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ABSTRACT 

The transonic turbulent two-dimensional airflow over a symmetric flat-sided double wedge is studied 

numerically. Solutions of the Reynolds-averaged Navier-Stokes equations are obtained with ANSYS-18.2 CFX 

finite-volume solver of second order accuracy on a fine mesh. The solutions demonstrate an extreme sensitivity 

of the flow field and lift coefficient to variation of the angle of attack α or free-stream Mach number M∞. Non-

unique flow regimes and hysteresis in certain bands of  α  and  M∞ are identified. Interaction of shock waves 

and local supersonic regions is discussed. The study confirms a concept of shock wave instability due to a 

coalescence/rupture of supersonic regions. In addition to the instability of shock wave locations, the numerical 

simulation shows a buffet onset, i.e., self-exciting oscillations due to instability of a boundary layer separation 

at the rear of wedge. Curious flow regimes with positive lift at negative angles α and, vice versa, with negative 

lift at positive angles α, are pointed out. A piecewise continuous dependence of the lift coefficient on two free-

stream parameters, α and M∞, is discussed. 
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NOMENCLATURE 

CL lift coefficient 

cp specific heat at constant pressure 

L   lift force 

LSR   Local Supersonic Region  

M   Mach number  

M∞   free-stream Mach number  

U   x-component of flow velocity  

V   y-component of flow velocity  

p   static pressure  

SW   Shock Wave 

t time   

T static temperature  

URANS   Unsteady Reynolds-Averaged Navier-  

                 Stokes 

x, y non-dimensional Cartesian coordinates 

α angle of attack 

γ ratio of specific heats 

Γ1 inflow part of boundary 

Γ2 outflow part of boundary 

ρ density 

 
 

1. INTRODUCTION 

There exist airfoils that admit extremely high 

sensitivity of transonic flow to free-stream 

parameters. Numerical studies of laminar flow over 

an X63T18S airfoil demonstrated essential changes 

of the flow field under small deviations of the free 

stream from on-design conditions (Pfenninger et al. 

1986). Later, numerical simulations of inviscid flow 

over four special airfoils showed the lift coefficient 

hysteresis in narrow bands of the angle of attack 

(Jameson 1991). Then non-unique flow regimes and 

high sensitivity to free-stream Mach number were 

revealed for symmetric airfoils at the vanishing angle 

of attack (McGrattan 1992; Hafez and Guo 1999a, 

1999b). 

Kuzmin (2005) suggested that the hysteresis and 

non-uniqueness occur if an airfoil involves a straight 

segment or nearly flat arc. Such a segment/arc 

provokes the arising of two local supersonic regions 

on the same side of airfoil. A coalescence/rupture of 

the regions (under variation of free-stream 

parameters) proceeds abruptly and produces 

essential changes in shock wave locations and entire 

structure of the flow. This concept was confirmed 

numerically for both turbulent and inviscid flows 

over symmetric and asymmetric airfoils and wings 

(Kuzmin 2012, 2014; Ryabinin 2015).  
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We notice that airfoils involving nearly flat parts 

have become of considerable practical interest in 

recent years because they arise as solutions of up-to-

date aerodynamic optimization problems (Destarac 

et al. 2018; Chen and Fidkowski 2019). 

A most simple explanation of the instability of shock 

wave locations was suggested for transonic flow over 

a flat-sided double wedge (Kuzmin 2020). The 

explanation is based on an analysis of types of shock 

wave reflection from the wedge near its corner points 

under variation of free-stream conditions. In 

particular, a transition from the regular to Mach 

reflection is shown to trigger a rupture of the 

supersonic region and a jump of the shock location 

upstream. In addition to the instability of shock wave 

locations, the turbulent flow exhibits a conventional 

buffet onset at the rear of wedge.   

In this paper, we consider turbulent transonic flow 

over the aforementioned double wedge and focus on 

the flow structure and hysteresis under variation of 

the angle of attack.  In Sections 2 and 3 we formulate 

the boundary-value problem and describe a 

numerical method. Then in Section 4 we analyze 

locations of supersonic regions and their effect on the 

lift coefficient at three free-stream Mach numbers 

M∞. Section 5 addresses multiple regimes at the 

vanishing angle of attack  α in a band of M∞. Finally, 

in Section 6 we discuss a surface illustrating the lift 

coefficient as a function of α and M∞, which is 

similar to the surface discussed in (Kuzmin 2005) for 

a smooth airfoil and inviscid flow. 

2. FORMULATION OF THE PROBLEM 

The double wedge under consideration is given by 

the expressions:   

 

(a)  nose:            y(x)= ±0.4x/3   at  0≤ x <0.3,    

(b)  flat midpart:  y(x)= ±0.04    at  0.3≤ x ≤0.7,    (1)  

(c)  tail:       y(x)=±0.4(1−x)/3    at  0.7< x ≤1.0, 

             

where Cartesian coordinates (x,y) are normalized by 

the wedge length l1=0.5 m. For numerical simulation 

of 2D airflow over wedge (1), we use the unsteady 

Reynolds-averaged Navier-Stokes (URANS) 

equations (Tennekes and Lumley 1992)  with respect 

to flow temperature T(x,y,t), density ρ(x,y,t), and 

velocity components U(x,y,t), V(x,y,t), where  t  is 

time. The air is assumed to be a perfect gas. The flow 

pressure p(x,y,t) is related to density and temperature 

by the equation of state  p=ρRT,  where R=cp−cp/γ  is 

specific gas constant,  γ=1.4 is the ratio of specific 

heats, and cp=1004.4 J/(kg K) is specific heat at 

constant pressure. 

The computational domain is bounded by wedge (1) 

and a pair of circular arcs Γ1 and Γ2 of radius 145 with 

endpoints x=0, y=±100, see Fig. 1. On Γ1 , we set the 

angle of attack α, Mach number M∞<1, and 

temperature T∞=250 K, which determine velocity 

components U∞=M∞a∞ cosα and V∞=M∞a∞ sinα,  

where a∞=(γRT∞)1/2. The level of free-stream 

turbulence is set to 1%. 

On Γ2, we prescribe the static pressure p∞=3×105 

N/m2. The no-slip condition and vanishing heat flux 

are imposed on the wedge. The Reynolds number 

calculated using the wedge length l1 is 3.0×107. 

 

 

 

Fig. 1. (a) Schematic of the computational 

domain and mesh, (b) a fragment of the mesh 

near the upper rear corner of wedge; the 

boundary layer thickness is about 0.006. 

 

3. NUMERICAL METHOD 

The system of URANS equations was solved with 

ANSYS-18.2 CFX finite-volume solver (see 

ANSYS 2022). We used the k-ω SST turbulence 

model which is known to reasonably predict 

transonic flows with boundary layer separation 

(Menter 2009). 2D meshes in the plane (x,y) were 

constituted by quadrangular cells in 40 mesh layers 

on wedge (1) and by triangular cells in the remaining 

region. Principal computations were performed on a 

mesh of 988,238 cells. Mesh nodes were clustered 

near the wedge for an accurate resolution of shocks 

and boundary layer. The non-dimensional distance  

y+ from the wedge to the first mesh node was less 
than 1.2.  The 3D mesh used by ANSYS CFX was 

obtained by an extrusion of the 2D mesh in the z-

direction from z=0 to z=l2=0.002 m. Test 

computations on a uniformly refined mesh of about 

1.5×106 elements demonstrated only an insignificant 

discrepancy between solutions calculated on the basic 

and fine meshes, see below Table 1.  

For the global time-stepping, we used an implicit 

backward Euler scheme. The timestep of 10-5 s  

produced solutions indistinguishable from those 

obtained at the time step of 5×10-6 s. The root-mean-

square Courant-Friedrichs-Lewy number was 

smaller than 2.  
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Table 1. Results of test computations of CL on 

three different meshes. 

   M∞ , α     Mesh  CL,max CL,min 

  

 

 

 M∞=0.839    

   α=0° 

coarse  

617,182 

cells 

 

0.053 

 

0.033 

basic   

988,238 

cells 

 

0.048 

 

0.028 

fine  

1,482,056 

cells 

 

0.046 

 

0.026 

 

 M∞=0.839    

    α=0.4° 

coarse  0.133 0.036 

basic  0.128 0.031 

fine  0.126 0.030 

 

 M∞=0.840    

    α=0° 

coarse  0.056 0.024 

basic  0.050 0.019 

fine  0.048 0.018 

 

M∞=0.840    

    α=0.4° 

coarse 0.145 0.035 

basic 0.140 0.029 

fine 0.138 0.027 

 

3. FLOW HYSTERESIS AT GIVEN  M∞ 

UNDER VARIATION OF THE ANGLE OF 

ATTACK  

First, we considered the case α=0.5°, M∞=0.839 and 

used the free-stream parameters as initial data. The 

obtained solution revealed a large local supersonic 

region (LSR) above the wedge and two smaller LSRs 

below it, see Fig. 2. The upper LSR is terminated by 

a shock wave (SW), which oscillates between a 

normal approach to the flat part of wedge and a 

regular reflection from the rear ramp. The 

aerodynamic force  �⃗� is obtained by integration of 

the pressure p over the wedge surface. Due to the 

shock-induced boundary-layer separation, the force  

�⃗�  exhibits intricate oscillations in time, and so does 

the lift  L which is a component of  �⃗� in the normal 

direction to the free stream. The obtained lift 

coefficient  CL=2L/(ρ∞ a∞
2 M∞

2 l1 l2) oscillates 

between CL,min=0.05 and CL,max=0.16, see Fig. 3. The 

frequency of oscillations is 62 Hz. 

Then we performed flow simulations at smaller 

angles of attack step-by-step from α=0.5° to 

α=−0.04°. At each step, flow parameters obtained at 

the previous value of  α  were used as initial data. The 

simulations showed that the amplitude of oscillations 

decreases with decreasing  α, see domain 1 in Fig. 4, 

and eventually it vanishes at point A (α=−0.04°). 

Though the upper LSR shrinks on the wedge and SW 

shifts upstream to the corner point  x=0.7, y=0.04, the 

general flow pattern persists, and lift coefficient 

remains positive.  

 

 
Fig. 2. Instant Mach number contours  

M(x,y,t)=(U2+V2)1/2/a=const   in a vicinity of 

wedge (1) at  M∞=0.839, α=0.5°. 

 

 
Fig. 3. Development of lift coefficient oscillations 

at  M∞=0.839,  α=0.5°. 

 

If the angle α drops below  −0.04°, then SW moves 

further upstream and meets the horizontal portion of 

wedge. That is why the incident angle changes 

abruptly, and regular reflection of the shock cannot 

exist. This implies formation of a Mach reflection 

with subsonic velocities downstream of the Mach 

stem. Therefore, the upper LSR ruptures, and SW 

shifts upstream at a distance from the corner  x=0.7, 

y=0.04. This is accompanied by a coalescence of 

LSRs below the wedge. The lift coefficient becomes 

oscillatory again and negative, as pointed out by the 

left arrow in Fig. 4.  

 

 
Fig. 4.  Margins of lift coefficient oscillations versus the angle of attack in the flow over wedge (1) at 

M∞=0.839. Sketches next to the curves hint at locations of supersonic regions. 
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Fig. 5. Margins of lift coefficient oscillations versus the angle of attack in the flow over wedge (1) at 

M∞=0.840. 

 

Further computations at larger and smaller values of 

α  step-by-step  in the band −0.5°≤ α ≤ 0.04° yield 

the full boundary of domain 2. In this flow regime, 

there is a single LSR below the wedge and two LSRs 

above it. Meanwhile, when α exceeds 0.04° (see 

point B in Fig. 4), computations show an inverse 

transition from domain 2 to domain 1. Therefore, in 

the band −0.04°≤ α ≤0.04°, there is a hysteresis in the 

dependence of  CL on  α.  

At the larger free-stream Mach number M∞=0.840, 

numerical simulations yield a similar plot of CL 

versus α, in which the hysteresis expands to the band 

−0.06°≤ α ≤0.06°, see Fig. 5. In particular, the flow 

obtained at α=0° in the regime with  CL>0 is depicted 

in Fig. 6. The flow pattern in the regime with  CL<0, 

α=0° can be obtained by reflection of Fig. 6 about the 

x-axis.  

We mention that an employment of a smaller 

computational domain would introduce a noticeable 

error in the numerical solutions. For example, a 

downstream shift of the inflow boundary Г1 to a 

position in which it intersects the x-axis at the point  

x=−25 instead of  x=−40 would mean the imposing 

of M∞=0.840 at this point. Meanwhile, the solution 

depicted in Fig. 6b shows that the actual value is 

M=0.8395. 

Table 1 illustrates results of test computations of CL 

on three different meshes. As seen, the discrepancies 

between values obtained on the basic and fine 

meshes are small enough and do not affect locations 

of curves in Figs. 4 and 5.  

Figure 7 demonstrates Mach number contours over 

wedge (1) obtained with an ANSYS Fluent solver 

(instead of ANSYS CFX) on the same computational 

mesh. A comparison of the flow fields displayed in 

Figs. 6a and 7 shows their good agreement. 

At  M∞=0.837, α=0.5° computations produce a flow 

with one LSR above the wedge and two LSRs below 

it, as in the previous cases with larger Mach numbers. 

However, a decrease of  α  to values  smaller than  

0.02° yields a transition to a steady flow with four 

LSRs, see the upper arrow in Fig. 8. Then further 

decrease of  α  to values smaller than  −0.05° results 

in a flow with two LSRs above the wedge and one 

LSR below it. 

 

 

(a)  a vicinity of the wedge 

 

(b) the far field 

Fig. 6.  Instant Mach number contours in the 

flow regime with  CL>0  at M∞=0.840, α=0°. 

 

 

Fig. 7.  Mach number contours in the flow 

regime with  CL>0  at  M∞=0.840, α=0° obtained 

with an ANSYS Fluent solver.
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Fig. 8.  Lift coefficient versus the angle of attack in the flow over wedge (1) at M∞=0.837. 

 

 
Fig. 9. Margins of lift coefficient oscillations versus the free-stream Mach number M∞ at  α=0°. 

 

4. FLOW NON-UNIQUENESS AT THE 

VANISHING ANGLE OF ATTACK  

The asymmetric solutions with three LSRs obtained 

in Section 4 at zero angle of attack and M∞=0.840 or  

M∞=0.839 can be employed as initial values for flow 

simulation at larger and smaller  M∞. The simulation 

showed that the asymmetric flows persist at  0.8375≤ 

M∞ ≤ 0.841, see domains 1 and 2 in Fig. 9. For 

instance, domain 1 corresponds to the same flow 

pattern with a regular reflection of SW from the rear 

ramp as in Figs. 6,7. The amplitude of lift coefficient 

oscillations decreases when M∞ decreases, and 

eventually it vanishes at M∞=0.8375. 

If M∞ becomes smaller than 0.8375, then the 

asymmetric flows cannot exist at  α=0°, as SW (being 

shifted upstream) meets the horizontal part of wedge. 

This entails formation of a Mach reflection of SW 

and transition to a steady symmetric flow with a pair 

of LSRs both below and above the wedge. Further 

variation of M∞ shows that the symmetric flow with 

CL=0 is stable in the band 0.835 ≤ M∞ ≤ 0.8395. At 

larger Mach numbers 0.8395< M∞ <0.841, the 

symmetric flow is unstable, that is why any 

perturbation triggers a transition to the asymmetric 

flow with CL>0  or  CL<0, see Fig. 9.  

The upper bound for the asymmetric flows with three 

LSRs, which correspond to domains 1 and 2 in Fig. 

9, is M∞=0.841. At larger Mach numbers, there is a 

transition to the symmetric flow with a single LSR 

both below and above the wedge. At M∞>0.8412, the 

symmetric flow exhibits oscillations due to the 

instability of boundary-layer separation at the rear of 

wedge.     

A comparison of Fig. 9 with results obtained for 

p∞=150,000 N/m2  in (Kuzmin 2020, Fig. 5) shows 

that the amplitude of lift coefficient oscillations rises 

with increasing p∞ and, consequently, increasing 

Reynolds number.   

5.  DEPENDENCE OF LIFT COEFFICIENT ON 

BOTH PARAMETERS, ANGLE OF ATTACK 

AND   M∞ . 

The piecewise continuous surface displayed in Fig. 

10 illustrates a dependence of CL on M∞ and α in the 

flow regimes with CL>0. The lower part of the 

surface shows the lift coefficient in the steady flow 

with four LSRs on wedge (1). The upper parts CL,max  

and CL,min determine margins of lift coefficient 

oscillations in the flow with three LSRs. Typically, 

the amplitude of oscillations increases with 

increasing angle  α . Meanwhile, there are drops of 

the amplitude and CL,max near the free-stream 

parameters α=0.5°, M∞=0.835. This is explained by 

a shift of SW foot to a position at the very corner 

x=0.7, y=0.04 which means a disappearance of the 

local supersonic region over the corner. As a 

consequence, the subsonic flow expansion over the 

convex wall is accompanied by an increase in the 

static pressure (see Fig. 11) and by a drop in CL. In  
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Fig. 10.  Lift coefficient CL as a function of  α  and  M∞  in flow regimes with CL>0  and three or four 

LSRs on wedge (1) at  0.835 ≤ M∞ ≤ 0.841. 

 

 

Fig. 11.  Instant pressure distributions over rear ramps at  M∞=0.835, α=0.5°. 

 

 

Fig. 12.  Curves in the plane (α, M∞) that show boundaries of different flow regimes over wedge (1). 

 

addition, a development of the larger LSR over the 

lower ramp decreases the static pressure beneath the 

wedge and contributes to the lift coefficient drop. 

A projection P□ of the 3D curve marked by squares 

in Fig. 10 onto the plane (α, M∞) determines 

maximum angles of attack for the flow regime with 

four LSRs, see Fig. 12. If α becomes larger than these 

values, then LSRs get into coalescence on the upper 

surface of wedge and yield a transition to flow 

regime with three LSRs.  

A projection P▼ of the 3D curve marked by triangles 

in Fig. 10 onto the plane (α, M∞) determines 

minimum angles of attack for the regime with three 

LSRs. If α becomes smaller than these values, and 

M∞<0.8375 (case 1 in Fig. 12), then the LSR ruptures 

on the upper surface of wedge and triggers a 

transition to flow regime with four LSRs.  

In order to trace all types of transitions, we need to 

take into consideration boundaries  P'□  and P∆ of flow 

regimes with CL<0, see the dashed curves in Fig. 12. 

The surface CL(α, M∞) illustrating the regimes with 

CL<0  can be obtained by a 180 degree rotation of the 

surface displayed in Fig. 10 about the M∞-axis. 

Projections  P'□  and P∆ of its edges onto the plane  (α, 

M∞) are symmetric to P□ and  P▼ about the line  α=0°. 

We notice that the full surface CL(α, M∞) looks  



A. Kuzmin / JAFM, Vol. 16, No. 1, pp. 1-7, 2023.  

7 

like the one obtained for inviscid flow over a smooth 

airfoil in (Kuzmin 2005, Fig. 8). 

At  0.8375<M∞<0.838, if  α decreases, e.g., from 0.2° 

to values a bit smaller than those determined by 

curve P▼, then the LSR ruptures on the upper surface 

of wedge and yields the flow with four LSRs and  

CL<0  (case 2 in Fig. 12). Further decrease of α leads 

to flow regime with  CL<0 and three LSRs.  

At  M∞>0.83825, if  α decreases from 0.2° to smaller 

values than those determined by curve P▼, then the 

LSR ruptures on the upper surface of wedge and 

yields the flow with  CL<0 and three LSRs (case 3 in 

Fig. 12).  

Similar three cases are true at increasing α from 

−0.2° to 0.2°. Shaded areas in Fig. 12 point out 

domains in which there is hysteresis accompanying 

transitions between different regimes of the flow.  

5. CONCLUSION 

The transonic flow simulations over wedge (1) at the 

Reynolds number of 3.0×107 revealed an extreme 

sensitivity of the lift coefficient and flow structure to 

variation of free-stream parameters. There exist flow 

hysteresis and non-uniqueness in certain bands of the 

angle of attack α and Mach number M∞. A theoretical 

interpretation of the hysteresis and non-uniqueness is 

based on the instability of shock wave reflection 

from the wedge in vicinities of its rear corners. Flow 

regimes with three local supersonic regions typically 

exhibit oscillations caused by the separation of 

boundary layer at the rear. Margins of the oscillations 

shrink with decreasing angle α.    
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