COMMUNICATIONS

ROTA-BAXTER OPERATORS OF NONZERO WEIGHT ON A COMPLETE LINEAR LIE ALGEBRA OF ORDER TWO

M. E. Goncharov ${ }^{1 *}$ and D. E. Kozhukhar ${ }^{\text {²* }}$
UDC 512.554
Presented by the Program Committee of the Conference "Mal'tsev Readings"

1. PRELIMINARY INFORMATION

Rota-Baxter operators for associative algebras appeared in Baxter's paper [1] as part of the study of integral operators emerging in probability theory and mathematical statistics. Independently, in the early 1980s, Rota-Baxter operators on Lie algebras naturally appeared in [2] on the one hand and in [3] on the other hand, in exploring solutions for the Yang-Baxter equation, one of the most important in the moment equations in mathematical physics. In [4], it was stated that there is a relationship between Rota-Baxter operators of nonzero weight on Lie algebras and non-skew-symmetric solutions to the Yang-Baxter equation, whose symmetric part is $a d$-invariant. Furthermore, by that time it had been found out that Rota-Baxter operators have deep connections with number theory, operad theory, and, in particular, with pre- and post-algebras.

Definition. Let A be an arbitrary algebra over a field $F, R: A \rightarrow A$ be a linear mapping, and $\lambda \in F$ be a scalar. The mapping R is called a Rota-Baxter operator of weight λ if, for any $x, y \in A$,

$$
R(x) R(y)=R(R(x) y+x R(y)+\lambda x y) .
$$

[^0][^1]Note that in the case $\lambda \neq 0$ we can consider operators of weight 1 , since the operator αR is a Rota-Baxter operator of weight $\alpha \lambda$ for any $\alpha \neq 0$. Thus, if we multiply by a scalar we can obtain any nonzero weight. This comment reduces the study of Rota-Baxter operators to two different cases, one of zero weight and one of nonzero weight.

Below is a well-known assertion, which gives important examples of Rota-Baxter operators of nonzero weight on an arbitrary algebra A.

Assertion 1. Let A_{1} and A_{2} be subalgebras of $A, A_{1} \bigcap A_{2}=0$, and $A=A_{1} \bigoplus A_{2}$. Suppose also that R is a projection operator on A_{1} parallel to A_{2}, i.e., $R\left(a_{1}+a_{2}\right)=a_{1}$ for any $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$. Then R is a Rota-Baxter operator of weight -1 on the algebra A.

Rota-Baxter operators such as in Assertion 1 are said to be splitting.
An important problem in this area is describing Rota-Baxter operators on various algebras. In particular, the Rota-Baxter operators on the algebra $s l_{2}(\mathbb{C})$ were dealt with in [5-7], and those on the matrix algebra $M_{2}(\mathbb{C})$, in $[8,9]$. The classification of Rota-Baxter operators of nonzero weight on $s l_{3}(\mathbb{C})$ is due to Sokolov [10]. Nonsplitting Rota-Baxter operators of nonzero weight on the matrix algebra $M_{3}(F)$, where F is an algebraically closed field of characteristic 0 , were taken up in [11].

Let A be an arbitrary algebra, and let $R: A \mapsto A$ be a Rota-Baxter operator of arbitrary weight λ and φ be an automorphism or antiautomorphism of the algebra A. Then the operator $\varphi \circ R \circ \varphi^{-1}$ is again a Rota-Baxter operator of the same weight λ on A. This means that RotaBaxter operators on A can be described up to the action of a group generated by automorphisms and antiautomorphisms of A.

2. MAIN RESULT

In this paper, as a Lie algebra L we take a complete linear Lie algebra $g l_{2}(F)=\left(M_{2}(F),[\cdot, \cdot]\right)$ over an algebraically closed field F with Lie multiplication

$$
[x, y]=x y-y x .
$$

The objective is to describe Rota-Baxter operators of weight 1 on $g l_{2}(F)$. Note that if the mapping φ is an antiautomorphism of a Lie algebra, then $-\varphi$ is an automorphism of the same algebra. Thus we will conduct our classification up to the action of the automorphism group $\operatorname{Aut}\left(g l_{2}(\mathbb{C})\right)$.

We use the following notation: $\mathrm{E} \in g l_{2}(\mathbb{C})$ is the identity matrix, $e_{i j}$ are the usual matrix units, and $h=e_{11}-e_{22}$. As a basis for the algebra $g l_{2}(\mathbb{C})$ we take the set $\mathrm{E}, h, e_{12}, e_{21}$.

Note that if $R(\mathrm{E})_{J}$ is a Jordan form of the matrix $R(\mathrm{E})$, and T is a transition matrix, then the mapping $\varphi_{T}: g l_{2}(\mathbb{C}) \mapsto g l_{2}(\mathbb{C})$, which acts as

$$
\varphi_{T}(A)=T^{-1} A T,
$$

is an automorphism of the matrix algebra $g l_{2}(\mathbb{C})$. Also

$$
\varphi_{T} \circ R \circ \varphi_{T^{-1}}(\mathrm{E})=T^{-1} R\left(T \mathrm{E} T^{-1}\right) T=T^{-1} R(\mathrm{E}) T=R(\mathrm{E})_{J} .
$$

Consequently, up to the action of a group generated by automorphisms, we may assume that $R(\mathrm{E})$ is in Jordan form. For $R(\mathrm{E})_{J}$, we have the following options:
$R(\mathrm{E})=\lambda E+e_{12}, \lambda \in \mathbb{C}$, is a Jordan box of size 2 ;
$R(\mathrm{E})=\lambda_{1} e_{11}+\lambda_{2} e_{22}, \lambda_{1} \neq \lambda_{2} \in \mathbb{C}$, are two boxes corresponding to different eigenvalues;
$R(\mathrm{E})=\lambda \mathrm{E}, \lambda \in E$, are two boxes corresponding to one eigenvalue.
The main results of the paper are two theorems below.
THEOREM 1. Let R be a Rota-Baxter operator of weight 1 on a complete linear Lie algebra $g l_{2}(\mathbb{C})$. Then, up to the action of the automorphism group, R equals one of the following operators:

$$
\begin{gather*}
R(\mathrm{E})=\lambda \mathrm{E}+e_{12}, R(h)=R\left(e_{12}\right)=R\left(e_{21}\right)=0 ; \tag{1}\\
R(\mathrm{E})=\lambda \mathrm{E}+e_{12}, R\left(e_{12}\right)=-e_{12}, R\left(e_{21}\right)=-e_{21}, R(h)=-h ; \tag{2}\\
R(\mathrm{E})=\lambda \mathrm{E}+h, R(h)=0, R\left(e_{12}\right)=R\left(e_{21}\right)=0 ; \tag{3}\\
R(\mathrm{E})=\lambda \mathrm{E}+h, R(h)=-h, R\left(e_{12}\right)=-e_{12}, R\left(e_{21}\right)=-e_{21} ; \tag{4}\\
R(\mathrm{E})=\lambda \mathrm{E}+h, R(h)=\alpha_{1} \mathrm{E}+\alpha_{2} h, R\left(e_{12}\right)=-e_{12}, R\left(e_{21}\right)=0 ; \tag{5}\\
R(\mathrm{E})=\lambda \mathrm{E}, R(h)=R\left(e_{21}\right)=0, R\left(e_{12}\right)=-e_{12}+t h, t \in\{0,1\} ; \tag{6}\\
R(\mathrm{E})=\lambda \mathrm{E}, R(h)=R\left(e_{21}\right)=0, R\left(e_{12}\right)=-e_{12}+t h+\mathrm{E}, t \in\{0,1\} ; \tag{7}\\
R(\mathrm{E})=\lambda \mathrm{E}, R(h)=\mathrm{E}, R\left(e_{12}\right)=-e_{12}+h+\alpha \mathrm{E} ; R\left(e_{21}\right)=0 ; \tag{8}\\
R(\mathrm{E})=\lambda \mathrm{E}, R(h)=\mathrm{E}, R\left(e_{12}\right)=-e_{12}+\mathrm{E}, R\left(e_{21}\right)=0 ; \tag{9}\\
R(\mathrm{E})=\lambda \mathrm{E}, R(h)=t h, R\left(e_{21}\right)=0, R\left(e_{12}\right)=-e_{12}, t \in \mathbb{C}^{*} ; \tag{10}\\
R(\mathrm{E})=\lambda \mathrm{E}, R(h)=t h+\mathrm{E}, R\left(e_{21}\right)=0, R\left(e_{12}\right)=-e_{12}, t \in \mathbb{C}^{*} ; \tag{11}\\
R(\mathrm{E})=\lambda \mathrm{E}, R(h)=-h+\alpha \mathrm{E}, R\left(e_{21}\right)=\mathrm{E}, R\left(e_{12}\right)=-e_{12} ; \tag{12}\\
R(\mathrm{E})=\lambda \mathrm{E}, R(h)=t h, R\left(e_{12}\right)=t e_{12}, R\left(e_{21}\right)=t e_{21}, t \in\{0,-1\} . \tag{13}
\end{gather*}
$$

Here $\lambda, \alpha, \alpha_{i} \in \mathbb{C}$.
THEOREM 2. Operators (1)-(13) lie in different orbits under the action of the automorphism group of the algebra $g l_{2}(\mathbb{C})$.

REFERENCES

1. G. Baxter, "An analytic problem whose solution follows from a simple algebraic identity," Pac. J. Math., 10, 731-742 (1960).
2. A. A. Belavin and V. G. Drinfel'd, "Solutions of the classical Yang-Baxter equation for simple Lie algebras," Funk. An. Prilozh., 16, No. 3, 1-29 (1982).
3. M. A. Semenov-Tyan-Shanskii, "What is a classical r-matrix," Funct. An. Appl., 17, No. 4, 17-33 (1983).
4. M. E. Goncharov, "On Rota-Baxter operators of non-zero weight arisen from the solutions of the classical Yang-Baxter equation," Sib. El. Mat. Izv., 14, 1533-1544 (2017); http:// semr.math.nsc.ru/v14/p1533-1544.pdf
5. E. I. Konovalova, "Double Lie algebras," Cand. Sci. Dissertation, Ulyanovsk (2009).
6. Yu Pan, Q. Liu, C. Bai, and L. Guo, "Post-Lie algebra structures on the Lie algebra sl(2, ©)," El. J. Lin. Alg., 23, 180-197 (2012).
7. J. Pei, C. Bai, and L. Guo, "Rota-Baxter operators on $\operatorname{sl}(2, \mathbb{C})$ and solutions of the classical Yang-Baxter equation," J. Math. Phys., 55, No. 2 (2014), Paper No. 021701.
8. P. Benito, V. Gubarev, and A. Pozhidaev, "Rota-Baxter operators on quadratic algebras," Mediterr. J. Math., 15, No. 5 (2018), Paper No. 189.
9. X. Tang, Y. Zhang, and Q. Sun, "Rota-Baxter operators on 4-dimensional complex simple associative algebras," Appl. Math. Comput., 229, 173-186 (2014).
10. V. V. Sokolov, "Classification of constant solutions of the associative Yang-Baxter equation on Mat 3 ," Theor. Math. Phys., 176, No. 3, 1156-1162 (2013).
11. M. Goncharov and V. Gubarev, "Rota-Baxter operators of nonzero weight on the matrix algebra of order three," Lin. Multilin. Alg., 70, No. 6, 1055-1080 (2022).

[^0]: *The study was carried out within the framework of the state assignment to Sobolev Institute of Mathematics SB RAS, project No. 0314-2019-0001.

[^1]: ${ }^{1}$ Sobolev Institute of Mathematics, Novosibirsk, Russia. Novosibirsk State University, Novosibirsk, Russia; gme@math.nsc.ru. ${ }^{2}$ Novosibirsk State University, Novosibirsk, Russia; dariareznina@gmail.com. Translated from Algebra i Logika, Vol. 61, No. 1, pp. 93-97, January-February, 2022. Russian DOI: 10.33048/alglog.2022.61.105. Original article submitted November 22, 2021; accepted June 7, 2022.

