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Introduction. Pekka Pyykkö periodic table

The table is taken from P. Pyykkö Chem. Rev. 112, 371 (2012).
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Introduction

In this work, the results of the electronic-structure calculations for a number of
super-heavy elements (SHE) of the 7th and 8th periods with atomic numbers
110 ≤ Z ≤ 170 and their lighter homologous are performed [1-5].

Ground state electron configurations of superheavy elements (SHE)

Ionization potentials

Electron affinities

One-particle electron density

Root-mean-square radii (RMS) and widths of the electron-density distribution of
valence shells

Shannon entropy

Electron localization functions (ELF)

Quantum electrodynamics (QED) corrections (110 ≤ Z ≤ 170). [5]

1. M. Y. Kaygorodov et al., Phys. Rev. A 104, 012819 (2021)
2. I. I. Tupitsyn et al., Opt. Spectr. 129, 1038 (2021)
3. M. Y. Kaygorodov et al., Phys. Rev. A 105, 062805 (2022)
4. I.I Tupitsyn et al., Optics and Spectroscopy, 130, 1022 (2022)

5. A. V. Malyshev et al., Phys. Rev. A 106, 012806 (2022)
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Introduction. Specific features of electronic structure and chemical
properties of super-heavy elements of the 7th and 8th periods

The electronic structure of SHEs is unique in several aspects:

Strong relativistic effects cause contraction of the s- and p- orbitals

Spin-orbital splitting of valence p-shells reaches up about 10 eV in Og (Z=118)
and about 420 eV for the 7p-orbital and about 75 eV for the 8p-orbital in element
with atomic number Z=165.

As a result, due to the strong relativistic contraction, the radial distribution of the
electron density of the valence 7p1/2-shell of the Og atom starts to overlap with
the outer core shells and ELF is close to 0.5 in the valence region.
In Ref. [1], this effect in Og was interpreted as smearing out the valence electron
density distribution and its approaching to the case of the homogeneous electron
gas.

Starting from the Z = 125 element, the 5g-shell with the large angular
momentum (l = 4) is occupied with electrons.

The effective radial potential for the 5g-electron, which includes a large
centrifugal repulsive term, has two potential wells which leads to the so-called
orbital collapse.

[1] P. Jerabek, B. Schuetrumpf, P. Schwerdtfeger, and W. Nazarewicz, Phys. Rev. Lett.
120, 053001 (2018).
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Introduction. Methods

In our work, we used two independent theoretical calculation methods.

Configuration Interaction Dirac-Fock-Sturm method (CI-DFS)
At the first step, to obtain the one-electron wave functions for the occupied
atomic shells, we use the Dirac-Fock method. Then the DFS orbitals are obtained
by solving the DFS equations for the vacant shells. At the last step, the
relativistic CI+MBPT method is used to obtain the many-electron wave functions
and the total energies.

Fock Space Coupled-Cluster method (FS-CC)
DIRAC, a relativistic ab initio electronic structure program, Release DIRAC21
(2021), http://www.diracprogram.org. FS-CC method, in contrast to the
one-configuration coupled-cluster method is capable of providing not only the
ground-state energy of an N-electron system, but also an important fraction of
system’s excitation spectrum, including ionization potentials, electron affinities,
etc.

To evaluate the QED correction we use the model QED operator
approach[1].
In our recent work [2], the scope of the QEDMOD potential is extended to the
region 120 ≤ Z ≤ 170.

1. V.M. Shabaev, I.I. Tupitsyn, V.A. Yerokhin, Comput.Phys.Commun. 189, 175 (2015)
2. A. V. Malyshev et al., Phys. Rev. A 106, 012806 (2022)
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Ground state configurations
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How do we define the ground state configuration?

Z=125

The ground configuration is the configuration with the lowest average energy Eav

The ground state level is the level with the lowest E(J)

Z = 125. The lowest Dirac-Fock energy levels within configuration average
approximation and for the relativistic terms

Configuration Eav
DF [a.u.] J EDF(J) [a.u.]

8p16f35g1 E1 -64627.549597 6.5 -64627.614303
8p16f27d15g1 E2 -64627.542119 8.5 -64627.638846

∆E = E2-E1 0.007478 -0.024543

These configurations have different parity and do not mix.
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Ground state configurations

For Z = 126 the configurations with the lowest Dirac-Fcok (DF) energies within
the configuration average approximation are

Configuration Eav
DF [a.u.]

8p17d16f25g2 -66298.183666

8p16f35g2 .183121

8p16f45g1 .168137

8p26f25g2 .146963

8p17d26f15g2 .114149

The enrgies of the configurations 8p17d16f25g2 and 8p16f35g2 are almost the same.

8p26f25g2 Mann et al., 1970 (DF)

8p17d16f25g2 Fricke et al., 1977 (DFS)

8p16f45g1 Umemoto and Saito, 1997 (DF+PZ SIC)

8p16f35g2 (0.98) Nefedov, M. Trzhaskovskaya, 2006 (MCDF)

8p17d16f25g2 Zhou et al., 2017 (DF)
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Ground electron configurations

Table: Ground state electron configurations

Core: [Og] 8s2

Z Conf. J Ref[1] Ref[2]

125 5g16f27d18p1 8.5 5g16f38p1 5g16f28p2

126 5g26f27d18p1 10 5g26f27d18p1 5g26f38p1

127 5g36f27d18p1 13.5 5g36f28p2 5g36f28p2

Core: [Og] 8s2 8p2
1/2

144 5g186f17d3 4.0 5g186f17d3 5g176f17d3

145 5g186f37d2 6.5 5g186f37d2 5g186f37d2

162 5g186f147d8 4.0 5g186f147d8 5g186f147d79s1

163 5g186f147d9 2.5 5g186f147d9 5g186f147d89s1

164 5g186f147d10 0.0 5g186f147d10 5g186f147d99s1

165 5g186f147d109s1 0.5 5g186f145g187d109s1 —

166 5g186f147d109s2 0.0 5g186f145g187d109s2 —

[1] B. Fricke and G. Soff, Atomic Data and Nuclear Data Tables 19, 83 (1977).

[2] V.I. Nefedov, M. Trzhaskovskaya, Dokl. Phys. Chem. 408, 149 (2006).
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Spin-orbit splitting

Table: One-electron energies ε(nlj) and spin-orbit
splitting ∆SO [eV]

7-th period
Z ε(7p1/2) ε(7p3/2) ∆SO

114 10.4 4.5 5.9
116 14.3 6.1 8.2
118 20.1 8.3 11.8

8-th period
Z ε(8p1/2) ε(8p3/2) ∆SO

125 5.3 2.4 2.9

144 13.8 2.7 11.1
145 16.2 2.7 13.5

164 69.9 3.6 66.3
165 79.7 5.0 74.7
166 90.1 6.6 83.5
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Shannon entropy as a measure of localization of atomic valence states

According to the formula of K. Shannon [1], the amount of information is defined as:

S = −
N∑
i=1

pi ln pi (1)

where N is the number of random events, pi is the probability of the i-th event and

N∑
i=1

pi = 1 . (2)

The minimum value of S is reached for the deterministic event when one of the
probabilities of pi is 1, and the rest are zero. In this case, S = Smin = 0.

The maximum value of S is reached for an equally probable distribution pi = 1/N .
Then, Smax = ln(N)

0 ≤ S ≤ ln(N) (3)

For continuous distribution

S = −
∫
dr ln(ρ(r)) ρ(r) ,

∫
dr ρ(r) = 1 . (4)

The Shannon entropy increases with increasing delocalization of the valence states.

[1] C.E. Shannon, Bell Syst. Tech. J. 27, 379; 623 (1948).
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12th group of elements
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14th group of elements
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Electron density distribution
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Radial electron density 4πρ(r)r2 plot for Og in both relativistic and non-relativistic
approximations.

There is no visible peak in the valence shell region. Electron density alone does not show any
valence shell structure
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Nonrelativistic Electron Localization Function (ELF)

The electron localization function characterize the degree of localization of electrons
in atoms and molecules. ELF was introduced in the quantum chemectry in the paper
[1]. ELF is defined by

ELF(r) =

(
1 +

[
D(r)

D0(r)

]2)−1

, (5)

where D(r) is the coefficient of non-zero leading term of the Taylor expansion of the
conditional probability of finding a second electron near the reference electron with the
same spin, which is located at position r.

In the Hartree-Fock approximation

D(r) =
1

2

[
τ −

1

4

|∇ρ(r)|2

ρ(r)

]
, and τ =

∑
i,σ

|∇φiσ(r)|2 . (6)

Here ρ is total density and τ the kinetic energy density.

D0(r) corresponds to a uniform electron gas (Thomas-Fermi) kinetic energy density

D0(r) =
3

10
(3π2)2/3ρ5/3(r) . (7)

The ELF values lie between zero and one 0 ≤ ELF ≤ 1. Small values are typical for
the region between two electron shells. In a homogeneous electron gas ELF = 0.5.

[1] A. D. Becke and K. E. Edgecombe, J. Chem. Phys. v.92, 5397 (1990).
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Relativistic Electron Localization Function (ELF)

D(r) =
∑

λ=1,2

[
Wλ(r)Tλ(r)−

1

8

∣∣∇ρλ(r)
∣∣2

ρ(r)

]
, (8)

where ρ(r) – total electron density

ρ(r) =
∑

λ=1,2

ρλ(r) , ρλ(r) =
4π

r2

∑
a

qa

{
P 2
a (r), λ = 1,

Q2
a(r), λ = 2 .

(9)

Tλ(r) in formula (8) is the relativistic analogue of the non-relativistic kinetic energy
density

Tλ(r) =
∑
a

qa t
λ
a(r) , tλa(r) =

1

2

1

2ja + 1

∑
µa,σ

|∇ϕλaµa
(r, σ)|2 (10)

and Wλ(r) is a weight function that has the form

Wλ(r) =
ρλ(r)

ρ(r)
. (11)

I.I Tupitsyn et al., Optics and Spectroscopy, 130, 1022 (2022)
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“Spin-orbit splitting in the 7p electronic shell becomes so large (∼10 eV) that Og is
expected to show uniform-gas-like behavior in the valence region” [1].

[1] Jerabek et al., PRL 120, 053001 (2018).
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Z164 Electron configuration: [Og]5g186f147d10.

One-electron energies ε and mean radii of the core electrons

ε [keV] <r> [a.u.]

1s 1/2 -770.6 0.0028
2p 1/2 -343.0 0.0038
2s 1/2 -196.3 0.0130
2p 3/2 -66.2 0.0279

mc2=510.7 keV



Orbital collapse

The radial Dirac-Fock equation for f- and g- electrons (l=3,4) contains a large
centrifugal term l(l + 1)/r2 wich dominates at small r. As a result, it may turn out
that the effective one-electron potential has two wells: a narrow deep localized well
and a tiny, but very wide, delocalized well.

This leads to the fact that with small changes in the atomic parameters the
delocalized solution can collapse into a highly localized one [1], for example,
depending on the value of total angular momentum J.

0.0625 0.125 0.25 0.5 1 2 4 8 16 32

-3

-2

-1

0

1

2

3

4f - effective radial potential

Double well 4f - potential.  La, Z=57  [Xe] 6s
2
4f

1

r [a.u.]

V
(r

) 
[a

.u
.]

outer (H-like) well 

inner well

V(r)=-1/r

[1] Griffin et al, Phys Rev 177, 62. (1969)
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Orbital collapse. Two solutions for f-electrons (La, Z=57)

Moreover, in some cases, it is possible to obtain two different solutions of the
Dirac-Fock equations depending on the initial approximation [1,2].

A coexistence of two different states of an atom with the same electronic
configuration both for lanthanum (6s24f5/2) and for europium (6s24f6

5/2
4f7/2) have

been obtained in [1].

Comparison our results with [1] for the La configuration (6s24f5/2) in [a.u.]

4f – localized (inner) orbital, 4f′ – delocalized (outer) orbital, εH4f – nonrelativistic
H-like energy for n=4.

ε4f = −0.2304 a.u. < r >4f = 1.27452 a.u.
ε4f′ = −0.03176 a.u. < r >4f′ = 17.1653 a.u.
ε4f′ [1] = −0.0316 a.u. −−
εH4f = −0.03125 a.u. < r >H

4f = 17.9999 a.u.

(12)

Total Energies (J=0.5):

Einner = −8493.5483 a.u. Einner[1] = −8493.6247 a.u.
Eouter = −8493.4767 a.u. Eouter[1] = −8493.5512 a.u.

(13)

1. I.M. Band and V.I. Fomichev, Phys.Letters A, 75, 178 (1980)
2. J.-R Connerade and R.C. Kamatak, Handbook on the Physics and Chemistry of Rare
Earths, v. 28, p. 1 (2000)
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Orbital collapse. Two solutions for g-electrons (Z=125)
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Z=125. Two solutions for 5g-orbital.

One-electron energies and radii of two states in [a.u.]
5g – localized (inner) orbital, 5g′ – delocalized (outer) orbital, εH5g – nonrelativistic H-like
energy for n=5.

ε5g = −0.51464169 a.u. < r >5g = 0.71289 a.u.

ε5g′ = −0.02000147 a.u. < r >5g′ = 27.4943 a.u.

εH5g = −0.02000001 a.u. < r >H
5g = 27.5000 a.u.

(14)

Total Energies (J=0.5):
Einner = −64846.2788 a.u.

Eouter = −64846.0878 a.u.
(15)
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One-electron model QED potential

The model self-energy (SE) operator V SE for 5 ≤ Z ≤ 120 was introduced in our
papers [1-3]

V SE = V SE
loc +

n∑
i,k=1

|ϕi⟩∆Bik⟨ϕk| , (16)

where

∆Bik =
n∑

j,l=1

(D−1)ji ∆Σjl (D
−1)lk , (17)

∆Σik = Σik − ⟨ψ(0)
i |V SE

loc |ψ
(0)
k ⟩ and Σij = ⟨ψ(0)

i |Σ̂|ψ(0)
j ⟩ .

Here Σij are the matrix elements of the exact one-loop energy-dependent SE operator
Σ̂, calculated with hydrogen like wave functions ψ(0)

i [1].

At the present time, the scope of model QED operator has been expanded up to
Z=170 [4].

1. V.M. Shabaev, I.I. Tupitsyn, V.A. Yerokhin, Phys. Rev. A, 88, 012513 (2013)
2. V.M. Shabaev, I.I. Tupitsyn, V.A. Yerokhin, Computer Phys. Comm., 189, 175 (2015)
3. I.I. Tupitsyn, M.G. Kozlov, M.S. Safronova, V.M. Shabaev, and V.A. Dzuba, PRL, 117,
253001 (2016)

4. A. V. Malyshev, D. A. Glazov, V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, and V. A.
Zaytsev, Phys. Rev. A 106, 012806 (2022)
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Thank You for Attention.


