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A B S T R A C T   

A miniaturized clean-up and preconcentration procedure involving deep eutectic solvent-based solidified floating 
organic drop microextraction was developed for the determination of melatonin in pharmaceuticals and dietary 
supplements by high-performance liquid chromatography with UV detection. Melatonin is widely used for the 
treatment of a large spectrum of diseases, and many studies have focused on its efficacy in reducing COVID-19 
severity. For the first time, various hydrophobic deep eutectic solvents based on menthol, medium-chain fatty 
acids, and long-chain alcohols were studied for the microextraction of melatonin. Among the studied solvents, 
the deep eutectic solvent based on menthol and heptanoic acid provided the highest extraction recovery (90 %). 
In the developed procedure, a flat magnetic stirrer bar was covered by a microliter amount of the deep eutectic 
solvent and the sample solution was added under magnetic stirring. In this case, the deep eutectic solvent phase 
was easily dispersed into the aqueous phase without the use of any organic disperser solvents, resulting in fast 
analyte extraction (1 min). In the absence of stirring, the aggregation of extract as a floating drop on the surface 
of the aqueous phase was observed immediately. The low melting/freezing point and low density of the 
extraction solvent compared with water allowed one to quickly and easily retrieve a low volume of extract (25 
μL) in a microextraction procedure by solidification. Validation of the procedure showed that limits of detection 
and quantification, calculated from the blank tests based on 3σ and 10 σ, were 0.003 mg g− 1 and 0.01 mg g− 1, 
respectively.   

1. Introduction 

Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine hor-
mone derived from tryptophan and secreted by the pineal gland of 
vertebrates. Melatonin is considered a kind of regulator of circadian 
rhythms that affect most living organisms’ physiology, behavior, and 
metabolism, synchronizing the internal hormonal background and the 
daily cycle [1]. In the last decade, melatonin has been used for the 
treatment of the large spectrum of diseases, mainly in sleep disturbances 
and tumors [2]. Moreover, many studies focused on its efficiency in 
reducing COVID-19 severity [3]. Currently, many countries produce 
pharmaceuticals and dietary supplements containing melatonin [4]. 
Since melatonin is highly bioactive it is necessary to provide quality 
control of melatonin-containing products. 

For the determination of the melatonin in pharmaceutical samples 
chromatographic [5,6], capillary electrophoresis [7], spectro-
fluorimetric [8], and electrochemical [9] methods have been utilized 
(Table 1). Typically, the sample preparation procedures include a 
dissolution of solid-phase samples in relatively high volume (10–50 mL) 
of organic solvents such as ethyl acetate, methanol, and ethanol to 
reduce and eliminate the interferences originally present in the samples. 
Such procedures are in contradiction to the principles of sustainable 
“green” practices in modern pharmaceutical laboratories. To provide 
fast and green quality control of pharmaceuticals and dietary supple-
ments and ensure the safety of manufactured medicine products the 
development of miniaturized analytical procedures is required. 

One of the trends in modern pharmaceutical analysis is the intro-
duction of green solvents to the analytical procedures as alternative 
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solvents to hazardous one [10]. Among other solvents, deep eutectic 
solvents (DESs) have been assigned to new generation green solvents 
used for clean-up and preconcentration [11,12]. Typically, DESs are 
viscous liquids formed by mixing two or three components that are 
associated within hydrogen bond interactions using a hydrogen bond 
donor and a hydrogen bond acceptor to obtain an eutectic mixture 
[13–16]. Indeed, by changing the nature and ratio of their components, 
DESs can be adapted for extraction of wide a range of analytes. From this 
point of view, DESs can be considered as «designed» extraction solvents. 
Usually, components used for the synthesis of DESs are inexpensive, 
non-toxic, and often biodegradable [17–19]. Additionally, DESs have 
beneficial characteristics, such as high thermal stability, negligible 
vapor pressure, and non-flammability [20,21]. Despite the relatively 
high viscosity of DESs fast mass-transfer can be obtained by intensive 
phase mixing, ultrasonication, and in the presence of disperser solvents 
and emulsifier agents [22–25]. DESs have been utilized for effective 
separation of target substances from liquid- and solid-phase pharma-
ceutical samples [26]. 

However, mentioned DES-based sample preparation procedures 
have several drawbacks. One problem is associated with the in-
compatibility of hydrophobic DESs with chromatographic separation in 
water-polar organic solvent mixtures and MS-detection. Usually, DES- 
based extracts are diluted by polar solvent before chromatographic 
analysis or back extraction of target substances in an aqueous phase is 
required to introduce into a MS-detector [27]. Another problem is 
associated with the relatively high viscosity and low density of DESs. 
Such features of the solvents make the microliter amount of extract 
collection difficult and unreproducible. To exclude this drawback a so-
lidified floating organic drop microextraction (SFODME) has been pro-
posed [28]. This approach assumes an application of a small volume of 
an extraction solvent with melting point near room temperature. 
Application of polar, water-miscible disperser solvents in SFODME 
promotes the formation of a large surface area between aqueous and 
DES phases, resulting in the formation of a cloudy solution and fast 
mass-transfer. The drop is floated on the surface of an aqueous solution, 
solidified after extraction and manually picked up for subsequent 
analysis [29]. DES-based SFODME procedures have been found in 
application for the separation of various analytes from water [30], foods 
[31], urine and plasma samples [28,32]. To the best of our knowledge, 
DES-based SFODME has not yet been used for clean-up and pre-
concentration in pharmaceutical analysis. Moreover, the extraction of 
melatonin in DESs has not yet been presented in the literature. 

The purpose of the work was to develop a new approach for minia-
turized sample pretreatment in pharmaceutical analysis that assumes 
fast separation of the target analyte from sample matrix into low volume 

of DES without any emulsifier agents and disperser solvents. In the 
present research, a miniaturized clean-up and preconcentration pro-
cedure assumed DES-based SFODME was developed for the determina-
tion of melatonin in pharmaceuticals and dietary supplements by the 
high-performance liquid chromatography with UV detection (HPLC- 
UV). For separation of melatonin from aqueous samples hydrophobic 
DESs based on menthol, medium chain fatty acids, and long-chain al-
cohols were studied for the first time. 

2. Experimental 

2.1. Reagents and solutions 

All chemicals and reagents were of analytical grade. Ultra-pure water 
from Millipore Milli-Q RG system (Millipore Corporation, Bedford, USA) 
was used throughout the work. Medium chain fatty acids (hexanoic acid, 
heptanoic acid, and octanoic acid), long-chain alcohols (1-hexanol, 1- 
heptanol, 1-octanol), phosphoric acid, menthol and melatonin were 
obtained from Sigma-Aldrich (Sigma-Aldrich, St. Louis, USA). Acetoni-
trile was purchased from J.T. Baker Chemical Company (Phillipsburg, 
New Jersey, USA). A stock solution of melatonin (100.0 mg L− 1) was 
prepared by dissolving the reagent in 0.1 % phosphoric acid solution and 
it was stored in a refrigerator (5 ◦C) and used within 2 weeks. Working 
analyte solutions were prepared daily by appropriate dilutions of the 
stock solution with 0.1 % phosphoric acid solution. 

The DESs were prepared according to [33] by mixing long-chain 
alcohol (1-hexanol, 1-heptanol, 1-octanol) or medium chain fatty acid 
(hexanoic acid, heptanoic acid, and octanoic acid) with menthol in 3:1, 
2:1, 1:1, 1:2, 1:3 M ratios under heating and stirring at 50 ◦C until clear 
liquids were formed. After cooling, the DESs were stored at room tem-
perature and used for the DES-based SFODME procedure. 

2.2. Instrumentation 

A Shimadzu LC-20 Prominence liquid chromatograph (Shimadzu 
Corporation, Kyoto, Japan) with UV detection equipped with a Luna C18 
(2) column (250 mm × 4.6 mm, 5 μm; Phenomenex, USA) was used for 
the melatonin determination. 

A Fourier transform-infrared IR Prestige-21 spectrometer (Shimadzu, 
Japan) was used for the characterization of DES. 

A laboratory IKA RH digital stirrer (IKA, Germany) was used for the 
DES-based SFODME. 

Table 1 
Analytical procedures reported for melatonin determination in pharmaceutical samples.  

Detection method Sample preparation Solvent 
type 

Sample preparation 
time, min 

Solvent 
volume, 
mL 

LOD, 
µg L− 1 

Reference 

GC–MS Dissolution, solvent evaporation for 
preconcentration  

Ethyl acetate  25 10 0.02 [5] 

Spectro- fluorimetry Dissolution under sonication  Ethanol:water (1:1) 10 50 10 [8] 

Voltammetry Dissolution  Ethanol 
- 

– – 200 [9] 

Capillary 
electrophoresis 

Dissolution Phosphate buffer solution  10 25 300 [7] 

HPLC-UV Dissolution Methanol  – 10 3220 [6] 

HPLC-UV Dissolution under sonication, DES-based 
SFODME 

DES based on menthol and 
heptanoic acid 

25 0.025 3 
(0.003 mg 
g− 1) 

This work 

HPLC-UV – high performance liquid chromatography with ultraviolet detection; GC–MS – gas chromatography with mass spectrometry detection; DES – deep eutectic 
solvent; SFODME – solidified floating organic drop microextraction. 
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2.3. Samples and sample preparation 

Pharmaceuticals and dietary supplements containing melatonin 
were purchased in a local pharmacy (St. Petersburg, Russia). Before 
analysis, each table of the samples was weighted and homogenized in a 
mortar to a powder state. After, total amount of the powdered table was 
dissolved in 200 mL of phosphoric acid solution (0.1 %) under soni-
cation for 25 min at 30 ◦C. Then, 10 mL of the sample solution was 
filtered through a hydrophilic filter (0.45 μm). 

2.4. Microextraction procedure 

In a 10 mL vial, the flat magnetic stirrer bar was placed and 25 µL of 

DES (heptanoic acid-menthol, molar ratio 3:1) was spread on the mag-
netic stirrer bar (Fig. 1). The magnetic stirrer was switched on and 2 mL 
of the sample solution was inserted into the vial. Immediately the DES 
droplets were dispersed into the sample solution and the extraction of 
the analyte for 1 min was performed with stirring rate of 150 rpm. Then, 
the magnetic stirrer was switched off and the aggregation of DES as the 
floating drop on the surface of sample solution was observed immedi-
ately. The vial was transferred to an ice bath for 5 min to provide the 
solidification of the extract drop. After that, the aqueous phase was 
withdrawn. The DES phase contained menthol that has limited solubility 
in the used mobile phase. To increase the solubility of menthol in the 
mobile phase the dilution of extract in the acetonitrile (100 µL) was 
required. The resulting solution was directly injected into the HPLC-UV 
system. 

2.5. HPLC-UV procedure 

The chromatographic system was operated at 40 ◦C. The injection 
volume was 20 µL. The gradient elution program was carried out as 
follows: mobile phase of 0.1 % phosphoric acid (A) and acetonitrile (B) 
at a flow-rate of 1.0 mL min− 1. The concentration of solvent B was 30 % 
to 7 min, increased linearly to 90 % from 7 to 8 min and kept constant to 
11 min, then decreased to 30 % to 20 min and kept constant to 25 min. 
The analytical wavelength was 278 nm. 

Fig. 1. A deep eutectic solvent-based solidified floating organic drop micro-
extraction procedure for melatonin separation. 

Fig. 2. Optimization of microextraction (Cmelatonin = 10 mg L− 1, n = 3): (A) Effect of hydrogen bond donor type (Vsample = 1000 µL, VDES = 100 µL, hydrogen 
bond donor/menthol molar ratio of 2:1); (B) Effect of DES components ratio (Vsample = 1000 µL, VDES = 100 µL); (C) Effect of DES volume (Vsample = 1000 µL, 
heptanoic acid/menthol molar ratio of 3:1); (D) Effect of sample solution volume (VDES = 25 µL, heptanoic acid/menthol molar ratio of 3:1). 
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3. Results and discussion 

3.1. Preliminary studies 

In this research hydrophobic DESs based on menthol, medium chain 
fatty acids, and long-chain alcohols were studied for the extraction of 
melatonin. Natural monoterpenoid (menthol) was chosen as the 
hydrogen bond acceptor for DES-based SFODME since it has low melting 
point (39–40 ◦C [34]). Hexanoic, heptanoic, and octanoic acids, as well 
as 1-hexanol, 1-heptanol, and 1-octanol were chosen as the hydrogen 
bond donors for hydrophobic DESs synthesis because such hydrogen 
bond donors provide formation of liquid at room temperature DESs [19]. 
In the preliminary studies, all DESs were prepared at the hydrogen bond 
donor/menthol molar ratio of 2:1. 

The nature of DES precursor can affect the extraction efficiency. To 
study the effect of DES composition 1000 µL of working melatonin so-
lution (10 mg L− 1) was mixed with 100 µL of DES. Extraction mixture 
was stirred for 10 min, centrifugated and upper organic phase was 
withdrawn for analysis. It was found that melatonin can be extracted 
from all studied DESs. Extraction recovery values were in the range of 85 
to 90 % (Fig. 2 A). Melatonin is a relatively polar molecule (log Kow =
1.18) and its mass-transfer into the most hydrophobic DESs based on 
octanoic acid (log Kow = 3.05 [35]) and 1-octanol (log Kow = 3.00 
[35]) was less effective. More polar precursors such as hexanoic acid 
(log Kow = 1.88 [35]) and heptanoic acid (log Kow = 2.41 [35]) 
allowed to slightly increase in the extraction efficiency. At the same 
time, heptanoic acid is less soluble in water than hexanoic acid, which 
ensured the higher stability of DES in the aqueous phase. The stability of 
DES is especially important for SFODME assumed the use of the 
microliter amounts of extractants. Thus, for further experiments DES 
based on menthol and heptanoic acid was chosen due to its stability in 
the aqueous phase and excellent extraction properties. 

To confirm the DES formation, the FT-IR spectra of pure menthol, 
heptanoic acid, and DES were obtained. The O–H and C–O vibrations 
of pure menthol are positioned at 3243 cm− 1 and 1044 cm− 1, respec-
tively. In the FT-IR spectrum of pure heptanoic acid, absorptions 
belonging to O–H (3044 cm− 1) and C––O (1705 cm− 1) were observed. 
The characteristic peaks of both heptanoic acid and menthol are pre-
sented in the DES spectrum. In this spectrum, the O–H vibration of pure 
heptanoic acid and menthol was not observed. This may be due to the 
transfer of electrons from the oxygen atom to the hydrogen bond leading 
to a decrease in the force constant. Thus, this proves the existence of a 
hydrogen bond between heptanoic acid and menthol when the DES is 
formed. 

3.2. The microextraction procedure optimization 

3.2.1. Effect of DES components ratio 
On the one hand, molar ratio of heptanoic acid and menthol in DES 

phase effected on DES hydrophobicity and its affinity to melatonin. On 
the other hand, menthol as a component with melting point near room 
temperature effected on solidification temperature of DES phase. 

Initially, the effect of molar ratio of heptanoic acid and menthol in 
DES phase on the extraction recovery was investigated. For this, the 
molar ratio of heptanoic acid and menthol was varied from 1:3 to 3:1 at 
constant volumes of working melatonin solution (10 mg L− 1, 1000 μL) 
and DES (100 μL). The highest extraction recovery values were observed 
for DESs with the heptanoic acid and menthol molar ratios of 2:1 and 3:1 
(Fig. 2 B). For further experiments DES based on menthol and hexanoic 
acid at molar ratios of 3:1 was chosen due to less contain of menthol and 
its less effect on chromatographic separation. 

The solidification of obtained extracts at the molar ratio of 3:1 
(heptanoic acid menthol) was studied. It was found that the DES solid-
ification was observed in a conventional ice bath for 5 min. 

3.2.2. Effect of DES volume 
To achieve less extraction solvent consumption its volume was 

optimized. DES volume was varied from 10 to 100 µL and volume of the 
working melatonin solution (10 mg L− 1, 1000 μL) was constant. At DES 
volume of 10 μL, low reproducibility of results was observed (RSD 20 
%), while further increasing of DES volume resulted in increase of 
extract phase volume and dilution effect. The minimum RSD (<5%) and 
the maximum analytical signal were observed for 25 µL of DES (Fig. 2 C). 

3.2.3. Effect of sample solution volume 
The sample solution volume affects on phase ratio and obtained 

sensitivity. The volume of the aqueous melatonin solution was varied 
from 500 to 2500 µL and DES volume (25 µL) was constant. The 
analytical signal was increased with the increase of sample solution 
volume. It was established that sample solution volumes of 2000 and 
2500 µL provided comparable extraction efficiency (Fig. 2 D). Thus, the 
volume of the aqueous phase (2000 µL) was chosen as optimal and 
focused on minimum waste generation. 

3.2.4. Effect of extraction time 
To obtain maximum extraction recovery an extraction equilibrium 

should be achieved. Intensive stirring of the extraction system was uti-
lized to increase mass-transfer and obtain the extraction equilibrium. 
The extraction system stirring was carried out from 1 to 10 min with 
stirring rate of 150 rpm. The data obtained indicated that the stirring for 
1 min was enough to approach equilibrium. 

3.3. Validation 

For validation, the following parameters were evaluated: linearity 
and sensitivity, precision, accuracy, and recoveries. The extraction re-
covery was equal to 90 %. 

3.3.1. Linearity and sensitivity 
Under the optimized condition of DES-based SFODME procedure, the 

calibration curve for the melatonin determination was constructed from 
ten data points using the standard solution of the analyte. The calibra-
tion graph was linear over the concentration range of 0.1–150 mg L− 1 

(0.01–15 mg g− 1) with a regression coefficient of 0.999. The sensitivity 
was characterized by the limit of detection (LOD). It was measured by 
the standard IUPAC method as 3•standard deviation of the blank (3 s). 
The LOD was 0.003 mg g− 1. The limit of quantification was measured as 
10•standard deviation of the blank (10 s) and was 0.01 mg g− 1. 

3.3.2. Precision 
The precision of the procedure was evaluated concerning its 

repeatability and reproducibility. 
The repeatability of the developed procedure was determined by 

analyzing of 5 replicates of solutions with different melatonin concen-
trations (0.1 mg L− 1 or 150.0 mg L− 1). The RSD values were < 4.0 % and 
1.0 % for 0.1 and 150.0 mg L− 1 of melatonin, respectively. 

The reproducibility was assessed by applying the developed pro-
cedure with the usage of 2 different HPLC-UV systems at 2 different 
times. Results obtained with the laboratory-to-laboratory and day-to- 
day variations were found to be reproducible because the RSD values 
under conditions were < 7.0 % and 5.0 % for 0.1 and 150.0 mg L− 1 of 
melatonin, respectively. 

This level of precision is typical for HPLC-UV analysis of pharma-
ceutical samples. 

3.3.3. Accuracy 
The available solid dosage form of pharmaceuticals and dietary 

supplements were analyzed by the proposed procedure and by reference 
procedure [36]. The obtained results represent no significant differences 
in suggested and reference procedures (Table 1). Student’s t-test of 
statistical hypotheses about the equality of the means was used to test 
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the equality of the means of the experimental data obtained by devel-
oped procedure and by the reference procedure. Hypothesis about the 
equality of the means of the experimental data obtained by the devel-
oped procedure and by the reference procedure was taken as the null 
hypothesis (H0). Hypothesis about the difference between mentioned 
means was taken as an alternative hypothesis (H1). The significance was 
taken equal to the 0.05 level. Based on the obtained results, the observed 
differences were not contrary to hypothesis H0 and the obtained dis-
crepancies with the 0.05 significance level could be considered 
insignificant. 

3.3.4. Recovery 
Relative recovery values were determined by comparison of the 

received result of melatonin content and those to be claimed and indi-
cated in a pharmaceutical instruction sheet (label concentration value). 
The investigation was performed for 3 replicates of four samples. It is 
shown in Table 2 that relative recovery values are between 85 and 105 
%. 

3.3.5. Matrix effect 
Pharmaceuticals and dietary supplements usually contain excipients 

that can have interfering effects. According to the instruction sheets 
studied pharmaceuticals contain cellulose microcrystalline, calcium 
hydrogen phosphate, sodium croscarmellose, silicon dioxide colloidal, 
magnesium stearate, titanium dioxide, polysorbate 80, polyethylene 
glycol, talcum. Dietary supplements additionally contain vitamins such 
as pyridoxine and thiamine. To evaluate the matrix effect, comparison of 
the analytical signals for extracts obtained for the standard analyte so-
lution and sample solution (with the same analyte concentrations) was 
performed. To prepare the sample solutions the tablets were dissolved in 
50, 100 or 200 mL of 0.1 % phosphoric acid. The matrix effect was 
calculated according to the formula [37]: 

Matrix effect (%) =

(
peak areas of the sample

peak areas of the standart solution
− 1

)

× 100 

It was found that the sample solutions obtained by the pharmaceu-
ticals/dietary supplements dissolution in 50 and 100 mL of 0.1 % 
phosphoric acid had a significant matrix effect (from 13 to 23 % for 50 
mL and from 9 to 17 % for 100 mL). A minimum matrix effect (3–4 %) 
was observed when 200 mL of 0.1 % phosphoric acid was used. 

4. Conclusion 

The present study demonstrates a new miniaturized clean-up and 
preconcentration procedure for pharmaceutical analysis based on so-
lidified floating organic drop microextraction with the use of deep 
eutectic solvent. Magnetic stirring of deep eutectic solvent droplets into 
the aqueous sample phase allows obtaining fast mas-transfer without the 
use any of disperser solvents and emulsifier agents. For melatonin 
microextraction it was shown that the phases stirring for 1 min were 
enough to approach equilibrium with extraction recovery of 90 %. 
Moreover, the solidified floating organic drop approach allowed one to 
retrieve low volume of extract (25 μL) reproducibly. In this research 
hydrophobic deep eutectic solvents based on menthol, medium chain 
fatty acids and long-chain alcohols were investigated for the extraction 

of melatonin for the first time. Deep eutectic solvent based on menthol 
and heptanoic acid was characterized by stability in the aqueous phase 
and excellent extraction properties for melatonin. The microextraction 
procedure for the separation of melatonin from the sample matrices was 
coupled with HPLC-UV method and applied to the determination of the 
analyte in real pharmaceutical and dietary supplement samples. The 
proposed procedure is rapid, cheap, and environmentally friendly and 
assumes low consumption of the extraction solvent. 
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