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Abstract: The atomic structure and electronic and magnetic properties of two zig-zag-edged hexago-
nal nanohelicenes of the second type [1.2] and [2.2] were studied by the density functional theory.
These objects possess a helical periodicity and belong to the fifth family of line symmetry groups
in their global energy minimum. These nanohelicenes were shown by us to be diamagnetic metals
that undergo spontaneous symmetry breaking into antiferromagnetic semiconductors as a result of
the Mott–Hubbard metal-insulator transition. However, under some torsional stress, a reversible
transformation to a diamagnetic metal can take place, which is promising for the use of nanohelicenes
in electro-magneto-mechanical nanodevices.

Keywords: line symmetry groups; helical symmetry; DFT; helicene; graphene spiral; spontaneous
symmetry breaking; metal-insulator transition

1. Introduction

Helicity is a phenomenon widespread in nature. In particular, the basic elements of
living organisms, DNA and RNA, have a helical topology. In recent years, a variety of
methods have been developed that make it possible to synthesize helical nanoobjects [1].
Among them, we can mention chiral nanorods of various structures [2], chiral nanotubes,
in particular, carbon nanotubes [3], and nanotube nanoropes [4]. The polymer chemistry
of helically ordered polymers [5] is also rapidly developing: polyacetylenes [6], polythio-
phenes [7], polyfurans [8], and polytrypticenes [9] are just a small number of examples
of such systems. Special mention should be made of polymer systems with a continuous
conjugated π-system, in particular, nanohelicenes and carbon nanoribbons [10]. Nanohe-
licenes, NHs, (the names graphene spirals and graphene helicoids are also used in the
literature) are systems that extend the idea of helicene twisting [11] to infinity. For the first
time, polymer systems with an NH skeleton were obtained quite recently [12–14]. Using
the basic skeleton, many variations of NHs can be modeled, for example, by the expansion
of the shaft and the extension of the ribbon [15].

The properties of NHs and their derivatives are actively studied by theoretical methods
due to the unique natural spring topology, which leads to great opportunities in the
reversible mechanical modulation of various properties of NHs. Among such works,
we note the study of the mechanical properties of NHs by the methods of molecular
dynamics [16–28]. The electronic structure of NHs of various types was studied by semi-
empirical DFTB methods [29–31] and non-empirical DFT methods [32–42]. It has been
shown that various families of NHs are possible, including diamagnetic semiconductors,
antiferromagnetic semiconductors, ferromagnets, and metals. This diversity, combined with
the spring structure and helically coiled continuous π-system, makes NHs very promising
for future applications in nanotechnology.

Let us briefly consider the nomenclature of zig-zag-terminated hexagonal [m.n] he-
licenes (for more details, see [38]). The width of the ribbon in hexagons is given by the index
n and the radius of the shaft in hexagons by the index m. The parity of n determines the type
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of NH. If n is odd, then the NH is a diamagnetic semiconductor; NHs with an even n are
metals that are unstable against the transition to an antiferromagnetic semiconductor [38].
The m index changes only the quantitative characteristics of NHs. For example, an increase
in m leads to a decrease in the electronic band gap, Egap [38].

It should be noted that all the theoretical studies mentioned above (including [38])
did not take into account the torsional degree of freedom, which is characteristic of such
systems. All of the theoretical studies were carried out under the assumption that each coil
of the NH is located exactly above the previous one. However, it is known from the data
of X-ray diffraction analysis of molecular helicenes [43] that this assumption is incorrect;
the coils are additionally twisted relative to each other, and the direction of the twisting, as
well as its magnitude, is a priori unknown and requires an additional study.

In our works [44,45], an algorithm was proposed for calculating the twisting properties
of such structures by ab initio methods based on the theory of line symmetry groups [46–51].
The algorithm was tested on a group of NHs with an odd n [44,45]. In addition, the algo-
rithm was applied to the quantum chemical study of other helically periodic structures,
such as polytwistanes [52] and helical polyacetylenes [53]. All mentioned nanostructures
belong by symmetry to the first or fifth family of the line symmetry groups, which means
that in fact, they are examples of helically periodic structures without translational peri-
odicity [54]. Due to the presence of planes of symmetry, the line groups of the remaining
11 families always include translational symmetry [50]. The presence of symmetry planes
leads to the rationality of the twist angle, and their absence makes possible irrational values
of the angle and the absence of translational periodicity (see details in Section 2.1).

Depending on the edge structure, the hexagonal NHs are classified as zig-zag- or
arm-chair-terminated ones. Here, the results of a theoretical study of the atomic, electronic,
and magnetic structure of zig-zag-terminated hexagonal NHs with an even n are presented:
two NHs with n = 2 and m = 1,2 were under consideration (see Figure 1). The most
symmetric state of NHs with an even n has metallic properties, so it is necessary to take
into account the possibility of spontaneous symmetry breaking, which is realized through
the metal-insulator transition (MIT). Two types of MIT are possible for metallic quasi-
one-dimensional (Q1D) nanosystems—the Peierls MIT (electron–phonon interactions [55])
and the Mott–Hubbard MIT (electron–electron interactions [56]). It was shown that the
transition of the Mott–Hubbard type is most advantageous [38]. It was also shown in [41]
that the Mott–Hubbard type transition is beneficial for the carbon skeleton of nanohelicene
(i.e., without saturation of free carbon valences by hydrogen atoms), indirectly confirming
the correctness of the results of [38].
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colors represent hydrogen and carbon atoms, respectively.
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We should note our results of [53], in which helical polyacetylenes were studied.
It was shown that helical polyacetylenes could be formally considered as NHs with an
n = 0. It is known that the highly symmetrical state of polyacetylene is a metal, which
means that spontaneous symmetry breaking is expected. This result has been obtained by
us for helical polyacetylenes.

2. Computational Details
2.1. Line Symmetry Groups

In the line symmetry group, L, theory [50] a roto-helical factorization is used:

L = ZP (1)

The point symmetry of a monomer compatible with helical symmetry is described by
the group P. Thirteen families of line groups are possible [50]. In the case of the first family
of line symmetry groups, only pure rotations about the helical axis are operations of P.
Here, only NHs with one helix are considered, so P = C1, and the line symmetry group of
the NHs coincides with the helical factor, L = Z. If the NHs are invariant under rotations by
an angle of 180◦ around the U axes, perpendicular to the principal axis, Oz, the point group
is P = D1, and the line symmetry group is L = Z ∧ D1 (the fifth family). It should be noted
that only the first or fifth families are compatible with the incommensurate helical factor Z.

Z is called a generalized translation and is written as Z = (X|f ), where X is either the
rotation, CQ, or the reflection, σV, and f > 0 is the partial translation along the z-axis. Elements
of Z act on the monomer, mapping it onto the adjacent one and thus generating an infinite
cyclic group, Z. In the case of NHs, X can be only CQ, and the group Z is called helical. CQ
is an operation of rotation around the z-axis by a rotation angle determined by Q (the order
of the helical axis):

ϕ =
360◦

Q
, Q ≥ 1 (2)

The translational periodicity appears only when Q is rational, i.e.,

Q =
q
r

, where q > r and q, r—coprime. (3)

Then, the rotation angle in such cases is equal to:

ϕ =
r·360◦

q
(4)

When Q is rational, then, in addition to the helical periodicity (the rotations around
the screw axis of order q), there is a translational periodicity with a translational period, T:

T = q f . (5)

In this case, L = TP also (the crystallographic factorization), and the L group is called
commensurate [50].

When Q is irrational, the system is called incommensurate [50] and has no translational
periodicity (but the helical periodicity remains).

2.2. Modelling of the Metal-Insulator Transition

The conducting state of Q1D objects is unstable and undergoes a spontaneous sym-
metry breaking with an electronic band gap arising, i.e., the MIT. Two types of MIT are
known. In the case of the Peierls MIT [55], a bond order wave arises, i.e., an alternation of the
single and double bonds from the initially equivalent aromatic C-C bonds of the conducting
state. The neighboring atoms of the same orbit (i.e., the set of atoms linked together by
symmetry group operations) of the conducting state are no longer equivalent. The decrease
in symmetry occurs due to the decrease in the symmetry of the nuclear core. In the case
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of the Mott–Hubbard MIT [56], the nuclear core does not change the initial symmetry, the
electronic band gap appears, and the energy decreases due to the spin degrees of freedom.
An alternating spin density occurs (the spin density wave) on two adjacent monomers that
are no longer equivalent.

The study of the antiferromagnetic states requires the application of the magnetic line
groups theory [57]. In the case of the first family of line symmetry groups with P = C1, only
klassengleiche magnetic groups are possible:

Lmag = Z′ + θZ′. (6)

Here, θ is the time reversal operation, and Z’ is a subgroup of Z of index 2. Group Z is
a line symmetry group of an initial metallic structure.

Thus, the simulation of both types of MIT can be performed in a similar way. If Q and f
are parameters of the initial structure, then the dimerization of the neighboring monomers
(the Peierls MIT) or the possibility of an alternating spin on the neighboring monomers
(the Mott–Hubbard MIT) leads to a doubling of f and a halving of the helical axis order Q:

Q′ =
Q
2

and f ′ = 2 f . (7)

There are no physical reasons to consider Q and Q′ as rational. Nevertheless, the
method used [44] is based on an interpolation between the rational orders of the helical
axis, so Q and Q′ should be rational. Since a rational number can be represented as a ratio
of two coprime integers, then Q = q

r (Equation (3)), and Q′ must be equal to Q′ = q
2r . There

are only two variants:

1. q is even, q′ = q
2 , Q′ = q′

r . Parameters q’ and r are coprime integers.
2. q is odd, r′ = 2r, Q′ = q

r′ . Parameters q and r’ are coprime integers.

If CxHy is the formula of the monomer in the initial structure, then the monomer of
the dimerized states (the dimer) is C2xH2y. The atoms of the dimer are atoms of the initial
monomer and the next neighboring monomer (see Figure 1). When the dimer calculations
are performed by the DFT (Kohn–Sham) method without spin polarization, the results
obtained are diamagnetic and correspond to the Peierls MIT. Using the spin-polarized DFT,
one can obtain the antiferromagnetic ordering of the dimerized state, which describes the
Mott–Hubbard MIT. It should be noted that our calculations of the electron density are
self-consistent (the Kohn–Sham scheme). This means that if the diamagnetic state is lower
in energy than the antiferromagnetic state, then a diamagnetic state will be obtained as
a result of self-consistency. The Mott–Hubbard and Peierls MITs are qualitative models
that make it possible to understand the physical meaning of the ab initio DFT results. The
presented scheme of the modeling of the MIT was previously used by us in the case of
helical polyacetylenes [53].

2.3. Calculation Parameters

The CRYSTAL17 software package was used for the calculations [58,59]. This suite
is designed for high-quality ab initio calculations of the atomic and electronic structure
and other properties of periodic systems of various dimensions, in particular, systems with
helical symmetry [60]. The hybrid PBE0 functional was used [61]. The pob-TZVP atomic
basis set (a full electron) was used [62]. The total electronic energy per cell was calculated
with a convergence threshold of 10−9 Ha. The truncation criteria 10−7, 10−7, 10−7, 10−7,
and 10−14 were used for two-electron integrals of the Hartree–Fock exchange and Coulomb
series (when the overlap between two atomic orbitals is smaller than the criterion given,
the corresponding integral is disregarded or evaluated in a less precise way). Both the
translational period and atomic positions have been optimized. The gradient threshold
was set equal to 0.0003 Ha·Bohr−1. The Monkhorst–Pack [63] integration method of the
one-dimensional Brillouin Zone was used with a 32 k-point sampling.
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3. Results and Discussion
3.1. Energy Minima and Atomic Structure

The coexistence of several states makes the quantum chemical study of NHs [m.n] of
the second type (with an even n) much more complicated than the earlier calculations of
NHs of the first type (with an odd n), which are diamagnetic semiconductors [44].

For each NH under study, it is necessary to consider the monomer state, which is a
diamagnetic metal, “mono” [38]. A spin-polarized calculation of this symmetric state can
lead to the appearance of a ferromagnetic ordering, i.e., the “ferro” state.

The study of the MIT requires the calculation of a system with a doubled monomer (the
dimer). The dimer calculation without spin polarization allows one to investigate the Peierls
MIT. Such a state we call a “dim” state. The dimer calculation with spin polarization allows
the manifestation of the Mott–Hubbard MIT with the appearance of an antiferromagnetic
state, “af”.

It should be noted that spin-polarized calculations may be made using a guess, in
which the expected version of the spin ordering is specified in the input for the self-consistent
calculation. In particular, such a possibility exists in the CRYSTAL17 code [58,59] used by
us for NHs’ calculations (see below). It is important to emphasize that the final electronic
structure is self-consistent; no additional spin-restriction conditions are imposed during
the self-consistent calculation. Therefore, the final electronic structure calculated after a
preliminary guess of the spin distribution can be either spin-polarized or diamagnetic,
whichever state is more favorable by the energy. In the latter case, the result obtained will
coincide with the results of the corresponding calculation without spin polarization. Thus,
if spin polarization is unfavorable, then the calculation with the preliminary guess “ferro”
or “af” will converge to the electronic structure of the “mono” or “dim” states, respectively.

Thus, for [1.2] helicene and [2.2] helicene, the structure and the properties were
calculated in the four different states mentioned. We used the monomers C9H3 and C15H5
and the dimers C18H6 and C30H10 for the [1.2] helicene and [2.2] helicene, respectively.

To receive the energy dependence on the angle of the helical rotation for the irrational
Q (infinite NHs), we made calculations for the translationally periodic monomers and
dimers (rational Q values).

Table 1 gives for [1.2] and [2.2] NHs the values of the rational Q for the different
choices of the q, p, r, and rotation angle, ϕ, (see Equations (2)–(5)). The choice of the q and
r values was determined by two main factors: (i) the resulting Q should be close to the
desired values, and (ii) the q parameter, which determines the number of monomers in the
periodic cell, should be minimal in order to reduce the computation time. The parameter
p-values are found for given q, r values using the relation:

rp− 1 = ql, where l issomepositiveinteger. (8)

Table 1. Line symmetry group parameters used for calculations.

Monomeric States Dimeric States

ϕ, ◦ Q q r p ϕ’, ◦ Q’ q’ r’ p’

54.000 6.667 20 3 7 108.000 3.333 10 3 7
55.385 6.500 13 2 7 110.769 3.250 13 4 10
56.250 6.400 32 5 13 112.500 3.200 16 5 13
56.842 6.333 19 3 13 113.684 3.167 19 6 16
57.273 6.286 44 7 19 114.545 3.143 22 7 19
57.600 6.250 25 4 19 115.200 3.125 25 8 22
58.065 6.200 31 5 25 116.129 3.100 31 10 28
58.605 6.143 43 7 37 117.209 3.071 43 14 40
59.016 6.100 61 10 55 118.033 3.050 61 20 58
60.000 6.000 6 1 1 120.000 3.000 3 1 1
61.017 5.900 59 10 6 122.034 2.950 59 20 3
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Table 1. Cont.

Monomeric States Dimeric States

ϕ, ◦ Q q r p ϕ’, ◦ Q’ q’ r’ p’

61.463 5.857 41 7 6 122.927 2.929 41 14 3
61.714 5.833 35 6 6 123.429 2.917 35 12 3
62.069 5.800 29 5 6 124.138 2.900 29 10 3
62.609 5.750 23 4 6 125.217 2.875 23 8 3
63.000 5.714 40 7 23 126.000 2.857 20 7 3
63.529 5.667 17 3 6 127.059 2.833 17 6 3
64.286 5.600 28 5 17 128.571 2.800 14 5 3

Equation (8) connects crystallographic and helical factorizations of the line groups [50].
The calculations were made for translationally periodic NHs with the line group
symmetry Lqp.

The use of the data in Table 1 allows one to consider Q (and the corresponding ϕ) in
the intervals:

• [1.2]NHmono; Q ∈
[
5 1

5 , 6 2
3

]
and ϕ ∈ [54◦, 69.231◦] with monomer C9H3;

• [1.2]NHferro; Q ∈
[
5 1

5 , 6 2
3

]
and ϕ ∈ [54◦, 69.231◦] with monomer C9H3;

• [1.2]NHdim; Q ∈
[
2 3

5 , 3 1
3

]
and ϕ ∈ [108◦, 138.462◦] with monomer C18H6;

• [1.2]NHaf; Q ∈
[
2 3

5 , 3 1
3

]
and ϕ ∈ [108◦, 138.462◦] with monomer C18H6;

• [2.2]NHmono; Q ∈
[
5 1

2 , 6 2
3

]
and ϕ ∈ [54◦, 65.455◦] with monomer C15H5;

• [2.2]NHferro; Q ∈
[
5 1

2 , 6 2
3

]
and ϕ ∈ [54◦, 65.455◦] with monomer C15H5;

• [2.2]NHdim; Q ∈
[
2 3

4 , 3 1
3

]
and ϕ ∈ [108◦, 130.909◦] with monomer C30H10;

• [2.2]NHaf; Q ∈
[
2 3

4 , 3 1
3

]
and ϕ ∈ [108◦, 130.909◦] with monomer C30H10.

To obtain the torsion curves of the relative energy per monomer, Erel(state, ϕ), the
energies of [1.2]NHaf and [2.2]NHaf with Q = 3 were chosen as zero values (i.e., NHs with
an L31 symmetry). Figure 1 shows a top view of the structure of these NHs. Then, the
Erel(state, ϕ) is:

Erel(state, ϕ) =
E(a f , 120◦)

3
− k

Etot(state, ϕ)

q
(9)

Here, the Etot(state, ϕ) is the total energy of the “state” per elementary cell (the transla-
tionally periodic) at an angle ϕ, q—the parameter from (Equation (2)), showing the number
of monomers of the “state” per elementary cell at ϕ. Parameter k = 1 for “af” and “dim”,
and k = 2 for “mono” and “ferro”.

The torsion energy curves of different states are shown in Figure 2. Let us first consider
the torsion dependence of the energy of the [1.2]NH states. In the entire range, the “mono”
state has the highest energy, which shows the instability of the metallic state with respect
to spontaneous symmetry breaking. The “af” state has the lowest energy over the entire
range studied, indicating that the [1.2]helicene is a pure Mott–Hubbard semiconductor.
However, the Peierls MIT also is possible since the “dim” state is lower in energy than the
“mono” in the entire considered interval. It is important to note that for [1.2]helicene the
“dim” state is always higher in energy than “af” state. The situation when the optimization
of the “af” state leads to a diamagnetic “dim” is not realized.

However, in the case of the “ferro” state, the appearance of the spin polarization is
the result of the self-consistency of the electronic structure only in a small region around
the energy minimum, where the energy of the “ferro” state is less than the energy of the
diamagnetic “mono” state. Beyond this region, the electronic structure with the initial
ferromagnetic ordering leads to a diamagnetic solution of the Kohn–Sham equations, i.e.,
to the “mono” state.
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The general view of the Erel(ϕ) curves of the [1.2]helicene states is similar to the Erel(ϕ)
curve of the [1.1]helicene (see [44]). This is expected since the largest contribution to the
energy for NHs with an m = 1 comes from steric hindrances, which are most pronounced for
the internal atoms of the NH’s ribbon. Accordingly, for all four states of the [1.2]helicene,
the minimum energy is localized in the region of ϕ a little over 60◦ for the monomer and
120◦ for the dimer. In other words, the structure of the minimum energy is overtwisted
relative to the structure with 60◦ or 120◦, in which each coil is located exactly above the
previous one. Note that overtwisting was previously obtained for the [1.1]helicene, and this
effect was confirmed by the experimental data for molecular helicenes [43].

The difference between the energies of the states is maximal in the region of the energy
minimum. In this region, the energy gains at the Mott–Hubbard and Peierls MITs relative
to the “mono” state are about 5 and 4 kJ/mol, respectively. In other regions, these values
are much smaller (see Figure 2). Interestingly, in the case of helical polyacetylenes, the
dependence is inverse: in the energy minimum region, the difference between the “mono”,
“dim”, and “af” states is minimal (see [53]).

The torsion energy curves of the states of the [2.2]helicene have a more complex struc-
ture. First of all, we note that the “ferro” state does not exist for this helicene. In other
words, in the entire range of the ϕ change, the electronic structure with the initial ferro-
magnetic ordering converges to the diamagnetic “mono” state. For this reason, Figure 2b
shows torsion energy curves for three states of the [2.2]helicene: the “mono”, “dim”, and
“af” states.

The “af” state of the [2.2]helicene has the lowest energy in the entire ϕ change region
studied, except for a small range of ϕ values close to 120◦. Thus, the [2.2]helicene is a
Mott–Hubbard semiconductor, like [1.2]helicene. The energy of the Peierls “dim” state is
close to the energy of the symmetric “mono” state and coincides with it at many points of
the torsion curve.

Let us take a closer look at the region around ϕ = 120◦. Among the rest of the studied
interval, this region is notable due to the fact that at ϕ = 120◦ the atoms of one coil are
arranged exactly above the corresponding atoms of the neighbor coil. At this point, the
calculation of all three states of the [2.2]helicene (i.e., “mono”, “dim”, and “af”) leads to a
metallic diamagnetic state, “mono”. A similar result was obtained earlier [38]. Moreover,
a similar state degeneracy at ϕ = 120◦ is also observed for more complicated NHs of
the second type, and it is absent only for the [1.2]helicene. It can be assumed that this
degeneracy is a consequence of the intercoil coupling since the removal of degeneracy by
the transition to an antiferromagnetic semiconductor (the Mott–Hubbard MIT) was shown
in [38] at sufficient stretching of NHs of the second type. In [29], the importance of taking
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into account the interaction between the coils of NHs for obtaining correct results in the
calculation by the DFTB method was shown, and in [35,37], the phase transition to the
ferromagnetic state of NHs of various shapes under tension was shown also.

The intercoil coupling of the [2.2]helicene, which is characteristic of the region around
ϕ = 120◦, can be destroyed not only by tension but also by torsion. According to Figure 2b,
both the decreasing and increasing of ϕ result in the Mott–Hubbard MIT and the appearance
of the minima on the torsion energy curve.

There are two minima on the torsion energy curve of the most favorable “af” state of
the [2.2]helicene (see Figure 2b). The global minimum corresponds to a structure that is
undertwisted with respect to ϕ = 120◦, but the local minimum for an overtwisted structure
has very close energy. It even can be assumed that for the “af” state of the [2.2]helicene, the
undertwisted and overtwisted structures are equally probable. Note that for the “mono”
and “dim” states, the energy of the undertwisted structure is approximately 3 kJ/mol lower
than the energy of the overtwisted structure.

The torsion energy curves shown in Figure 2 were calculated assuming the presence of
only a helical axis of symmetry, i.e., that NHs belong to the first family of the line symmetry
groups. The optimized atomic structures at the energy minimum of the [1.2] helicene and
the two energy minima of the [2.2] helicene are shown in Figure 3. It can be easily seen
that for the atomic structure of the [1.2] helicene (Figure 3a) and the atomic structure at
the global energy minimum of the [2.2] helicene (Figure 3b), the plane of the ribbon is
perpendicular to the helical axis. This leads to the appearance of additional symmetry
elements—the rotation axes of the second order, U, directed perpendicular to the helical
axis. This means that both considered NHs are nanostructures with a symmetry belonging
to the fifth family of the line symmetry groups. A similar result was obtained for NHs of
the first type (n = 1) (see [44]). Interesting that the atomic structure of the second minimum
of the [2.2] helicene (Figure 3c) is characterized by the bending of the ribbon, forming a
cone-like structure wrapped around the helical axis. This behavior is obviously associated
with the steric hindrances that arise at the outer edge of the ribbon when the rotation angle
increases. Such bending appears already at ϕ = 120◦ and manifests itself to an increasing
extent with a further increase of ϕ. Thus, under torsion, the symmetry of the NH decreases
to the first family of the line symmetry groups.
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ergy minima. (a) [1.2]NHaf; Erel(123.086◦) = −7.523 kJ/mol. (b) [2.2]NHaf, global minima;
Erel(115.617◦) = −10.225 kJ/mol. (c) [2.2]NHaf, local minima; Erel(122.579◦) = −9.284 kJ/mol.
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We also note that this symmetry breaking is not spontaneous, like the MIT, but is
induced by an external torsion action. In the case of NHs, spontaneous and torsion-induced
symmetry breakings act on various symmetry elements. Spontaneous symmetry breaking
halves the order of the helical axis, but the symmetry of NHs continues to belong to the 5th
family of the line groups. Torsion-induced symmetry breaking lowers the point symmetry
of the monomer from D1 to C1 while the order of the helical axis is preserved.

3.2. Electronic and Magnetic Properties

Figure 4 shows the total densities of the electronic states (DOS) for different states of
the considered structures (with a rational Q) closest to the energy global minima. The DOS
of the states of the [2.2] helicene is expectedly more complicated than the DOS of states of
the [1.2]helicene, but in all cases, Figure 4 shows the van Hove singularities that are typical
for the Q1D systems.
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Figure 4. DOS of the NH at the point close to the energy minimum. For the [1.2]helicene, this is L416

and L413 in the case of the monomeric and dimeric states, respectively. For the [2.2]helicene, this is
L5625 and L2825 in the case of the monomeric and dimeric states, respectively. Fermi energies are
shown by dashed lines. The top of the valence band, TVB, and the bottom of the conduction band,
BCB, are indicated by dotted lines. α and β indicate the corresponding spin DOS in the case of the
[1.2]NHferro.

The values of the Fermi energy of metallic states are close for both NHs, but there
is a difference. The Fermi level of the [1.2]NHmono is located in the middle of the area of
high density in contrast to the Fermi level of the [2.2]NHmono. The ferromagnetic ordering
shifts α-DOS towards lower energies, allowing the high-density region of the DOS to be
completely filled with an excess of α-spin electrons and determines the existence of the
[1.2]NHferro and the absence of the [2.2]NHferro.

Both types of MIT open an electronic band gap (BG) near the Fermi level. In both NHs,
the BG, opened due to the Peierls MIT, is narrower than that due to the Mott–Hubbard
MIT. This becomes clear if we take into account the fact that the appearance of the BG
corresponds to a decrease in the total energy, and the values of the BG can be a measure of
this decrease.
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The form of the DOS changes little under the MIT. These changes concern only the
appearance of the BG. The changes in the rest of the DOS regions are also minimal, demon-
strating that the electronic and atomic structures remain unchanged during the MIT.

The increase in m, i.e., the transition from the [1.2]helicene to the [2.2]helicene, expect-
edly reduces the BG of both types, confirming the results of [38]. The sharpest decrease
occurs for the “dim” state, by more than 0.8 eV, making the [2.2]NHdim state close to the
highly symmetric [2.2]NHmono state, as was already noted above. It can be assumed that
with a further increase in m, for example, to m = 3, the states [3.2]NHmono and [3.2]NHdim
will become degenerate, and the Peierls MIT will no longer take place.

The decrease in the BG of the “af” states with an increasing m from 1 to 2 is 0.37 eV,
i.e., the “af” state is not going down as sharply as the “dim” state. A very rough estimate
suggests that the MIT of this type disappears at m = 4 or 5, and such NHs will be in the
“mono” state.

The torsion deformation has a significant effect on NHs’ electronic properties. The
change in the parameters of the electronic structure of the [1.2]helicene, in particular, and
the positions of the Fermi energy, Ef, the top of the valence band, TVB, and the bottom of the
conduction band, BCB, during the torsion distortion are presented in Figure 5a. The Fermi
energy of the “mono” state increases when ϕ increases from the minimum of the energy
and decreases when ϕ decreases. The difference between the minimum and maximum
values is about 1 eV. Upon reaching the maximum and minimum energy values, further
torsion deformations give a reverse trend, and a final form of the Ef(mono, ϕ) curve is
shown in Figure 5a.
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The torsion Ef(ferro, ϕ) curve for the [1.2]NHferro differs from the curve for the
[1.2]NHmono in the region ϕ ~ 120–122.5◦, i.e., the region of the existence of this state.
An additional maximum and minimum appear on the Ef(ferro, ϕ) curve, and the angle ϕ,
corresponding to the new maximum, coincides with the ϕ value of the energy minimum.

Upon spontaneous symmetry breaking, the electronic states corresponding to the
Fermi energy split into the conduction and valence bands. The energy dependences of
the TVB and BCB on the rotational angle make it possible to estimate the effect of the
torsion deformation on the MIT of both types. According to Figure 5a, the TVB and BCB
change significantly with the torsion deformation. However, the general form of these
torsion curves is similar to that of the Ef(mono, ϕ) curve for the [1.2]NHmono and differs
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only by a decrease and increase of about 0.2–0.3 eV of the TVB and BCB relative to the
Ef value, respectively.

Thus, the driving force of each MIT gives approximately the same influence on the
electronic structure and depends little on the rotation angle. The TVB and BCB of the Peierls
MIT are located inside the Mott–Hubbard MIT TVB and BCB in the entire considered angle
region. This is consistent with the fact that the Peierls MIT energy is less than the Mott–
Hubbard MIT energy over the entire angle region considered for the [1.2]helicene.

The dependence of the BG on the torsion distortion is shown in Figure 5b. For the
[1.2]helicene, the states “dim” and “af” are semiconducting in the entire interval. The
change in the BG for this NH is about 1 eV. The BG has maximum values in the region of
the energy minimum, which coincides with the similar behavior of the BG of the first type
of NHs [n,1] [44].

The band gap for the [2.2]helicene also exhibits a significant dependence on the torsion
deformation. For the [2.2]NHdim state, there are some rotation angle regions with a zero
BG value. There are regions where the “dim” and the “mono” states are the same. Since
the [2.2]NHaf state is more favorable than “dim”, this is not significant, but there is a region
where the BG for the [2.2]NHaf is zero, and this region corresponds to the degeneracy of all
three considered states, ϕ ~ (118–120◦).

It should be noted that this region of the degeneracy of the [2.2]NH’s states is very close
to the region of the global energy minimum. This gives an interesting possibility—starting
from the antiferromagnetic global minimum with the value of Egap = 0.8 eV, by means of
a small torsion deformation, one can transform the [2.2]NH into a metallic diamagnetic
system, having a degenerate state. In addition, further torsion deformation leads to a
transition to an antiferromagnetic semiconductor with Egap = 1.1 eV, which corresponds to
a local minimum on the torsion energy curve for the [2.2]NHaf state. It should be empha-
sized that such a transition between the two minima with the manifestation of a metallic
state is reversible since no bonds are broken in this transition—one coil simply slides
around the other. This makes the [2.2]helicene a unique object for use in electro-magneto-
mechanical nanodevices.

4. Conclusions

A quantum chemical study of the torsion energy curves of zig-zag-edged hexagonal
NHs of the second type ([1.2] and [2.2], according to the classification of [38]) showed that
these objects in their symmetric state (mono) are diamagnetic metals that are unstable with
respect to the MIT. The consideration of two types of MIT (the Mott–Hubbard and Peierls)
showed that for the considered NHs, the Mott–Hubbard MIT gives the greatest energy
reduction in the process of spontaneous symmetry breaking; therefore, NHs of the second
type are antiferromagnetic semiconductors in the regions of the energy minima.

The second type of NHs (with an even n), as well as the first type of NHs (with an
odd n), are the structures that possess a helical periodicity only, without translational
periodicity, and belong to the fifth family of the line symmetry groups in the global energy
minimum regions. However, the torsion-induced symmetry breaking with the increase of
the rotation angle, ϕ, leads to a transition to the first family of the line symmetry groups.

In addition to the antiferromagnetic state, a highly symmetric ferromagnetic state
was found for the [1.2]helicene, the existence of which is possibly associated with the
local effects of the rearrangement of the spin-polarized density. The energy of this state
is higher than the energy of the antiferromagnetic state, but the existence of this state
suggests that for highly complicated systems, in addition to the manifestation of the MIT, it
is necessary to take into account the more subtle effects that can be considered by ab initio
methods only.

For the [2.2]helicene, there is a region on the torsion energy curve where all the
states are degenerate, and the [2.2]helicene in this region is a diamagnetic metal. This
region is located between two energy minima corresponding to antiferromagnetic order-
ing. The transition from one to another leads to a reversible transformation through a
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diamagnetic metallic state that makes this NH very promising for use in electro-magneto-
mechanical nanodevices.
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10. Rickhaus, M.; Mayor, M.; Juríček, M. Strain-induced helical chirality in polyaromatic systems. Chem. Soc. Rev. 2016, 45, 1542–1556.
[CrossRef]

11. Shen, Y.; Chen, C.-F. Helicenes: Synthesis and Applications. Chem. Rev. 2012, 112, 1463–1535. [CrossRef] [PubMed]
12. Daigle, M.; Morin, J.-F. Helical conjugated ladder polymers: Tuning the conformation and properties through edge design.

Macromolecules 2017, 50, 9257–9264. [CrossRef]
13. Daigle, M.; Miao, D.; Lucotti, A.; Tommasini, M.; Morin, J.-F. Helically coiled graphene nanoribbons. Angew. Chem. Int. Ed. 2017,

56, 6213–6217. [CrossRef]
14. Xiao, X.; Pedersen, S.K.; Aranda, D.; Yang, J.; Wiscons, R.A.; Pittelkow, M.; Steigerwald, M.L.; Santoro, F.; Schuster, N.J.;

Nuckolls, C. Chirality Amplified: Long, Discrete Helicene Nanoribbons. J. Am. Chem. Soc. 2021, 143, 983–991. [CrossRef]
[PubMed]

15. Kiel, G.R.; Patel, S.C.; Smith, P.W.; Levine, D.S.; Tilley, T.D. Expanded helicenes: A general synthetic strategy and remarkable
supramolecular and solid-state behavior. J. Am. Chem. Soc. 2017, 139, 18456–18459. [CrossRef] [PubMed]

16. Zhan, H.; Zhang, Y.; Yang, C.; Zhang, G.; Gu, Y. Graphene helicoid as novel nanospring. Carbon 2017, 120, 258–264. [CrossRef]
17. Zhan, H.; Zhang, G.; Yang, C.; Gu, Y. Breakdown of Hooke’s law at the nanoscale—2D material-based nanosprings. Nanoscale

2018, 10, 18961–18968. [CrossRef]
18. Zhan, H.; Zhang, G.; Yang, C.; Gu, Y. Graphene Helicoid: Distinct Properties Promote Application of Graphene Related Materials

in Thermal Management. J. Phys. Chem. C 2018, 122, 7605–7612. [CrossRef]
19. Sharifian, A.; Naeini, V.F.; Baniassadi, M.; Wu, J.; Baghani, M. Role of Chemical Doping in Large Deformation Behavior of

Spiral Carbon-Based Nanostructures: Unraveling Geometry-Dependent Chemical Doping Effects. J. Phys. Chem. C 2019, 123,
19208–19219. [CrossRef]

20. Norouzi, S.; Fakhrabadi, M.M.S. Nanomechanical properties of single- and double-layer graphene spirals: A molecular dynamics
simulation. Appl. Phys. A 2019, 125, 321. [CrossRef]

http://doi.org/10.1039/C2CS35332F
http://www.ncbi.nlm.nih.gov/pubmed/23207678
http://doi.org/10.1021/ar400003q
http://www.ncbi.nlm.nih.gov/pubmed/23738750
http://doi.org/10.1021/acs.chemrev.9b00835
http://www.ncbi.nlm.nih.gov/pubmed/32039585
http://doi.org/10.1016/j.ijplas.2018.06.007
http://doi.org/10.1021/cr900162q
http://doi.org/10.1021/ja055406w
http://doi.org/10.1021/jacs.6b05709
http://doi.org/10.1021/jacs.9b01567
http://doi.org/10.1021/jacs.8b13865
http://doi.org/10.1039/C5CS00620A
http://doi.org/10.1021/cr200087r
http://www.ncbi.nlm.nih.gov/pubmed/22017405
http://doi.org/10.1021/acs.macromol.7b01722
http://doi.org/10.1002/anie.201611834
http://doi.org/10.1021/jacs.0c11260
http://www.ncbi.nlm.nih.gov/pubmed/33377771
http://doi.org/10.1021/jacs.7b10902
http://www.ncbi.nlm.nih.gov/pubmed/29215272
http://doi.org/10.1016/j.carbon.2017.05.044
http://doi.org/10.1039/C8NR04882G
http://doi.org/10.1021/acs.jpcc.8b00868
http://doi.org/10.1021/acs.jpcc.9b04894
http://doi.org/10.1007/s00339-019-2623-8


Nanomaterials 2023, 13, 415 13 of 14

21. Sharifian, A.; Moshfegh, A.; Javadzadegan, A.; Afrouzi, H.H.; Baghani, M.; Baniassadi, M. Hydrogenation-controlled mechanical
properties in graphene helicoids: Exceptional distribution-dependent behavior. Phys. Chem. Chem. Phys. 2019, 21, 12423–12433.
[CrossRef] [PubMed]

22. Liu, R.; Zhao, J.; Wang, L.; Wei, N. Nonlinear vibrations of helical graphene resonators in the dynamic nano-indentation testing.
Nanotechnology 2020, 31, 025709. [CrossRef]

23. Norouzi, S.; Kianfar, A.; Fakhrabadi, M.M.S. Multiscale simulation study of anisotropic nanomechanical properties of graphene
spirals and their polymer nanocomposites. Mech. Mater. 2020, 145, 103376. [CrossRef]

24. Norouzi, S.; Fakhrabadi, M.M.S. Anisotropic nature of thermal conductivity in graphene spirals revealed by molecular dynamics
simulations. J. Phys. Chem. Solids 2020, 137, 109228. [CrossRef]

25. Zhu, C.; Ji, J.; Zhang, Z.; Dong, S.; Wei, N.; Zhao, J. Huge stretchability and reversibility of helical graphenes using molecular
dynamics simulations and simplified theoretical models. Mech. Mater. 2021, 153, 103683. [CrossRef]

26. Zhu, C.; Liu, M.; Wei, N.; Zhao, J. Molecular dynamics study on mechanical properties of helical graphenes/epoxy nanocompos-
ites. Comput. Mater. Sci. 2022, 209, 111408. [CrossRef]

27. Narjabadifam, A.; Abazadeh, B.; Fakhrabadi, M.M.S. Graphyne nano-spirals under tension: Effects of base structures on
superelasticity and fracture mechanisms. Mech. Mater. 2022, 171, 104367. [CrossRef]

28. Li, H.; Afrouzi, H.H.; Zahra, M.M.A.; Bashar, B.S.; Fathdal, F.; Hadrawi, S.K.; Alizadeh, A.; Hekmatifar, M.; Al-Majdi, K.; Alhani, I.
A comprehensive investigation of thermal conductivity in of monolayer graphene, helical graphene with different percentages of
hydrogen atom: A molecular dynamics approach. Colloids Surf. A 2023, 656, 130324. [CrossRef]

29. Korhonen, T.; Koskinen, P. Electromechanics of graphene spirals. AIP Adv. 2014, 4, 127125. [CrossRef]
30. Xu, F.; Yu, H.; Sadrzadeh, A.; Yakobson, B.I. Riemann surfaces of carbon as graphene nanosolenoids. Nano Lett. 2016, 16, 34–39.

[CrossRef]
31. Zhou, Z.; Yan, L.; Wang, X.-M.; Zhang, D.; Yan, J.-Y. The sensitive energy band structure and the spiral current in helical graphenes.

Results Phys. 2022, 35, 105351. [CrossRef]
32. Treboux, G.; Lapstun, P.; Wu, Z.; Silverbrook, K. Electronic conductance of helicenes. Chem. Phys. Lett. 1999, 301, 493–497.

[CrossRef]
33. Tian, Y.-H.; Park, G.; Kertesz, M. Electronic Structure of Helicenes, C2S Helicenes, and Thiaheterohelicenes. Chem. Mater. 2008, 20,

3266–3277. [CrossRef]
34. Avdoshenko, S.M.; Koskinen, P.; Sevinçli, H.; Popov, A.A.; Rocha, C.G. Topological signatures in the electronic structure of

graphene spirals. Sci. Rep. 2013, 3, 1632. [CrossRef]
35. Zhang, X.M.; Zhao, M.W. Strain-induced phase transition and electron spin-polarization in graphene spirals. Sci. Rep. 2014,

4, 5699. [CrossRef]
36. Šesták, P.; Wu, J.; He, J.; Pokluda, J.; Zhang, Z. Extraordinary deformation capacity of smallest carbohelicene springs. Phys. Chem.

Chem. Phys. 2015, 17, 18684–18690. [CrossRef]
37. Xu, X.; Liu, B.; Zhao, W.; Jiang, Y.; Liu, L.; Li, W.; Zhang, G.; Tian, W.Q. Mechanism of mechanically induced optoelectronic and

spintronic phase transitions in 1D graphene spirals: Insight into the role of interlayer coupling. Nanoscale 2017, 9, 9693–9700.
[CrossRef]

38. Porsev, V.V.; Bandura, A.V.; Lukyanov, S.I.; Evarestov, R.A. Expanded hexagonal nanohelicenes of zigzag morphology under
elastic strain: A quantum chemical study. Carbon 2019, 152, 755–765. [CrossRef]

39. He, Y.-Y.; Chen, J.; Zheng, X.-L.; Xu, X.; Li, W.-Q.; Yang, L.; Tian, W.Q. Spiral Graphene Nanoribbons with Azulene Defects as
Potential Nonlinear Optical Materials. ACS Appl. Nano Mater. 2019, 2, 1648–1654. [CrossRef]

40. Liu, Z.-P.; Guo, Y.-D.; Yan, X.-H.; Zeng, H.-L.; Mou, X.-Y.; Wang, Z.-R.; Wang, J.-J. A metal-semiconductor transition in helical
graphene nanoribbon. J. Appl. Phys. 2019, 126, 144303. [CrossRef]

41. Liu, Z.-P.; Guo, Y.-D.; Zeng, H.-L.; Li, J.-F.; Jiang, Y.-Y.; Yan, X.-H. Electrical control of spin polarization of transmission in
pure-carbon systems of helical graphene nanoribbons. J. Appl. Phys. 2020, 128, 154301. [CrossRef]

42. Thakur, R.; Ahluwalia, P.K.; Kumar, A.; Sharma, R. Stability and electronic properties of bilayer graphene spirals. Phys. E 2021,
129, 114638. [CrossRef]

43. Mori, K.; Murase, T.; Fujita, M. One-Step Synthesis of [16]Helicene. Angew. Chem. Int. Ed. 2015, 54, 6847–6851. [CrossRef]
[PubMed]

44. Porsev, V.V.; Bandura, A.V.; Evarestov, R.A. Ab initio modeling of helically periodic nanostructures using CRYSTAL17: A general
algorithm first applied to nanohelicenes. Comput. Mater. Sci. 2022, 203, 111063. [CrossRef]

45. Porsev, V.V.; Evarestov, R.A. Quantum-mechanical calculation of the electronic band structure of helically periodic systems:
Nanotubes and nanohelicenes. Phys. Solid State 2022, 64, 1843. (In Russian)

46. Alexander, E.Z. XVI. Systematik der eindimensionalen Baumgruppen. Z. Krist.-Cryst. Mater. 1929, 70, 367–382. [CrossRef]
47. Shubnikov, A.V. Symmetry (The Laws of Symmetry and Their Application in Science, Technology, and Applied Art); Akademia Nauk

SSSR: Moscow, Russia, 1940. (In Russian)
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49. Milošević, I.; Živanovic, R.; Damnjanović, M. Symmetry classification of stereoregular polymers. Polymer 1997, 38, 4445–4453.

[CrossRef]

http://doi.org/10.1039/C9CP01361J
http://www.ncbi.nlm.nih.gov/pubmed/31143901
http://doi.org/10.1088/1361-6528/ab4760
http://doi.org/10.1016/j.mechmat.2020.103376
http://doi.org/10.1016/j.jpcs.2019.109228
http://doi.org/10.1016/j.mechmat.2020.103683
http://doi.org/10.1016/j.commatsci.2022.111408
http://doi.org/10.1016/j.mechmat.2022.104367
http://doi.org/10.1016/j.colsurfa.2022.130324
http://doi.org/10.1063/1.4904219
http://doi.org/10.1021/acs.nanolett.5b02430
http://doi.org/10.1016/j.rinp.2022.105351
http://doi.org/10.1016/S0009-2614(99)00085-8
http://doi.org/10.1021/cm702813s
http://doi.org/10.1038/srep01632
http://doi.org/10.1038/srep05699
http://doi.org/10.1039/C5CP02043C
http://doi.org/10.1039/C7NR03432F
http://doi.org/10.1016/j.carbon.2019.06.036
http://doi.org/10.1021/acsanm.9b00089
http://doi.org/10.1063/1.5118738
http://doi.org/10.1063/5.0024186
http://doi.org/10.1016/j.physe.2021.114638
http://doi.org/10.1002/anie.201502436
http://www.ncbi.nlm.nih.gov/pubmed/25907312
http://doi.org/10.1016/j.commatsci.2021.111063
http://doi.org/10.1524/zkri.1929.70.1.367
http://doi.org/10.1088/0305-4470/10/8/005
http://doi.org/10.1016/S0032-3861(96)01042-7


Nanomaterials 2023, 13, 415 14 of 14
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