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1. PRELIMINARY INFORMATION

Rota–Baxter operators for associative algebras appeared in Baxter’s paper [1] as part of
the study of integral operators emerging in probability theory and mathematical statistics.
Independently, in the early 1980s, Rota–Baxter operators on Lie algebras naturally appeared in [2]
on the one hand and in [3] on the other hand, in exploring solutions for the Yang–Baxter equation,
one of the most important in the moment equations in mathematical physics. In [4], it was stated
that there is a relationship between Rota–Baxter operators of nonzero weight on Lie algebras and
non-skew-symmetric solutions to the Yang–Baxter equation, whose symmetric part is ad-invariant.
Furthermore, by that time it had been found out that Rota–Baxter operators have deep connections
with number theory, operad theory, and, in particular, with pre- and post-algebras.

Definition. Let A be an arbitrary algebra over a field F , R : A → A be a linear mapping, and
λ ∈ F be a scalar. The mapping R is called a Rota–Baxter operator of weight λ if, for any x, y ∈ A,

R(x)R(y) = R(R(x)y + xR(y) + λxy).
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Note that in the case λ �= 0 we can consider operators of weight 1, since the operator αR is a
Rota–Baxter operator of weight αλ for any α �= 0. Thus, if we multiply by a scalar we can obtain
any nonzero weight. This comment reduces the study of Rota–Baxter operators to two different
cases, one of zero weight and one of nonzero weight.

Below is a well-known assertion, which gives important examples of Rota–Baxter operators of
nonzero weight on an arbitrary algebra A.

Assertion 1. Let A1 and A2 be subalgebras of A, A1
⋂

A2 = 0, and A = A1
⊕

A2. Suppose
also that R is a projection operator on A1 parallel to A2, i.e., R(a1 +a2) = a1 for any a1 ∈ A1 and
a2 ∈ A2. Then R is a Rota–Baxter operator of weight −1 on the algebra A.

Rota–Baxter operators such as in Assertion 1 are said to be splitting.
An important problem in this area is describing Rota–Baxter operators on various algebras. In

particular, the Rota–Baxter operators on the algebra sl2(C) were dealt with in [5-7], and those on
the matrix algebra M2(C), in [8, 9]. The classification of Rota–Baxter operators of nonzero weight
on sl3(C) is due to Sokolov [10]. Nonsplitting Rota–Baxter operators of nonzero weight on the
matrix algebra M3(F ), where F is an algebraically closed field of characteristic 0, were taken up
in [11].

Let A be an arbitrary algebra, and let R : A �→ A be a Rota–Baxter operator of arbitrary
weight λ and ϕ be an automorphism or antiautomorphism of the algebra A. Then the operator
ϕ ◦ R ◦ ϕ−1 is again a Rota–Baxter operator of the same weight λ on A. This means that Rota–
Baxter operators on A can be described up to the action of a group generated by automorphisms
and antiautomorphisms of A.

2. MAIN RESULT

In this paper, as a Lie algebra L we take a complete linear Lie algebra gl2(F ) = (M2(F ), [·, ·])
over an algebraically closed field F with Lie multiplication

[x, y] = xy − yx.

The objective is to describe Rota–Baxter operators of weight 1 on gl2(F ). Note that if the mapping
ϕ is an antiautomorphism of a Lie algebra, then −ϕ is an automorphism of the same algebra. Thus
we will conduct our classification up to the action of the automorphism group Aut (gl2(C)).

We use the following notation: E ∈ gl2(C) is the identity matrix, eij are the usual matrix units,
and h = e11 − e22. As a basis for the algebra gl2(C) we take the set E, h, e12, e21.

Note that if R(E)J is a Jordan form of the matrix R(E), and T is a transition matrix, then the
mapping ϕT : gl2(C) �→ gl2(C), which acts as

ϕT (A) = T−1AT,

is an automorphism of the matrix algebra gl2(C). Also

ϕT ◦ R ◦ ϕT−1(E) = T−1R(TET−1)T = T−1R(E)T = R(E)J .
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Consequently, up to the action of a group generated by automorphisms, we may assume that R(E)
is in Jordan form. For R(E)J , we have the following options:

R(E) = λE + e12, λ ∈ C, is a Jordan box of size 2;
R(E) = λ1e11 + λ2e22, λ1 �= λ2 ∈ C, are two boxes corresponding to different eigenvalues;
R(E) = λE, λ ∈ E, are two boxes corresponding to one eigenvalue.
The main results of the paper are two theorems below.

THEOREM 1. Let R be a Rota–Baxter operator of weight 1 on a complete linear Lie algebra
gl2(C). Then, up to the action of the automorphism group, R equals one of the following operators:

R(E) = λE + e12, R(h) = R(e12) = R(e21) = 0; (1)

R(E) = λE + e12, R(e12) = −e12, R(e21) = −e21, R(h) = −h; (2)

R(E) = λE + h, R(h) = 0, R(e12) = R(e21) = 0; (3)

R(E) = λE + h, R(h) = −h, R(e12) = −e12, R(e21) = −e21; (4)

R(E) = λE + h, R(h) = α1E + α2h, R(e12) = −e12, R(e21) = 0; (5)

R(E) = λE, R(h) = R(e21) = 0, R(e12) = −e12 + th, t ∈ {0, 1}; (6)

R(E) = λE, R(h) = R(e21) = 0, R(e12) = −e12 + th + E, t ∈ {0, 1}; (7)

R(E) = λE, R(h) = E, R(e12) = −e12 + h + αE; R(e21) = 0; (8)

R(E) = λE, R(h) = E, R(e12) = −e12 + E, R(e21) = 0; (9)

R(E) = λE, R(h) = th, R(e21) = 0, R(e12) = −e12, t ∈ C
∗; (10)

R(E) = λE, R(h) = th + E, R(e21) = 0, R(e12) = −e12, t ∈ C
∗; (11)

R(E) = λE, R(h) = −h + αE, R(e21) = E, R(e12) = −e12; (12)

R(E) = λE, R(h) = th, R(e12) = te12, R(e21) = te21, t ∈ {0,−1}. (13)

Here λ, α, αi ∈ C.

THEOREM 2. Operators (1)-(13) lie in different orbits under the action of the automorphism
group of the algebra gl2(C).
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