СТРУКТУРА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.736:549.612

УТОЧНЕНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР ТРЕХ ФТОРСОДЕРЖАЩИХ ЭЛЬБАИТОВ

© 2005 г. И. В. Рождественская, О. В. Франк-Каменецкая, А. А. Золотарев, Ю. М. Бронзова, И. И. Баннова

> Санкт-Петербургский государственный университет E-mail: ivrozhdestvenska@mail.ru Поступила в редакцию 24.09.2004 г.

Уточнены кристаллические структуры трех природных Li-Al турмалинов (эльбаитов), содержащих 0.88–1.39 мас. % фтора (R = 0.0294, 0.0308 и 0.0417). Выявлено расщепление трехкратной анионной W-позиции на две: трехкратную W1 и девятикратную W2 (расстояние W1-W2 ~ 0.4, Y-W1 \ge 1.94, Y-W2 \ge 1.75 Å). Предложена и обоснована гипотеза о частичном заселении позиций: W1 – OH-группами, W2 – анионами фтора. Соотношение октаэдров [YO₄(OH)₂] и [YO₄(OH)F] зависит от количества фтора и меняется от структуры к структуре. Заселенность W-позиции фтором более чем на 50% в структуре двух исследованных турмалинов позволяет говорить о новом минеральном виде – фторэльбаите с идеальной формулой Na(Li_{1.5}Al_{1.5})Al₆(Si₆O₁₈)(BO₃)₃(OH)₃F и считать название эльбаит надвидовым.

введение

Природные боратосиликаты сложного состава - минералы группы турмалина – устойчивы в широком интервале термодинамических условий и поэтому широко используются геологами при поисково-оценочных работах [1-3]. Для турмалинов характерно большое разнообразие составов, обусловленное особенностями кристаллической структуры [4-6]. Уникальный спектр кристаллофизических свойств, в том числе наличие пиро- и пьезоэффекта, а также присутствие бора позволяет использовать турмалины при создании измерительной техники для работы в широком интервале температур и давлений (в том числе в агрессивных средах), а также при производстве стройматериалов, обеспечивающих биологическую защиту от нейтронного излучения. Прозрачные, ярко окрашенные разновидности турмалинов находят применение в ювелирном деле.

С учетом результатов многочисленных структурных исследований [7–10] кристаллохимическую формулу турмалина (пр. гр. *R3m*) предложено представлять в виде $X^{IX}Y_3^{VI}Z_6^{VI}[T_6^{IV}O_{18}][B^{III}O_3]_3V_3W$ [11]. Элементы, заселяющие позиции: $X - Ca^{2+}$, Na⁺, K⁺, \Box (вакансия); $Y - Li^+$, Mg²⁺, Fe²⁺, Mn²⁺, Al³⁺, Cr³⁺, V³⁺, Fe³⁺, (возможно Ti⁴⁺); $Z - Mg^{2+}$, Al³⁺, Fe³⁺, V³⁺, Cr³⁺; $T - Si^{4+}$, Al³⁺, B³⁺; $B - B^{3+}$, (возможно \Box); V[позиция O(3)] + W [позиция O(1)] – OH⁻, F⁻, O²⁻. Распределение анионов OH⁻, F⁻ и O²⁻ по позициям V и W остается дискуссионным. В первую очередь это связано с тем, что определить его "прямым" путем, уточняя при рентгеноструктурных исследованиях смешанные заселенности кристаллографических позиций, трудно из-за близких рассеивающих способностей атомов кислорода и фтора (число электронов равно 8 и 9 соответственно).

В настоящей работе нам удалось получить новые данные о распределении одновалентных анионов в структурах трех Li–Al турмалинов – эльбаитов с идеальной формулой Na(Li_{1.5}Al_{1.5})Al₆(Si₆O₁₈)(BO₃)₃(OH,F)₄.

ХИМИЧЕСКИЙ СОСТАВ ИССЛЕДОВАННЫХ ТУРМАЛИНОВ

Для исследования были выбраны, детально описанные в [12], три ювелирных турмалина из миароловых пегматитов Восточного Памира с различным содержанием фтора: розовый – рубеллит (обр. *T*-17), синий – индиголит (обр. *T*-14) и зеленый – верделит (обр. *T*-7).

Химический состав турмалинов (табл. 1) изучали методом рентгеноспектрального микрозондового анализа (микроанализатор JEOL SXA-8600S, аналитики А.Н. Зайцев и Р. Вилсон, Лестерский университет, Англия). Дополнительно для определения содержания Li₂O и B₂O₃ в образцах Т-14 и Т-17 соответственно были использованы пламенноэмиссионный метод и метод титрования (вариант 1 в табл. 1; ООО МЕХАНОБР ИНЖИНИРИНГ АНАЛИТ, аналитик С.В. Зимина). Содержание В₂О₃ определяли также методом потенциометрического титрования (вариант 2 в табл. 1; лаборатория аналитической и неорганической химии Института химии силикатов РАН, аналитик М.П. Семенов). Из-за сложного изоморфизма турмалинов и возможных ошибок

Konnonanz	Образцы					
KOMIIOHCHT	<i>T</i> -17	<i>T</i> -14	<i>T</i> -7			
SiO ₂	37.16	35.68	37.11			
TiO ₂	0.10	0.04	0.05			
Al_2O_3	40.17	36.16	36.81			
Cr_2O_3	0.00	0.00	0.03			
FeO	0.02	6.93	3.50			
В ₂ О ₃ вар.1	11.61	14.52	не опр.			
вар.2	9.43	9.09	не опр.			
MnO	0.47	0.07	2.66			
MgO	0.00	0.00	0.01			
CaO	1.26	0.17	0.11			
Na ₂ O	1.65	2.75	2.97			
K ₂ O	0.00	0.03	0.02			
Li ₂ O	1.63	0.96	не опр.			
F	0.88	1.16	1.39			
Сумма	94.95	98.51	84.66			
-O=F ₂	0.37	0.49	0.58			
Сумма	94.58	98.02	84.08			

Таблица 1. Химический состав исследованных турмалинов (мас. %)

Примечание. FeO - суммарное железо.

химических анализов химические формулы исследуемых образцов рассчитывали следующими способами: на 31анион (O + F + OH), на 29 атомов кислорода, на 24.5 атома кислорода, на 19, 18, 16, 15 катионов и на 6 атомов кремния. Данные по количеству B_2O_3 в одних и тех же образцах, полученные в разных лабораториях, существенно расходятся. Число атомов бора в формулах образцов Т-14 и Т-17, рассчитанных различными способами по этим данным, значимо отличается от трех и, следовательно, является структурно необоснованным. Расчет коэффициентов в формуле турмалинов с учетом экспериментально определенного количества Li₂O (на 15 катионов или на 24.5 атома кислорода) требует появления вакансий в У-позиции. Согласно предшествующим структурным исследованиям это также нетипично для турмалинов. Следовательно, полученные экспериментальны путем данные по содержанию бора и лития не являются достоверными и не могут быть использованы при расчете формул исследуемых турмалинов.

Поэтому приведенные в табл. 2 (вариант 1) предварительные кристаллохимические формулы исследуемых твердых растворов были рассчитаны по данным микрозондового анализа на шесть атомов кремния в предположении, что число атомов бора в формуле равно трем. Число атомов лития определяли расчетным путем в предположении полного заполнения У-позиции. Распределение катионов, в том числе двух-И трехвалентного железа, по октаэдрическим позициям контролировали, привлекая значения параметров элементарной ячейки (табл. 3), по методике М.Г. Горской с соавторами [5]. Для распределения катионов железа в структуре образца Т-14 был использован метод мессбауэровской спектроскопии [13]. Анионы по V- и W-позициям не разделяли, количество ОН-групп и анионов кислорода оценивали, добиваясь баланса зарядов.

Таблица 2. Кристаллохимические формулы исследованных турмалинов $XY_3Z_6(Si_6O_{18})(BO_3)_3(OH)_3(O,OH,F)$, пр. гр. R3m, Z = 3

Образец	Вариант	Формула
<i>T</i> -17	1	$(Na_{0.52}Ca_{0.22}\Box_{0.26})(Al_{1.65}Li_{1.28}Mn_{0.06}^{2+}Ti_{0.01})Al_{6.00} \\ (Si_{6}O_{18})(BO_{3})_{3}(OH_{3.20}F_{0.45}O_{0.35})$
	2	$\begin{array}{c}(Na_{0.68}Ca_{0.22}\square_{0.10})(Li_{1.56}Al_{1.44})(Al_{5.82}Mn_{0.18}^{3+})\\(Si_{6}O_{18})(BO_{3})_{3}(OH)_{3}(OH_{0.64}F_{0.36})\end{array}$
<i>T</i> -14	1	$\begin{array}{c} (Na_{0.90}Ca_{0.03}K_{0.01}\square_{0.06})(Al_{1.23}Fe_{0.86}^{2+}Li_{0.85}Fe_{0.05}^{3+}Mn_{0.01})\\ (Al_{5.94}Fe_{0.06}^{2+}(Si_{6}O_{18})(BO_{3})_{3}(OH_{3.04}F_{0.62}O_{0.34})\end{array}$
	2	$\begin{array}{ll} (Na_{0.89}Ca_{0.03}K_{0.01}\square_{0.07})(Al_{1.09}Li_{1.05} & Fe_{0.04}^{3+}) \\ (Al_{5.94}Fe_{0.06}^{2+}(Si_6O_{18})(BO_3)_3(OH)_3(F_{0.57}OH_{0.43}); \end{array}$
<i>T</i> -7	1	$\begin{array}{c} (Na_{0.93}Ca_{0.02}\square_{0.02})(Li_{1.14}Al_{1.02} \\ Al_6(Si_6O_{18})(BO_3)_3(OH_{3.29}F_{0.71}) \end{array} \\ \end{array} \\ \begin{array}{c} Ti_{0.01} \\ $
	2	$\begin{array}{c} (Na_{0.97}Ca_{0.03})(Li_{1.14}Al_{1.02} & Fe_{0.09}^{3+}) \\ Al_6(Si_6O_{18})(BO_3)_3(OH)_3(F_{0.60}OH_{0.40}) \end{array}$

УТОЧНЕНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

Vapautapuatuva	Образцы					
Характеристика	<i>T</i> -17	<i>T</i> -14	<i>T</i> -7			
Содержание фтора, мас. %	0.88	1.16	1.39			
Дифрактометр	Nicolett R3	Nicolett R3	SYNTEX P21			
<i>a</i> , Å	15.833(4)	7.101(1)	1542(1)			
	15.826(3)*	7.098(1)*	1539.7(1)*			
<i>c</i> , Å	15.902(5)	7.127(2)	1561(1)			
	15.916(3)*	7.119(1)*	1561.8(1)*			
V, Å ³	15.905(6)	7.121(2)	1560(2)			
	15.931(2)*	7.123(1)*	1565.6(1)*			
$D_{\rm выч},$ г/см ³	3.046(2)	3.104(2)	3.096(3)			
μ, см ⁻¹	10.73	15.21	14.57			
Весовая схема	$1/(\sigma_F^2 + 0.001 F_{_{\rm H3M}}^2)$	$1/(\sigma_F^2 + 0.0018 F_{_{\rm H3M}}^2)$	$1/(\sigma_F^2 + 0.002 F_{_{\rm H3M}}^2)$			
Число изм. отр. (<i>I</i> > 2 <i>σ_I</i>)	2162	2223	1746			
Число независ. отр. ($F > 4\sigma_F$)	1148	1164	986			
$R(F)^{**}$	0.0306	0.0335	0.0429			
$R(F)_{3аключ}$	0.0294	0.0308	0.0417			
R_w	0.0302	0.0359	0.0405			

Таблица 3. Характеристика образцов и рентгеноструктурного эксперимента

* Параметры, полученные методом порошка.

** До введения в модели структур атомов водорода и расщепления позиции O(1) (W).

УТОЧНЕНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

Измерения интенсивностей дифракционных отражений в 1/6 обратного пространства проводили с помощью четырехкружных монокристальных дифрактометров (графитовый монохроматор, MoK_{α} -излучение, ω -сканирование) (табл. 3). До $2\theta = 30^{\circ}$ съемку проводили без учета характерной для турмалинов *R*-центровки гексагональной ячейки. Так как на этом этапе нарушений *R*-ячейки не было выявлено, дальше снимали только дифракционные отражения, не нарушающие правило: -h + k + l = 3n. В интенсивности была введена поправка на *LP*-факторы, флюктуацию первичного пучка и поглощение (программа DI-FABS).

Уточнение кристаллических структур проводили, чередуя МНК (с учетом анизотропии тепловых колебаний атомов) и анализ разностных синтезов Фурье, по комплексу программ CSD [14]. В качестве исходных использовали координаты атомов в структуре алюминиевого эльбаита [15]. В октаэдрические *Y*- и *Z*-позиции помещали атом Al, в позицию щелочного катиона – атом Na. Чтобы ослабить корреляционные связи между заселенностями позиций и другими, в первую очередь тепловыми, структурными параметрами, на начальном этапе при уточнении заселенностей использовали рефлексы с sin $\theta/\lambda < 0.5$. Положение атомов водорода и расщепление позиции O(1) (*W*)

КРИСТАЛЛОГРАФИЯ том 50 № 5 2005

выявили в результате детального анализа карт разностных синтезов Фурье после достижения значений *R*-факторов ~3–4%. Заключительные значения *R*-факторов приведены в табл. 3; относительные координаты атомов, их изотропные тепловые параметры, а также заселенности позиций – в табл. 4; длины связей в основных полиэдрах структуры турмалинов – в табл. 6.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты уточнения заселенности кристаллографических позиций (табл. 4) показали, что в У-позиции соотношение катионов Li⁺/Al³⁺ близко к единице и при этом позиция заполнена этими катионами не менее, чем на 70%. Средние длины связей У-О (2.022-2.053 Å) (табл. 6) увеличиваются с ростом содержания катионов Fe и Mn и близки к найденным в структурах исследованных ранее эльбаитов [9.15–19]. Полученные значения заселенностей Z-октаэдров и средних длин связей Z-O (1.907–1.909 Å) (табл. 5) подтвердили, что во всех структурах эти октаэдры полностью (или почти полностью) заполнены алюминием. Х-позиция во всех исследованных структурах преимущественно заселена натрием. Среднее значение длины связи Х-О варьирует от 2.655 (образец Т-17) до 2.670, 2.673 Å (образец Т-14, Т-7) (табл. 5). Таким образом, увеличение размеров девятивершинников Х происходит по мере увеличения

РОЖДЕСТВЕНСКАЯ и др.

Обр.	Позици	1Я	Заселённость, ат. ед.*	x/a	y/b	z/c	$U^{**}_{_{ m 3KB/изo}} imes 100, Å^{-2}$
<i>T</i> -17	X	3 <i>a</i>	Na _{0.68} Ca _{0.22}	0	0	0.2358(4)	1.37(5)
<i>T</i> -14			$Na_{0.89}Ca_{0.03}K_{0.01}\square_{0.07}$	0	0	0.2344(5)	2.12(8)
<i>T</i> -7			Na _{0.97} Ca _{0.03}	0	0	0.2357(8)	2.40(1)
<i>T</i> -17	Y	9b	$Li_{0.52}Al_{0.48}$	0.1230(1)	1/2x	0.6362(3)	0.42(4)
<i>T</i> -14			$Al_{0.36}Li_{0.35}Fe_{0.29}$	0.12417(8)	1/2x	0.6284(2)	1.02(3)
<i>T</i> -7			$Li_{0.38}Al_{0.34}(Fe + Mn)_{0.28}$	0.1241(1)	1/2x	0.6275(3)	0.69(4)
<i>T</i> -17	Ζ	18 <i>c</i>	$Al_{0.97}Mn_{0.03}$	0.29677(5)	0.25990(5)	0.6102(1)	0.57(2)
<i>T</i> -14			$Al_{0.99}Fe_{0.01}$	0.29778(6)	0.26092(6)	0.6114(1)	0.83(2)
<i>T</i> -7			Al_{10}	0.29751(8)	0.26082(8)	0.6116(2)	0.46(3)
<i>T</i> -17	В	9b	B	0.1090(1)	2x	0.4546(4)	0.60(7)
<i>T</i> -14			В	0.1097(1)	2x	0.4561(5)	0.98(9)
<i>T</i> -7			В	0.1090(2)	2x	0.4550(8)	0.44(1)
<i>T</i> -17	Si	18 <i>c</i>	Si	0.19186(4)	0.18986(4)	0	0.43(2)
<i>T</i> -14			Si	0.19195(5)	0.18998(5)	0	0.75(2)
<i>T</i> -7			Si	0.19191(7)	0.18997(7)	0	0.38(3)
<i>T</i> -17	O(1) (W1)	3a	$OH_{0.64} \square_{0.25}^{***}$	0	0	0.772(3)	2.0(3)
<i>T</i> -14			$OH_{0.43} \square ^{+**}_{0.56}$	0	0	0.784(5)	3.9(1)
<i>T</i> -7			$OH_{0.40} \square_{0.57}^{***}$	0	0	0.762(1)	2.1(5)
<i>T</i> -17	F(W2)	9b	$F_{0.12} \square 0.88$	0.022(1)	1/2x	0.801(3)	0.5(5)
<i>T</i> -14			$F_{0.12} = 0.83$	0.028(2)	1/2x	0.787(3)	0.7(2)
<i>T</i> -7			$F_{0,20} \square 0.80$	0.024(1)	1/2x	0.798(2)	0.5(5)
<i>T</i> -17	O(2)	9b	0.20 0.80	0.06012(9)	2x	0.4870(4)	1.43(7)
<i>T</i> -14	- ()		0	0.0607(1)	2x	0.4848(5)	1.98(9)
<i>T</i> -7			0	0.0610(2)	2x	0.4850(7)	1.7(1)
<i>T</i> -17	O(3)(V)	9b	OH***	0.2659(2)	1/2x	0.5086(3)	1.22(7)
<i>T</i> -14	- (- / (- /		OH***	0.2690(2)	1/2x	0.5096(4)	1.19(7)
<i>T</i> -7			OH***	0.2698(2)	1/2x	0.5100(6)	0.9(1)
<i>T</i> -17	O(4)	9b	0	0.09310(9)	2x	0.0744(3)	0.86(6)
<i>T</i> -14	- ()		0	0.0929(1)	2x	0.0718(4)	1.09(7)
<i>T</i> -7			0	0.0931(2)	2x	0.0714(5)	0.7(1)
<i>T</i> -17	O(5)	9b	0	0.1860(2)	1/2x	0.0964(3)	0.88(6)
<i>T</i> -14			0	0.1865(2)	1/2x	0.0948(4)	1.05(7)
<i>T</i> -7			0	0.1859(3)	1/2x	0.0932(6)	0.7(1)
<i>T</i> -17	O(6)	18 <i>c</i>	0	0.1951(1)	0.1847(1)	0.7751(2)	0.69(5)
<i>T</i> -14			0	0.1970(1)	0.1868(1)	0.7758(3)	0.96(5)
<i>T</i> -7			0	0.1973(2)	0.1867(2)	0.7759(4)	0.58(8)
<i>T</i> -17	O(7)	18 <i>c</i>	0	0.2862(1)	0.2857(1)	0.0793(2)	0.59(4)
<i>T</i> -14			0	0.2854(1)	0.2856(1)	0.0809(3)	0.89(5)
<i>T</i> -7			0	0.2857(2)	0.2858(2)	0.0805(4)	0.54(8)
<i>T</i> -17	O(8)	18 <i>c</i>	0	0.2096(1)	0.2702(1)	0.4398(2)	0.72(4)
<i>T</i> -14			0	0.2097(1)	0.2703(1)	0.4416(3)	1.00(6)
<i>T</i> -7			0	0.2097(2)	0.2703(2)	0.4412(4)	0.68(8)
<i>T</i> -17	Н	9b	Н	0.251	1/2 <i>x</i>	0.398	5.4(7)
<i>T</i> -14			Н	0.274(5)	1/2x	0.386(9)	4.2(9)
<i>T</i> -7			Н	0.281	1/2x	0.395	3.5(2)

Таблица 4. Координаты, температурные факторы и заселённости позиций в структурах исследованных турмалинов

* Стандартная ошибка определения доли элемента в позиции ≤0.01 ат. ед. ** U_{экв} = 1/3[U₁₁(a*)²a² + ... 2U₂₃b*c*bc cosα]. *** Заселенность позиций V и W одновалентными анионами подтверждена анализом баланса валентностей (табл. 5).

КРИСТАЛЛОГРАФИЯ том 50 № 5 2005

УТОЧНЕНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

Образец Вариант	Вариант	Позиции анионов									
	Бариант	O (1)	F	O(1) + F	O(2)	O(3)	O(4)	O(5)	O(6)	O(7)	O(8)
<i>T</i> -17	1	0.657	0.303	0.960	1.851	1.107	2.040	1.911	1.959	2.027	1.995
	2	1.179	0.303	1.482	1.851	1.998	2.040	2.010	1.959	2.027	1.995
<i>T</i> -14	1	0.372	0.560	0.932	1.858	1.101	2.038	1.890	1.953	2.024	1.994
	2	0.704	0.560	1.264	1.858	1.982	2.038	2.008	1.953	2.024	1.994
<i>T</i> -7	1	0.435	0.479	0.914	1.893	1.092	2.043	1.920	1.947	2.005	1.948
	2	0.755	0.479	1.234	1.893	1.994	2.043	2.018	1.947	2.005	1.948

Таблица 5. Результаты расчета валентных усилий на анионах в структурах исследованных турмалинов

Примечание. Расчет проведен без учета (вариант 1) и с учетом (вариант 2) атомов водорода.

размеров *Y*-октаэдров, что хорошо объясняется особенностями химических деформаций структуры турмалинов [6]. Результаты уточнения заселенностей тетраэдрических позиций подтвердили, что во всех случаях данная позиция практически полностью заселена катионами Si⁴⁺. Средние тетраэдрические расстояния равны 1.618–1.620 Å, средний угол O–Si–O 109.44°.

Известно, что протон в структуре турмалина локализован на плоскости симметрии вблизи позиции O(3) (V) и на тройной оси вблизи позиции O(1) (W1) [16, 20]. Детальный анализ разностных фурье-синтезов позволил найти в исследованных структурах атомы водорода только вблизи позиции O(3) (V) (табл. 4). Характеристики водородной связи O(3)-H…O(5) между У-октаэдром и тетраэдрическим кольцом соседнего по высоте антигоритового фрагмента (табл. 7) близки к найденным в структурах других эльбаитов. На присутствие протона вблизи существенно вакантной в исследованных структурах позиции О(1) (W1) указывают результаты анализа баланса валентностей (табл. 5), выполненного по Ю.А. Пятенко [21] с учетом данных по заселенности катионных и анионных позиций.

Согласно немногочисленным литературным данным по кристаллическому строению фторсодержащих Li-Al турмалинов [17-18, 22] длина связи Y-O(1) (1.790-2.126 Å) меньше, чем Y-O(3) (2.153-2.186 Å). В исследованных структурах длины связи Y-O(1) (1.94-2.04 Å) также несколько меньше, чем Y-O(3) (2.16-2.17 Å). Такое соотношение этих длин связей типично и для гидроксилсодержащих турмалинов [16] и обусловлено наличием двух сильных связей между анионами О(3) и катионами в двух соседних Z-октаэдрах. В исследуемых кристаллических структурах эльбаитов Восточного Памира выявлено расщепление позиции W[O(1)] на две частично заселенные: трехкратную W1 и девятикратную W2 (табл. 4). Каждый атом/вакансия в позиции W1 (на оси симметпорядка) окружен рии третьего тремя соответствующими структурными единицами в

КРИСТАЛЛОГРАФИЯ том 50 № 5 2005

Таблица 6. Длины связи (Å) в *Y*-, *Z*- и *X*-полиэдрах исследованных турмалинов

Образцы	Связи, значения	Связи, значения	Связи, значения	
	Y-O(1)	Z-O(6)	$X-O(2) \times 3$	
<i>T</i> -17	1.94(1)	1.862(4)	2.429(4)	
<i>T</i> -14	2.04(2)	1.855(5)	2.446(5)	
<i>T</i> -7	1.96(4)	1.848(6)	2.444(7)	
	$Y-O(6) \times 2$	Z-O(8)	$X-O(4) \times 3$	
<i>T</i> -17	1.963(4)	1.884(4)	2.799(4)	
<i>T</i> -14	2.020(5)	1.886(5)	2.809(5)	
<i>T</i> -7	2.026(7)	1.886(6)	2.820(7)	
	$Y-O(2) \times 2$	Z-O(7)	$X-O(5) \times 3$	
<i>T</i> -17	1.976(4)	1.953(4)	2.736(5)	
<i>T</i> -14	1.977(5)	1.959(4)	2.755(5)	
<i>T</i> -7	1.975(7)	1.954(6)	2.755(8)	
	Y-O(3)	Z-O(3)	X–O _{cp}	
<i>T</i> -17	2.158(6)	1.954(5)	2.655	
<i>T</i> -14	2.167(6)	1.964(5)	2.670	
<i>T</i> -7	2.171(7)	1.962(6)	2.673	
	Y–O _{cp}	Z-O(8)		
<i>T</i> -17	2.022	1.903(4)		
<i>T</i> -14	2.033	1.912(5)		
<i>T</i> -7	2.053	1.912(6)		
	Y–F	Z-O(7)		
<i>T</i> -17	1.82(3) [2.20(3)] × 2	1.886(3)		
<i>T</i> -14	1.75(3) [2.24(2)] × 2	1.878(4)		
<i>T</i> -7	1.84(4) [2.25(4)] × 2	1.882(6)		
	Y-F _{cp}	Z–O _{cp}		
<i>T</i> -17	2.07	1.907		
<i>T</i> -14	2.08	1.909		
<i>T</i> -7	2.11	1.907		

Турмалин —		Угол, град		
	H–O(3)	H…O(5)	O(3)…O(5)	O(3)–H…O(5)
<i>T</i> -17	0.81	2.32	3.125(4)	172
<i>T</i> -14	0.88	2.40	3.167(5)	145
<i>T</i> -7	0.83	2.51	3.184(6)	138
Al-эльбаит [15]	0.940(2)	2.070(2)	2.993(5)	170(1)
Fe-эльбаит [16]	0.820(4)	2.340(3)	3.154(4)	169(3)

Таблица 7. Характеристики водородной связи О(3)-Н…О(5) в структуре эльбаитов

позиции W2 (рисунок 1). Суммарная заселенность такой группировки равна единице. Как следствие, в структурах появляются укороченные запрещенные расстояния: W1–W2 0.36(2), 0.38(2), 0.42(5) Å; W2-W2 0.52(3), 0.66(4), 0.57(2) Å – для образцов *T*-17, *T*-14 и *T*-7 соответственно. Во всех структурах длина связи *Y*–*W*2 ~ 1.8 Å (табл. 6), что может рассматриваться как свидетельство того, что позиция W2 статистически заселена анионами фтора. В пользу этого предположения говорит и то, что данные химического анализа о содержании фтора в образцах Т-17, Т-14 и Т-7 (0.45, 0.62, 0.71 ат. ед. на формулу) близки к рассчитанным на основании заселенности этой позиции (0.36, 0.57, 0.60 ат. ед. на формулу). Анализ баланса валентностей в исследуемых структурах (табл. 5) показывает, что позиции O(1) (W1) и O(3) (V) заселены только одновалентными анионами, т.е., с учетом сказанного выше, ОН-группами. Упорядоченное распределение анионов фтора и ОН-групп, приводящее к позиционному беспорядку, характерно, например, для кристаллической структуры гидроксилфторапатита [23]. Таким образом, есть все основания полагать, что расщепление W-позиции в исследованных структурах турмалинов вызвано стремлением к упорядочению анионов фтора и ОН-групп.

Полученные в результате структурного исследования кристаллохимические формулы эльбаитов (табл. 2, вариант 2) в целом хорошо согласуются с пересчетом результатов микрозондовых анализов на формулу (табл. 2, вариант 1). Главное различие связано с уточнением заселенности W-и *V*-позиций. Кроме того, в структуре образца *T*-17 выявлена меньшая (чем предполагалось ранее) доля вакансий в позиции Х и присутствие примеси катионов марганца в Z-позиции. Полученные результаты показали, что вхождение двухвалентных катионов железа и марганца в У-октаэдры происходит в эльбаитах преимущественно по схеме Li⁺ + Al³⁺ \leftarrow 2(Fe²⁺,Mn²⁺) и не приводит к появлению дополнительных вакансий в Х-позиции и двухвалентных анионов в V- или W-позициях.

Упорядоченное распределение ОН-групп и анионов фтора по позициям W1 и W2 указывает на присутствие в структурах исследованных турмалинов двух типов октаэдров: $[YO_4(OH)_2]$ и $[YO_4(OH)F]$ (рисунок 1). Их соотношение зависит от количества фтора и меняется от структуры к структуре. В образцах T-17, T-14 и T-7 оно равно 1.78, 0.75 и 0.67 соответственно. Октаэдры $[YO_4(OH)_2]$, находящиеся в центре антигоритового островка $XY_3T_6O_{18}$, объединены в триады через общую вершину W1, находящуюся на оси симметрии третьего порядка (рисунок, а), и по-

Триады из У-октаэдров в структуре исследованных эльбаитов: [YO₄(OH)₂] (а) и [YO₄(OH)F] (б).

КРИСТАЛЛОГРАФИЯ том 50 № 5 2005

этому эквивалентны. Такие триады из эквивалентных У-октаэдров встречены за редким исключением [18] во всех структурах турмалинов. Анионы фтора смещены с тройной оси симметрии. Поэтому октаэдры [YO₄(OH)F] объединены в триады, статистически распределенные вокруг этой оси (рисунок, б). В каждой из триад длина связи У-F в одном октаэдре (1.75–1.84 Å) существенно меньше, чем в двух других (2.20-2.25 Å). Аналогичное распределение триад из неэквивалентных У-октаэдров обнаружено в структуре эльбаита из Бразилии с кристаллохимической формулой $(Na_{0.66}Ca_{0.3}\Box_{0.31})(Al_{1.53}Li_{1.03}Mn_{0.41}Fe_{0.03})Al_6(BO_3)_3$ \times (Si_{5.82}B_{0.18}O₁₈)(OH)₃(F_{0.62}OH_{0.34}O_{0.04}) [18]. В этой структуре, в отличие от исследованных нами, расщепление W-позиции не обнаружено. Ее смещение с оси симметрии третьего порядка приводит к появлению в соотношении 1: 2 У-октаэдров с длиной связи Y-W, равной 1.790 и 2.126 Å соответственно. Можно предположить, что существенная анизотропия длин связей У-W в кристаллических структурах турмалинов, в которых Wпозиция смещена с оси симметрии третьего порядка, может быть артефактом, возникающим из-за понижения симметрии, которое столь незначительно, что практически не сказывается на параметрах тригональной кристаллической решетки, измеренных при комнатной температуре. Такой эффект был обнаружен нами ранее в кристаллической структуре квасцов $K(Al_{0.95}Cr_{0.05})(SO_4)_2 \cdot 12H_2O$ [24].

ЗАКЛЮЧЕНИЕ

Взаимосвязанные изоморфные замещения в разных позициях структуры турмалинов предопределяют некоторую условность выделения среди них самостоятельных минеральных видов [11, 25]. Пытаясь уточнить номенклатуру минералов этой группы Ф. Хаутон и Дж. Хенри [11] предложили различать фтор-, гидроксил- и окси-турмалины на основе различной заселенности соответствующими анионами V- и W-позиций. Приведенные выше результаты уточнения кристаллических структур трех природных фтородержащих Li-Al турмалинов (эльбаитов) подтверждают возможность практической реализации этой номенклатуры.

Выявленное в процессе исследования расщепление трехкратной анионной *W*-позиции на две позволило, уточнив их заселенность и проанализировав соответствующие длины связей, установить закономерное вхождение фтора в *W*-позицию. Можно полагать, что такое распределение анионов фтора является общей особенностью Li-Al турмалинов и, следовательно, может быть использовано при написании их кристаллохимических формул по данным химических анализов.

КРИСТАЛЛОГРАФИЯ том 50 № 5 2005

В структурах двух из исследованных турмалинов (образцы Т-14 и Т-7) доля фтора в этой позиции преобладает, что позволяет говорить о новом минеральном виде – фтор-эльбаите с идеальной $Na(Li_{1,5}Al_{1,5})Al_{6}(Si_{6}O_{18})(BO_{3})_{3}(OH)_{3}F.$ формулой Для эльбаитов с преобладанием ОН-групп в W позиции (в том числе для исследованного образца Т-17) можно предложить название гидроксил-эльбаит с идеальной формулой Na(Li_{1.5}Al_{1.5})Al₆(Si₆O₁₈)(BO₃)₃(OH)₃OH. Следовательно, название эльбаит является надвидовым, включающим не менее двух минеральных видов.

Работа выполнена при поддержке гранта Российского фонда фундаментальных исследований (проект № 04-05-64298).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ферсман А.Е.* Избранные труды. М.: Изд-во АН СССР, 1960. Т. 4. 462 с.
- Кузьмин В.И., Добровольская И.В., Солнцева Л.С. Турмалин и его использование при поисково-оценочных работах. М.: Недра, 1979. 268 с.
- Афонина Г.Г., Макагон В.М., Богданова Л.А., Зорина Л.Д. Турмалин (рентгенография и типоморфизм). Новосибирск: Наука, 1990. 143 с.
- 4. Перетяжко И.С. // Минерал. журн. 1989. Т. 11. С. 18.
- 5. Горская М.Г., Франк-Каменецкая О.В., Франк-Каменецкий В.А. // Методы дифракционного исследования кристаллических материалов. Новосибирск: Наука, 1989. С. 119.
- 6. Франк-Каменецкая О.В., Рождественская И.В. // Атомарные дефекты и кристаллическая структура минералов. Итоги науки и техники. Сер. Кристаллохимия. М.: Космосинформ, 2001. Т. 33. С. 71.
- 7. *Hamburger G.E., Buerger H.J. //* Am. Mineral. 1948. V. 33. P. 532.
- 8. *Белов Н.В., Белова Е.Н. //* Докл. АН СССР. 1949. Т. 69. С. 185.
- 9. Ito T., Sadanaga R. // Acta Cryst. 1951. V. 4. № 5. P. 385.
- Buerger M.J., Burnham C.W., Peacor D.R. // Acta Cryst. 1962. V. 15. № 4. P. 583.
- 11. *Hawthorne F.C., Henry D.J.* // Eur. J. Mineral. 1999. V. 11. P. 201.
- 12. Золотарев А.А. // Зап. Всерос. Минерал. о-ва. 1996. Т. 125. № 4. С. 32.
- Овчинников Н.О., Золотарев А.А. // Зап. Всерос. Минерал. о-ва. 1997. Т. 126. № 4. С. 66.
- Akselrud L.G., Grin Yu.N., Zavalii P.Yu. et al. // Collected Abstracts X11 European Cryst. meeting. Moscow. 1989. V. 3. P. 155.
- 15. Горская М.Г., Франк-Каменецкая О.В., Рождественская И.В., Франк-Каменецкий В.А. // Кристаллография. 1982. Т. 27. № 1. С. 107.
- 16. Горская М.Г. Влияние изоморфных замещений на структуру турмалинов. Диссертация на соискание ученой степени кандидата геол.-мин. наук. Ленинград, Изд-во ЛГУ, 1985. 268 с.

- 17. *Donnay G., Barton R. //* Tscherm. Mineral. Petrogr. Mitt. 1972. V. 18. P. 273.
- 18. Grice J.D., Ercit T.S. // Neues Jahrb. Mineral. Abh. 1993. V. 165. P. 245.
- 19. *Белоконева Е. Л., Цирельсон В.Г. //* Журн. неорган. химии. 1993. Т. 38. С. 1351.
- 20. *Tippe A., Hamilton W.C.* // Am. Mineral. 1971. V. 50. № 1–2. P. 101.
- 21. *Пятенко Ю.А. //* Кристаллография. 1972. Т. 17. Вып. 4. С. 773.
- 22. *Nuber B., Schmetzer K.* // Neues Jahrb. Mineral. Abh. 1981. № 5. P. 215.
- 23. Sudarsanan K, Young R. // Acta Cryst. B. 1978. V. 34. P. 1401.
- 24. Рождественская И.В., Франк-Каменецкая О.В., Штукенберг А.Г., Баннова И.И. // Журн. структур. химии. 2001. Т. 42. № 4. С. 754.
- 25. Золотарев А.А., Булах А.Г. // Зап. Всерос. Минерал. о-ва. 1999. Т. 128. № 2. С. 32.