных отклонениях от идеального поведения в рассматриваемой системе и могут быть описаны с привлечением модели субрегулярных растворов [37]. При этом ранее [16] при моделировании фазовых равновесий в рамках подхода CALPHAD в системе La_2O_3 -Sm₂O₃ были показаны положительные отклонения от идеальности и предполагалось, что термодинамические свойства в указанной системе подчиняются модели регулярных растворов [38]. Наблюдаемое несоответствие свидетельствует о необходимости проведения дальнейшей оптимизации высокотемпературных равновесий в системе La₂O₃-Sm₂O₃ с учетом не только данных о фазовых равновесиях, как в работе [16], но и впервые полученных в настоящем исследовании экспериментальных значений термодинамических свойств.

Известно [35, 36], что использование полинома Вильсона для описания концентрационной зависимости избыточной энергии Гиббса в бинарной системе позволяет в рамках допущений,

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 68 № 2 2023

Рис. 4. Энтальпия образования из оксидов (ΔH , *I*), избыточная энтропия, умноженная на температуру ($T\Delta S^E$, *2*), и избыточная энергия Гиббса (ΔG^E , *3*), оцененные в настоящей работе в системе La₂O₃-Sm₂O₃ при температуре 2323 K с привлечением метода Вильсона.

принятых в методе Вильсона, таких как вид выражения связи аппроксимационных коэффициентов Λ_{LS} и Λ_{SL} с энергетическими параметрами взаимодействия компонентов λ_{LS} , λ_{LL} и λ_{SS} , а также независимость разности энергетических параметров $\lambda_{LS} - \lambda_{LL}$ и $\lambda_{LS} - \lambda_{SS}$ от температуры, оценить энтальпию образования из оксидов (ΔH) и избыточную энтропию (ΔS^E) системы. В системе La_2O_3 -Sm₂O₃ с привлечением метода Вильсона были получены следующие концентрационные зависимости ΔH и ΔS^E при температуре 2323 К:

$$\Delta H = -15.979 \frac{2.040 x_{\text{La}_2\text{O}_3} x_{\text{Sm}_2\text{O}_3}}{x_{\text{La}_2\text{O}_3} + 2.040 x_{\text{Sm}_2\text{O}_3}} - (9) - 23.411 \frac{3.768 x_{\text{La}_2\text{O}_3} x_{\text{Sm}_2\text{O}_3}}{3.768 x_{\text{La}_2\text{O}_3} + x_{\text{Sm}_2\text{O}_3}}, (9) \Delta S = R(x_{\text{La}_2\text{O}_3} \ln(x_{\text{La}_2\text{O}_3} + 2.040 x_{\text{Sm}_2\text{O}_3}) + x_{\text{Sm}_2\text{O}_3} \ln(3.768 x_{\text{La}_2\text{O}_3} + x_{\text{Sm}_2\text{O}_3})) - (10) - \frac{2.040 x_{\text{La}_2\text{O}_3} x_{\text{Sm}_2\text{O}_3}}{(x_{\text{La}_2\text{O}_3} + 2.040 x_{\text{Sm}_2\text{O}_3})} \frac{15.979}{2.323} - (10) - \frac{3.768 x_{\text{La}_2\text{O}_3} x_{\text{Sm}_2\text{O}_3}}{(3.768 x_{\text{La}_2\text{O}_3} + x_{\text{Sm}_2\text{O}_3})} \frac{23.411}{2.323}, (10)$$

где $\lambda_{LS} - \lambda_{LL} = -15.979 \ \text{кДж/моль и } \lambda_{LS} - \lambda_{SS} = -23.411 \ \text{кДж/моль.}$ Концентрационные зависимости избыточной энергии Гиббса, энтальпии образования из оксидов и избыточной энтропии, оцененные в системе La₂O₃-Sm₂O₃ при температуре 2323 К в рамках метода Вильсона, представлены на рис. 4 согласно уравнениям (8)–(10).

Как следует из данных, представленных на рис. 4, энтальпия образования из оксидов в системе La₂O₃-Sm₂O₃ отрицательна, т.е. процесс взаимодействия La₂O₃ и Sm₂O₃ в устойчивых полиморфных модификациях при температуре 2323 К с образованием твердых растворов рассматриваемой системы сопровождается выделением теплоты. Избыточная энтропия изученной системы также отрицательна и достигает – 1.2 Дж/(моль К) при мольной доле La₂O₃, равной 0.23. Это свидетельствует о том, что энтропия образования из оксидов твердых растворов на основе системы La₂O₃-Sm₂O₃ меньше, чем энтропия образования из оксидов идеального раствора. По-видимому, это может быть связано с некоторой агрегацией разноименных компонентов (отклонением от случайного распределения) в исследованных твердых растворах по сравнению со случайным распределением компонентов в идеальном растворе. При этом энтропия смешения в системе La₂O₃-Sm₂O₃ остается положительной при всех содержаниях компонентов, достигая величины 4.85 Дж/(моль К) при мольной доле La₂O₃, равной 0.53. Таким образом, отклонение свойств твердых растворов в системе La₂O₃-Sm₂O₃ от закономерностей поведения идеального раствора в основном обусловлено энтальпией смешения при образовании растворов из индивидуальных оксидов, взятых в устойчивых модификациях при температуре 2323 К, при незначительном уменьшении энтропии смешения от величины, характерной для идеального раствора, вследствие отклонения от случайного распределения компонентов в твердых растворах.

Расчет термодинамических свойств в многокомпонентных системах на основе HfO₂ и оксидов РЗЭ

Полученные в настоящей работе концентрационные зависимости избыточной энергии Гиббса в системе La_2O_3 -Sm₂O₃ (уравнения (7) и (8)) позволили рассчитать термодинамические свойства четырехкомпонентных систем La_2O_3 -Sm₂O₃-Y₂O₃-HfO₂ и La_2O_3 -Sm₂O₃-ZrO₂-HfO₂ на основании данных о равновесиях в бинарных системах полуэмпирическими методами Колера [39], Редлиха-Кистера [34] и Вильсона [36] с использованием соответственно следующих уравнений:

$$\Delta G^{E} = \sum_{i,j=1,i< j}^{4} \left[\Delta G^{E}_{ij} \right]_{\frac{x_{i}}{x_{j}}} (x_{i} + x_{j})^{2}, \quad (11)$$

$$= RT \sum_{i,j=1,i< j}^{4} x_i x_j \Big[B_{ij} + C_{ij} (x_i - x_j) + D_{ij} (x_i - x_j)^2 + ... \Big],$$
(12)

 ΛG^E –

$$\Delta G^{E} = -RT \sum_{i=1}^{4} x_{i} \ln \left[\sum_{j=1}^{4} x_{j} \Lambda_{ij} \right], \qquad (13)$$

где $\left[\Delta G_{ij}^{E}\right]_{x_i/x_j}$ – избыточная энергия Гиббса в бинарной системе *ij* при том же соотношении мольных долей компонентов *i* и *j*, что и в четырехкомпонентных системах, B_{ij} , C_{ij} и D_{ij} – коэффициенты полинома Редлиха–Кистера, описывающего концентрационную зависимость избыточной энергии Гиббса в бинарной системе *ij*, Λ_{ij} и Λ_{ji} – коэффициенты полинома Вильсона, описывающего концентрационную зависимость избыточной энергии Гиббса в бинарной системе *ij*. Источники информации о термодинамических свойствах в соответствующих бинарных системах подробно описаны ранее в работе [40].

Активности оксидов лантаноидов в системах $La_2O_3-Sm_2O_3-Y_2O_3-HfO_2$ и $La_2O_3-Sm_2O_3-ZrO_2-HfO_2$ были оценены по уравнению Даркена [41] на основе величин избыточных энергий Гиббса, рассчитанных полуэмпирическими методами Колера, Редлиха-Кистера и Вильсона при температуре 2330 К. Кроме того, активности компонентов в рассматриваемых системах были рассчитаны на основе обобщенной решеточной теории ассоциированных растворов (**ОРТАР**) [42] при оптимизации значений термодинамических свойств в соответствующих бинарных системах. Экспериментальные и рассчитанные данные об активностях оксидов лантаноидов в системах

 $La_2O_3-Sm_2O_3-Y_2O_3-HfO_2$ и $La_2O_3-Sm_2O_3-ZrO_2-HfO_2$ приведены в табл. 2 в сопоставлении с ранее полученными величинами активностей компонентов в образцах четырехкомпонентных систем $La_2O_3-Y_2O_3-ZrO_2-HfO_2$ и $Sm_2O_3-Y_2O_3-ZrO_2-HfO_2$ [40].

Как следует из данных, приведенных в табл. 2, активности оксидов лантаноидов в образцах 5-8 систем La₂O₃-Y₂O₃-ZrO₂-HfO₂ и Sm₂O₃-Y₂O₃-ZrO₂-HfO₂, рассчитанные полуэмпирическими методами, были меньше экспериментальных данных в среднем в 24 раза в случае метода Колера, в 23 раза в случае метода Редлиха-Кистера и в 7 раз в случае метода Вильсона. Активности La_2O_3 , рассчитанные на основе ОРТАР в системе $La_2O_3 - Y_2O_3 - ZrO_2 - HfO_2$, были в среднем в 2 раза выше экспериментальных величин, а активности Sm_2O_3 в системе $Sm_2O_3-Y_2O_3-ZrO_2-HfO_2$ – в 2 раза ниже данных, найденных масс-спектрометрическим эффузионным методом Кнудсена. Таким образом, подход ОРТАР может быть рекомендован для оценки значений термодинамических свойств в системах La₂O₃-Y₂O₃-ZrO₂-HfO₂ и Sm₂O₃-Y₂O₃-ZrO₂-HfO₂ по данным о равновесиях в соответствующих бинарных системах. Одной из причин несоответствия экспериментальных данных и рассчитанных значений термодинамических свойств могут быть значительные взаимодействия в рассматриваемых системах, которые не учитываются при расчете полуэмпирическими методами и приводят к отклонению экспериментально полученных значений термодинамических свойств от величин, рассчитанных при аддитивном учете вкладов бинарных систем.

Другая ситуация наблюдалась при рассмотрении активностей оксидов лантаноидов в образцах 1-4 систем La₂O₃-Sm₂O₃-Y₂O₃-HfO₂ и La₂O₃-Sm₂O₃-ZrO₂-HfO₂. Активности La₂O₃, рассчитанные полуэмпирическими методами в образцах 1–4 при температуре 2330 К, были как больше, так и меньше экспериментальных данных. В среднем значения активностей La₂O₃, рассчитанные методами Колера, Редлиха-Кистера и Вильсона, отличались от экспериментальных величин в 1.6, 1.7 и 1.2 раза соответственно. Соответствующие значения, рассчитанные на основе ОРТАР в системе La₂O₃-Sm₂O₃-Y₂O₃-HfO₂, были в среднем в 3 раза выше экспериментальных величин, а в системе La_2O_3 - Sm_2O_3 - ZrO_2 - HfO_2 - в 23 раза выше экспериментальных данных. Таким образом, в системах $La_2O_3-Sm_2O_3-Y_2O_3-HfO_2$ и La₂O₃-Sm₂O₃-ZrO₂-HfO₂ полуэмпирический метод Вильсона приводит к наилучшему соответствию с экспериментальными данными об активностях La₂O₃ не только среди других использованных полуэмпирических методов, как в случае систем La₂O₃-Y₂O₃-ZrO₂-HfO₂ и Sm₂O₃-Y₂O₃-

ВОРОЖЦОВ и др.

Таблица 2. Активности оксидов лантаноидов $(a_{Ln_2O_3})$ в системах $La_2O_3-Sm_2O_3-Y_2O_3-HfO_2$ и $La_2O_3-Sm_2O_3-ZrO_2-HfO_2$ при температуре 2330 K, полученные масс-спектрометрическим эффузионным методом Кнудсена (I) и рассчитанные полуэмпирическими методами Колера (II), Редлиха–Кистера (III) и Вильсона (IV), а также на основе подхода ОРТАР (V) по данным о равновесиях в соответствующих бинарных системах, при сопоставлении с ранее полученными величинами в образцах четырехкомпонентных систем $La_2O_3-Y_2O_3-ZrO_2-HfO_2$ и $Sm_2O_3-Y_2O_3-ZrO_2-HfO_2$ при температуре 2373 K [40]

Образец	Содержание оксидов, мол. %				%	$a_{\mathrm{Ln_2O_3}}$				
Образец	La ₂ O ₃	Sm ₂ O ₃	Y_2O_3	ZrO ₂	HfO ₂	Ι	Π	III	IV	V
1	9.1	20.2	43.6	-	27.1	$(1.4 \pm 0.3) \times 10^{-2}$	2.2×10^{-2}	1.8×10^{-2}	1.3×10^{-2}	3.5×10^{-2}
2	18.1	10.2	44.1	—	27.6	$(1.6 \pm 0.3) \times 10^{-2}$	3.6×10^{-2}	3.2×10^{-2}	2.6×10^{-2}	6.0×10^{-2}
3	8.3	18.6	—	46.8	26.3	$(9.5 \pm 1.9) \times 10^{-4}$	1.1×10^{-3}	5.7×10^{-4}	8.9×10^{-4}	3.0×10^{-2}
4	17.0	9.4	—	47.5	26.1	$(1.7 \pm 0.4) \times 10^{-3}$	1.1×10^{-3}	8.6×10^{-4}	2.0×10^{-3}	2.5×10^{-2}
5*	12.0	—	20.0	43.3	24.8	$(9 \pm 2) \times 10^{-3}$	1.6×10^{-3}	1.2×10^{-3}	3.1×10^{-3}	3.0×10^{-2}
6*	20.4	-	9.3	42.9	27.4	$(5.2 \pm 1.6) \times 10^{-2}$	1.1×10^{-3}	1.2×10^{-3}	4.2×10^{-3}	5.1×10^{-2}
					$a_{\mathrm{Sm}_{2}\mathrm{O}_{3}}$					
1	9.1	20.2	43.6	—	27.1	$(6.7 \pm 1.8) \times 10^{-2}$	5.1×10^{-3}	5.5×10^{-3}	1.2×10^{-2}	5.8×10^{-2}
2	18.1	10.2	44.1	—	27.6	$(1.0 \pm 0.5) \times 10^{-2}$	1.5×10^{-3}	1.6×10^{-3}	3.2×10^{-3}	3.2×10^{-2}
3	8.3	18.6	_	46.8	26.3	$(1.7 \pm 0.4) \times 10^{-2}$	4.2×10^{-3}	4.9×10^{-3}	7.1×10^{-3}	1.9×10^{-2}
4	17.0	9.4	_	47.5	26.1	$(2.7 \pm 1.4) \times 10^{-3}$	2.9×10^{-3}	2.6×10^{-3}	2.7×10^{-3}	1.4×10^{-2}
7*	_	12.8	19.7	42.9	24.6	$(4.1 \pm 1.3) \times 10^{-2}$	1.8×10^{-3}	1.8×10^{-3}	6.7×10^{-3}	2.1×10^{-2}
8*	—	19.1	9.5	43.6	27.8	$(7 \pm 2) \times 10^{-2}$	3.5×10^{-3}	3.8×10^{-3}	1.0×10^{-2}	3.2×10^{-2}

* Результаты работы [40] при температуре 2373 К.

 ZrO_2 – HfO_2 [40], но и по сравнению с подходом ОРТАР.

Большее соответствие с экспериментальными данными активностей La_2O_3 , рассчитанных с привлечением полуэмпирических методов, по сравнению с результатами моделирования на основе подхода ОРТАР отмечено впервые. Ранее, как в случае систем $La_2O_3-Y_2O_3-ZrO_2-HfO_2$ и $Sm_2O_3-Y_2O_3-ZrO_2-HfO_2$ [40], при сопоставлении с экспериментальными величинами наблюдалось преимущество подхода ОРТАР для оценки значений термодинамических свойств в многокомпонентных оксидных системах по данным о равновесиях в соответствующих бинарных системах.

По-видимому, это связано с тем, что термодинамические свойства в системах $La_2O_3-Sm_2O_3 Y_2O_3-HfO_2$ и $La_2O_3-Sm_2O_3-ZrO_2-HfO_2$ в основном определяются парными взаимодействиями компонентов с незначительным влиянием содержания других компонентов на параметры парного взаимодействия, что позволяет рассчитывать термодинамические характеристики указанных систем по аддитивности соответствующих величин в бинарных системах. С учетом вышесказанного, можно заключить, что подход ОРТАР целесообразно использовать для расчета термодинамических свойств в системах, в которых сильные взаимодействия компонентов увеличивают значения термодинамических свойств по сравнению с величинами, определяемыми только через независимые парные взаимодействия компонентов, т.е. суммой вкладов бинарных систем. Полуэмпирические методы, наоборот, могут успешно применяться для оценки термодинамических свойств в многокомпонентных системах, термодинамические характеристики которых складываются аддитивно из независимых вкладов бинарных систем.

Активности Sm_2O_3 , рассчитанные в образцах 1–4 по данным о равновесиях в соответствующих бинарных системах полуэмпирическими методами Колера, Редлиха–Кистера, Вильсона и на основе подхода ОРТАР, отличаются от экспериментальных данных в среднем в 6 раз, 6 раз, 3 раза и 2.6 раза соответственно. Следовательно, для расчета активностей Sm_2O_3 в системах La_2O_3 – $Sm_2O_3-Y_2O_3-HfO_2$ и $La_2O_3-Sm_2O_3-ZrO_2-HfO_2$ целесообразно использовать подход ОРТАР и полуэмпирический метод Вильсона, причем метод Вильсона является менее трудоемким и приводит к большему соответствию с экспериментальными ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ

сматриваемых четырехкомпонентных системах.

ЗАКЛЮЧЕНИЕ

В данной работе рассмотрены имеющиеся экспериментальные данные о процессах испарения и термодинамических свойствах многокомпонентной керамики на основе оксидов гафния и редкоземельных элементов при высоких температурах, найденные с участием авторов настояшего исследования. Проведено исследование процессов испарения и термодинамических свойств системы La₂O₃-Sm₂O₃ при температуре 2323 К масс-спектрометрическим эффузионным методом Кнудсена. Впервые идентифицирован состав пара над изученными образцами керамики, определены парциальные давления молекулярных форм пара и активности La₂O₃ в рассматриваемой системе в концентрационном интервале 2-57 мол. % La₂O₃. Аппроксимация величин активностей La₂O₃ полиномами Редлиха-Кистера и Вильсона позволила определить концентрационные зависимости активностей Sm₂O₃ и избыточной энергии Гиббса при указанной температуре. Использование полинома Вильсона дало возможность впервые оценить энтальпию образования из оксидов и избыточную энтропию в системе $La_2O_3 - Sm_2O_3$.

С привлечением полученной информации о концентрационной зависимости термодинамических свойств в системе La2O3-Sm2O3 рассчитаны значения активностей оксидов лантаноидов при температуре 2330 К в системах La₂O₃-Sm₂O₃-Y2O3-HfO2 и La2O3-Sm2O3-ZrO2-HfO2 полуэмпирическими методами Колера, Редлиха-Кистера и Вильсона, а также на основе обобщенной решеточной теории ассониированных растворов (полхола ОРТАР) по данным о равновесиях в соответствующих бинарных системах. При сопоставлении с данными, полученными ранее при изучении систем La₂O₃-Y₂O₃-ZrO₂-HfO₂ и Sm₂O₃-Y₂O₃-ZrO₂-HfO₂ [40], выявлено, что оптимальным подходом для оценки активностей оксидов лантаноидов в системах $La_2O_3-Sm_2O_3-Y_2O_3-HfO_2$ и $La_2O_3-Sm_2O_3-ZrO_2-HfO_2$ по данным о равновесиях в соответствующих бинарных системах является метод Вильсона, а в системах La₂O₃-Y₂O₃-ZrO₂-HfO₂ и Sm₂O₃-Y₂O₃-ZrO₂-HfO₂ - подход OPTAP.

Следует подчеркнуть, что полученные в настоящей работе экспериментальные данные представляют существенный интерес как для дальнейшей оптимизации высокотемпературного описания системы La₂O₃-Sm₂O₃, так и для моделирования фазовых равновесий в многокомпонентных системах, включающих изученную бинарную систему. Результаты тестирования применимости полуэмпирических методов и подхода ОРТАР для расчета термодинамических свойств многокомпонентных систем по соответствующим данным в бинарных системах могут быть рекомендованы для рассмотрения в международных базах термодинамических данных и моделей, применяемых при оптимизации высокотемпературных равновесий в оксилных системах.

БЛАГОДАРНОСТЬ

Авторы признательны Криогенному отделу Научного парка Санкт-Петербургского государственного университета за предоставление жидкого азота, необходимого для работы масс-спектрометра МС-1301.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-33-90175.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wang J., Li H.P., Stevens R. // J. Mater. Sci. 1992. V. 27. № 20. P. 5397. https://doi.org/10.1007/BF00541601
- 2. Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. № 6. P. 22. https://doi.org/10.1016/S1369-7021(05)70934-2
- 3. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. № 12. P. 2363.
- https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
- 4. Pan W., Phillpot S.R., Wan C. et al. // MRS Bull. 2012. V. 37. № 10. P. 917. https://doi.org/10.1557/mrs.2012.234
- 5. Darolia R. // Int. Mater. Rev. 2013. V. 58. № 6. P. 315. https://doi.org/10.1179/1743280413Y.0000000019
- 6. Каблов Е.Н. Литые лопатки газотурбинных двигателей: сплавы, технологии, покрытия. М.: Наука, 2006. 632 c.
- 7. Петрушин Н.В., Оспенникова О.Г., Светлов И.Л. // Авиац. материалы и технологии. 2017. Т. 49. С. 72. https://doi.org/10.18577/2071-9140-2017-0-S-72-103
- 8. Cao X.Q., Vassen R., Stoever D. // J. Eur. Ceram. Soc. 2004. V. 24. № 1. P. 1. https://doi.org/10.1016/S0955-2219(03)00129-8
- 9. Чубаров Д.А., Матвеев П.В. // Авиац. материалы и технологии. 2013. Т. 29. № 4. С. 43. https://www.elibrary.ru/item.asp?id=20421193
- 10. Vassen R., Jarligo M.O., Steinke T. et al. // Surf. Coat. Technol. 2010. V. 205. № 4. P. 938. https://doi.org/10.1016/j.surfcoat.2010.08.151

- 11. *Казенас Е.К.* Термодинамика испарения двойных оксидов. М.: Наука, 2004. 551 с. https://elibrary.ru/item.asp?id=19468800
- Lukas H.L., Fries S.G., Sundman B. Computational thermodynamics: The Calphad method. Cambridge: Cambridge University Press, 2007. 313 p. https://doi.org/10.1017/CBO9780511804137
- Schneider S.J., Roth R.S. // J. Res. Natl. Bur. Stand. A. Phys. Chem. 1960. V. 64A. № 4. P. 317. https://doi.org/10.6028/JRES.064A.031
- Coutures J., Rouanet A., Verges R., Foex M. // J. Solid State Chem. 1976. V. 17. № 1–2. P. 171. https://doi.org/10.1016/0022-4596(76)90218-8
- 15. *Корнієнко О.А.* // Укр. хім. журн. 2018. Т. 84. № 3. С. 28.
- *Zinkevich M.* // Prog. Mater. Sci. 2007. V. 52. № 4. P. 597. https://doi.org/10.1016/J.PMATSCI.2006.09.002
- 17. *Казенас Е.К., Цветков Ю.В.* Термодинамика испарения оксидов. М.: Изд-во ЛКИ, 2008. 480 с. https://elibrary.ru/item.asp?id=19470483
- Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. Справочное издание / Отв. ред. Глушко В.П. М.: Наука, 1982. Т. IV. Кн. 2. 560 с.
- Shugurov S.M., Kurapova O.Y., Lopatin S.I. et al. // Rapid Commun. Mass Spectrom. 2017. V. 31. № 23. P. 2021. https://doi.org/10.1002/rcm.7997
- 20. Ackermann R.J., Rauh E.G. // J. Chem. Thermodyn. 1971. V. 3. № 4. P. 445. https://doi.org/10.1016/S0021-9614(71)80027-7
- Walsh P.N., Goldstein H.W., White D. // J. Am. Ceram. Soc. 1960. V. 43. № 5. P. 229. https://doi.org/10.1111/J.1151-2916.1960.TB14589.X
- Goldstein H.W., Walsh P.N., White D. // J. Phys. Chem. 1961. V. 65. № 8. P. 1400. https://doi.org/10.1021/J100826A029
- Vorozhtcov V.A., Stolyarova V.L., Lopatin S.I. et al. // J. Alloys Compd. 2018. V. 735. P. 2348. https://doi.org/10.1016/J.JALLCOM.2017.11.319
- Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Shugurov S.M. // Russ. J. Gen. Chem. 2020. V. 90. № 5. P. 874. [Столярова В.Л., Ворожцов В.А., Лопатин С.И., Шугуров С.М. // Журн. общ. химии. 2020. Т. 90. № 5. C. 787. https://doi.org/10.31857/S0044460X20050194] https://doi.org/10.1134/S1070363220050199
- Hilpert K. // Rapid Commun. Mass Spectrom. 1991.
 V. 5. № 4. P. 175. https://doi.org/10.1002/rcm.1290050408

- 26. *Drowart J., Chatillon C., Hastie J., Bonnell D.* // Pure Appl. Chem. 2005. V. 77. № 4. P. 683. https://doi.org/10.1351/pac200577040683
- 27. Lopatin S.I., Shugurov S.M., Tyurnina Z.G., Tyurnina N.G. // Glass Phys. Chem. 2021. V. 47. № 1. Р. 38. [Лопатин С.И., Шугуров С.М., Тюрнина З.Г., Тюрнина Н.Г. // Физика и химия стекла. 2021. Т. 47. № 1. С. 50. https://doi.org/10.31857/S0132665121010078] https://doi.org/10.1134/S1087659621010077
- Lopatin S.I. // Glass Phys. Chem. 2022. V. 48. № 2.
 P. 117. [Лопатин С.И. // Физика и химия стекла. 2022. Т. 48. № 2. С. 163. https://doi.org/10.31857/S0132665122020056] https://doi.org/10.1134/S1087659622020055
- 29. Семенов Г.А., Николаев Е.Н., Францева К.Е. Применение масс-спектрометрии в неорганической химии. Л.: Химия. Ленингр. отд-ние, 1976. 151 с.
- Paule R.C., Mandel J. // Pure Appl. Chem. 1972. V. 31. N
 N
 ⁰ 3. P. 371. https://doi.org/10.1351/pac197231030371
- Zeifert P.L. // High Temperature Technology. N.Y.: John Wiley, 1956. P. 485.
- 32. Сидоров Л.Н., Акишин П.А. // Докл. АН СССР. 1963. № 151. № 1. С. 136.
- Sidorov L.N., Shol'ts V.B. // Int. J. Mass Spectrom. Ion Phys. 1972. V. 8. № 5. P. 437. https://doi.org/10.1016/0020-7381(72)80014-7
- 34. Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 345. https://doi.org/10.1021/ie50458a036
- 35. Wilson G.M. // J. Am. Chem. Soc. 1964. V. 86. № 2. P. 127. https://doi.org/10.1021/ja01056a002
- 36. Orye R. V., Prausnitz J.M. // Ind. Eng. Chem. 1965. V. 57. № 5. P. 18. https://doi.org/10.1021/ie50665a005
- 37. *Hardy H.K.* // Acta Metall. 1953. V. 1. № 2. P. 202. https://doi.org/10.1016/0001-6160(53)90059-5
- 38. Hildebrand J.H. // J. Am. Chem. Soc. 1929. V. 51. № 1. P. 66. https://doi.org/10.1021/ja01376a009
- 39. *Kohler F.* // Monatsh. Chem. 1960. V. 91. № 4. P. 738. https://doi.org/10.1007/BF00899814
- Vorozhtcov V.A., Kirillova S.A., Shilov A.L. et al. // Mater. Today Commun. 2021. V. 29. P. 102952. https://doi.org/10.1016/j.mtcomm.2021.102952
- Darken L.S. // J. Am. Chem. Soc. 1950. V. 72. № 7. P. 2909. https://doi.org/10.1021/ja01163a030
- Barker J.A. // J. Chem. Phys. 1952. V. 20. № 10. P. 1526. https://doi.org/10.1063/1.1700209