

Электронные свойства кислородных преципитатов в кремнии

Вывенко Олег Федорович

Санкт-Петербургский гос университет, Санкт-Петербург, Петродворец 198504, Ульяновская 1 oleg.vyvenko@spbu.ru

Соавторы

- Данилов Д. В.
- Лошаченко А.С.
- Маслова Н.А.
- Соболев Н.А.
- Вдовин В.И.

содержание

- Введение. Прежние данные
 - Размер и внутренний состав КП
 - > Электрические и люминесцентные свойства
- Свойства КП в имплантированных кислородом образцах
 - Положительный заряд
 - Особенности эмиссии электронов с состояний КП (эксперимент)
 - Особенности эмиссии электронов с состояний КП (теория)
- Заключение

Состояние кислорода в кремнии

• Промышленный Cz-Si [O] = 10¹⁷ - 10¹⁸ см⁻³

<u>Промежуточные</u> <u>температуры</u>

~700 °C Зародышеобразование КП Новые доноры Rod-like defects

Состояние кислорода в кремнии

Высокие температуры

800 °C – 1100 °C Кислородные преципитаты SiO_{2-x}

Основное использование:

- Рабочая область
 Область
 внутреннего
 геттерирования
 примесей
- Механизм геттерирования продолжает изучаться

Размер кислородных преципитатов в Si Размер vs T

(A)(Б) TEMPERATURE (°C) 1000 800 700 10^{3} $r_{C} \propto \frac{T_{s}^{ox}}{T_{s}^{ox} - T}$ 25 PRECIPITATE RADIUS (nm) Critical Radius (Å) 20 10^{2} 15 Growth 10 101 5 Dissolution Tsox 1000 800 1200 600 Temperature (°C) $\overline{7}$ 8 9 1011 10⁴/T (K⁻¹) A. Borghesi et al J. Appl. Phys. 77 (9), 1995

Рис. 1.6 (А) Зависимость критического радиуса преципитата от температуры (C_{v,i} = C_{v,i}*, δ = 0) [141]. (Б) Температурная зависимость радиуса кислородного преципитата. Круги
 – кинетическая модель роста, перекрестия – результаты малоуглового нейтронного рассеяния, квадраты – экспериментальные данные из плотности ямок травления [62].

Элементный состав КП в Si

Средний состав вариабелен

J. Vanhellemont, Phys Status Solidi-RRL, 9 (2015) 597-

602

x experimental	average <i>x</i> with Eq. (2)	technique	thermal anneal
1.2 or 0.95	1.22	TEM, EELS	16 h 800 °C
1 (fixed)	1	TEM, growth kinetics	200 h 700 °C
1 (fixed)	1	growth kinetics	400 h 700 °C
1 (fixed)	1.13	growth kinetics	400 h 900 °C
1.2 ± 0.1	1	TEM, FTIR	265 h 750 °C
			+ 2 h 1050 °C
1 (EDX)	1.87	TEM, EDX, LST	1000 °C
1		growth kinetics	
1.17 (p ⁻)	1.02	TEM, XRD	10 h 450 °C
fixed		growth kinetics	+ 100 h 900 °C
2	1	TEM, FTIR	30 s 1250 °C
			+ 64 h 800 °C
2	1.64-1.83	TEM, FTIR	30 s 1250 °C
			+ 64 h 1000 °C
1.77 (p⁺, center	1.25	TEM, EDX	1 h 700 °C
of precipitate)			+ 16 h 1000 °C
1.87 (p ⁻ , center	1.21	TEM, EDX	30 s 1250 °C
of precipitate)			+ 17 h 1000 °C
1 (2 nm	1.22	TEM, EELS	30 s 1250 °C + 8 h
boundary layer)			600 °C + 16 h 1000 °C

Распределение О и Si по объему КП

D. Kot, G. Kissinger, M.A. Schubert, Sattler, Ecs Journal of Solid State Science and Technology, 6 (2017) N17

Figure 2 STEM BF image (a) and EDX map (b) of a plate-like precipitate observed in the RTA sample, STEM BF image (c) and EDX map (d) of a transitional form between plate-like and octahedral precipitate observed in the RTA sample, STEM BF (e) and EDX map (f) of a plate-like precipitate observed in the P2 sample.

КП = ядро SiO2 + оболочка SiOx

Phys. Status Solidi RRL 9, No. 7, 405–409 (2015) / DOI 10.1002/pssr.201510194

Figure 4 FTIR spectrum at liquid helium temperature of the RTA sample (thick solid curve), simulated spectrum (thin solid curve) consisting of the spectra of a prolate spheroid with aspect ratio $\beta_2 = 2$ (dashed curve 2) and oblate spheroids with aspect ratios $\beta_1 = 0.01$ (dashed curve 1) and $\beta_3 = 0.25$ (dashed curve 2)

Кислородные преципитаты в кремнии Распределение О и Si

Figure 1 Schematic cross-section of half of a 220 nm equatorial diameter spheroidal SiO_{1.22} precipitate with aspect ratio $\beta = 0.05$. The 2 nm thick SiO interface layer is indicated in blue and the transition to the SiO₂ core in red.

J. Vanhellemont, Phys Status Solidi-RRL, 9 (2015) 597-602

Figure 2 Average SiO₂ volume concentration and *x* as a function of spheroidal SiO_x precipitate size and aspect ratio, assuming a 2 nm SiO interface layer and a SiO₂ core. The line for a sphere (aspect ratio 1) coincides with that of an octahedral precipitate with edge length equal to the diameter of the sphere.

Доля поверхностного слоя увеличивается с уменьшением размера КП и при трансформации формы от сферы к пластинке

Кислородные преципитаты в кремнии Данные EELS EDX ПЭМ

Стехиометрическое ядро SiO2 +оболочка SiOx

Электронные свойства КП в Si Рекомбинация э-д пар и встроенный заряд КП

FIG. 6. Second-anneal temperature dependence of recombination lifetime for p- type samples (group B) and for n type samples (group D). Recombination lifetimes for group C (p type) and group E (n type) samples annealed at 1050 °C fit reasonably well on the curves.

FIG. 12. Schematic band diagrams with band bending due to positive fixed charges in OP's which gives rise to (a) a depletion region in p-Si and (b) an accumulation layer around OP's in n-Si.

Предположение -

- Встроенный +заряд КП 🗲 барьер для захвата дырок.
- По аналогии с планарным Si/SiO2 🗲 +заряд на интерфейсе
- Дислокации не учитываются

Электронные свойства КП в Si

- КП генерируют дислокации
- Дислокации собирают КП

H.J. Moller, L. Long, M. Werner, D. Yang, *Physica Status Solidi a-Applied Research*. **1999**, 171, 175-189.

S. Pizzini, M. Guzzi, E. Grilli, G. Borionetti, *J Phys-Condens Mat.* **2000**, 12, 10131-10143.

E.A. Steinman, A.N. Tereshchenko, V.Y. Reznik, R.J. Falster, *Phys Status Solidi A*. **2007**, 204, 2238-2247

FIG. 4. DLTS spectra for group D samples (*n* type): two-step anneal; 750 °C/10 h O_2 + 850 °C (N1-1), 1050 °C (N1-2), and 1150 °C (N1-3)/16 h O_2 .

FIG. 7. Density distributions of Si/OP interface states in the lower half of band gap obtained from the DLTS spectra shown in Figs. 1 and 3 for two typical p-type samples, S7-1 and S2-71, respectively. The energy levels were determined by using Eq. (6) with the assumption of a constant capture cross section of $\sigma_p = 10^{-16}$ cm². The dashed curves are the extrapolated density distributions without the localized state at about Eq. + 0.3 eV.

FIG. 8. Density distributions of Si/OP interface states in the upper half of band gap obtained from the DLTs spectra shown in Figs. 4 and 5 for two typical *n*-type samples, N1-1 and N2-1, respectively. The energy levels were determined by using Eq. (5) with the assumption of a constant capture cross section of $\sigma_a = 10^{-15}$ cm².

J.M. Hwang, D.K. Schroder, J Appl Phys, 59 (1986) 2476-2487.

Глубокие уровни КП могут быть мелкими с непрерывным распределением по энергии. Nt_e>>Nt_p

S.S. Chan, C.J. Varker, J.D. Whitfield, R.W. Carpenter, MRS Proceedings, 46 (1985) 281-286

Figure 3. DLTS spectra for O+ implant, at $3E15 \text{ cm}^{-2}$ showing E1 and E2.

Глубокие уровни КП могут быть глубокими локальными уровнями

FIG. 2. DLTS spectra with 184.8 s^{-1} rate window for CZ-grown *n*-type silicon before (a) and after heat treatments. (b) and (c) represent the result for denuded zone and oxygen precipitated region of two-step annealed sample.

Hyeon Soo Kim, et al J. Appl. Phys., Vol. 69, 1991

Глубокие уровни КП могут быть глубокими локальными уширенными уровнями

Пластически деформированный Si

КП в Si

P. Omling, E.R. Weber, L. Montelius, H. Alexander, J. Michel, Phys Rev B, 32 (1985) 6571-6581

M. Koizuka, H. Yamada-Kaneta, Journal of Applied Physics. 1998,

DLTS спектры КП и дислокационного Si могут быть очень схожи

T. McHedlidze, K. Matsumoto, E. Asano, Jpn J Appl Phys 1, 38 (1999) 3426-3432.

Из зависимости Nt([OP])→

Р1 – пластинчатые КП, Р2- дислокации (POD) Nt_e>>Nt_p

Электронные свойства КП в Si 2. Люминесценция

S. Pizzini, M. Guzzi, E. Grilli, G. Borionetti, *J Phys-Condens Mat.* 2000, 12, 10131-10143.
 S. Pizzini, E. Leoni, S. Binetti, M. Acciarri, A. Le Donne, B. Pichaud, *Solid State Phenom*. 2004, 95-96, 273-282.
 S. Binetti, S. Pizzini, E. Leoni, R. Somaschini, A. Castaldini, A. Cavallini, *J Appl Phys*. 2002, 92, 2437-2445.
 E.A. Steinman, A.N. Tereshchenko, V.Y. Reznik, R.J. Falster, *Phys Status Solidi A*. 2007, 204, 2238-2247.

- Многообразие люминесцентных спектров КП
- Близость спектральных полос КП и дислокационного Si
- Различные интерпретации их природы

0,83 эВ и 0,817 – ядра 0,87 эВ – преципитаты на дислокациях 0,79 эВ – напряженные преципитаты; дислокации и термодоноры; преципитаты, индуцирующие дислокации 0.85 и 0.78 эВ – кислородные комплексы

Электронные свойства КП в Si

<u>Проблема установление взаимосвязи этих</u> <u>свойств и структуры КП</u>

Индивидуальные Характеристики дефектов Усредненные по площади и объему Характеристики дефектов

Наша попытка решения проблемы — Образцы, имплантированные О+ с подходящими энергиями, Е.

Электронные свойства КП в Si

Наша попытка решения проблемы

Образцы, имплантированные О+ с подходящими энергиями, Е:

- Rp(E) ~ полю зрения ПЭМ
- *Rp(E) < ширины ОПЗ диода*

→ Сопоставимость структурных данных и электронных свойств

2 серии образцов:

- 1) Вариация размера КП изменением Т_ отжига
- 2) Многостадийный отжиг для разделения КП и дислокаций по глубине

Методы

- ПЭМ, СПЭМ
- C(V)
- DLTS
- Катодолюминесценция

Образцы I серии, n-тип, [P]=1-2 10¹⁵см⁻³

[O]_max= 2-3x10¹⁹см⁻³ >> [O]_исходной пластины

АlGа Омические контакты

Распредление протяженных дефектов по глубине

- Протяженные дефекты на глубине до 1 мкм
- Достижимая толщина ОПЗ 1.5 мкм

Изменение размера КП при повышении Т_отжига

(из анализа ПЭМ-микрограмм по многим полям)

MS-1100 °C

- Плотность КП падает с повышением Т от 10¹⁵ до 10¹² см⁻³
- Размер КП r возрастет линейно с Т (кинетическая модель роста)

A. Borghesi, et al, J Appl Phys, 77 (1995) 4169-4244

Изменение встроенного напряжения

Дополнительный положительный заряд в ОПЗ растет с понижением Т_отжига

Зарядовое состояние

+заряд локализован в оболочке КП

Образцы 2ой серии

<u>Связь внутренней структуры и электрофизических характеристик – исследование</u> <u>больших преципитатов</u>

Пластина (100)	Условия имплантации	Расчетный (SRIM) профиль распределения ионов кислорода Условия термообработки	Образец
n-Cz-Si		6 1) 1000 ºC / 15 min / Ar	MS-n4
	Многостадийная (MS):	2) 650 ºC / 7 h / Ar	
p-Cz-Si	· 350 кэВ /1.5х10 ¹⁵ см ⁻²	5 4 [®] 3 3) 800 °C / 4 h / Ar	MS-p4
	· 225 кэВ /0.9х10 ¹⁵ см ⁻²	× 4) 1000 ºC / 6 h / XCA	
n-Cz-Si	· 150 кэВ /0.7х10 ¹⁵ см ⁻²	O 1 1 0 1) 650 ºC / 7 h / Ar	MS-n3
p-Cz-Si		0.0 0.2 0.4 0.6 0.8 1.0 2) 800 °C / 4 h / Ar x,μm 3) 1000 °C / 6 h / XCA	MS-p3
[0]_ [0]	max= 2-3x10 ¹⁹ см ⁻ исходной пласти	³ >> p ⁺ -n и n ⁺ -р переходы Зазофазная эпитакси Ны. Омические контакты	IЯ 26

Сравнение ПЭМ, ВИМС, SRIM

прорастающие дислокации (ПД), структурные дефекты (СД) и КП

Глубина и размеры слоев позволяют их раздельно исследовать при вариации U_diode

Полный заряд дефектной области

• «+» заряд высокой плотности в области имплантации как в n-, так и в p-типе кремния

Зарядовое состояние дефектов

- в р-типе кремния дефектная область образует канал n-типа
- «+» заряд высокой плотности в области имплантации

Послоевое разделение 3х типов дефектов

прорастающие дислокации (ПД), структурные дефекты (СД) и КП

ПД ~ 10¹⁰ cm⁻²

КП~ 10¹⁰ cm⁻²

Слой КП на тыльной стороне, слой ПД – поверхности хорошо отделены от области СД

Оценка заряда кислородных преципитатов

• Заряд 1 преципитата примерно равен 20 элементарным зарядам

Электро- (ЭЛ) и Катодолюминесценция

Leamy H. J. Charge collection scanning electron-microscopy // Journal of Applied Physics. – 1982. – T. 53, № 6. – C. R51-R80.

Электролюминесценция

- Дислокационная линия D1 доминирует
- Линия 0,79 эВ + полоса E>0.82eV

Катодолюминесценция

- D1 и 0,79 эВ при малых накачках
- Сдвиг полосы E>0.82eV в высокоэнергетичную сторону с увеличением накачки свойство рекомбинации через КП?

Электро- + катодолюминесценция

MS-n4 (70K)

- Люминесцентная полоса 0,82 эВ 0,84 эВ рекомбинация с участием состояний больших КП
- Линия 0,79 эВ кислородсодержащие дефекты у дислокаций

Особенности электронной эмиссия с +заряженных КП

DLTS прорастающих дислокаций

- Классическое поведение при вариации окна скоростей
- Логарифмическая зависимость кинетика захвата

DLTS прорастающих дислокаций

DLTS сигнал кислородных преципитатов

MS-n4

Независимость низкотемпературного (НТ) фронта пика от окна скоростей

DLTS спектры двух различных образцов

- Т-положение и форма пика КП различна в двух образцах
- Независимость НТ фронта пика от окна скоростей = свойство КП

Кинетика термоэлектронной эмиссии с ГУ

Кинетика термоэлектронной эмиссии с ГУ

Независимость сигнала DLTS от
$$\frac{t_2}{t_1}$$
 = a = const

$$S = C(t_1) - C(t_2) = C(t_1) - C(at_1)$$

S не зависит от t_1

только для логарифмической кинетики

$$C \approx ln(t)$$
 $S \approx -ln(a)$

Модель. Экранированный кулоновский потенциал

Экранированный кулоновский потенциал

$$U = \frac{qZe^{-(r-R_0)/L_D}}{4\pi\varepsilon r(R_0/L_D+1)}$$

$$E(R_0) = 1.3x10^{-8} \frac{Z}{R_0^2} (V/cm)$$

R_0 = 25 nm) $E(R_0) = 8 \cdot 10^3 Z (V/cm)$
Z = 20)
E^ 10⁵ V/cm => Яма в любой точке ОПЗ

L

Для сферического преципитата $R_0 = 25$ nm поверхность 7 x 10^{-11} cm²

(Z~20) *соответствует Ns=0,4* x 10¹² cm⁻² Ns (Si/SiO₂)~ 10¹² cm⁻²

Упрощенная модель. Кулоновский потенциал

Электроны на интерфейсе -> неэкранированный Кулон

Плотность состояний растёт к зоне проводимости (Si-SiO₂)

Энергия активации термоэмиссии с интерфейсных состояний пренебрежимо мала

$$\Delta U(t) = \alpha (Z - N(t))$$

$$\frac{dN}{dt} = -\nu N \exp\left\{-\frac{\Delta U}{kT}\right\}$$

$$\alpha = \frac{q}{4\pi\varepsilon R_0}$$

$$\nu = \sigma_n v_{th} N_c \exp(-E_{em}/kT)$$

$$Formula = 0, N = N_0$$

$$t = 0, N = N_0$$

$$t = t, N(t) \longrightarrow$$

$$N(t) = N_0 - \frac{kT}{\alpha} \ln\left(1 + \frac{\alpha \nu N}{kT} \exp\left\{-\frac{\alpha (Z - N_0)}{kT}\right\}t\right)$$

$$\int Orapu \phi Mu + eckas$$

$$Ku + eruka$$

$$Ku + eruka$$

$$Manule 3anon + ehus - Bulcokue T$$

$$\alpha N << kT \longrightarrow$$

$$N = \frac{N_0 \exp\left(-\nu \exp\left\{-\frac{\alpha Z}{kT}\right\}t\right)}{1 + \frac{\alpha N_0}{kT}\left[1 - \exp\left(-\nu \exp\left\{-\frac{\alpha Z}{kT}\right\}t\right)\right]}$$

$$Formula = 0, N = N_0$$

$$KT = 0, N = 0, N = 0$$

$$KT = 0, N = 0, N = 0$$

$$KT = 0, N = 0, N = 0$$

$$KT = 0, N = 0, N = 0$$

$$KT = 0, N = 0, N = 0$$

$$KT = 0, N = 0, N = 0, N = 0$$

$$KT = 0, N = 0, N = 0, N = 0, N = 0$$

$$KT = 0, N = 0,$$

Упрощенная модель. Кулоновский потенциал. Численное решение кинетического уравнения

- Классическое поведение при T>T DLTS max ٠
- Е_т из плота Аррениуса совпадает с U(R₀)
- Положение пика и Е т зависит от полного встроенного +заряда КП

DLTS сигнал КП в двух образцах, различающихся по режиму термообработки

 $E_c - 0.37 \ \mathrm{pB}, \qquad \sigma = 2 \mathrm{x} 10^{-16} \ \mathrm{cm}^2$

• В образце с более крупными КП энергии активации DLTS пика больше

$$U(R_0) = \frac{q4\pi N_s R_0^2}{4\pi\varepsilon R_0} = \frac{qN_s R_0}{\varepsilon}$$

Уточнение модели. Кулоновский потенциал. Численное решение кинетического уравнения

• Температурная зависимость сечения захвата интерфейсных состояний

 $\sigma_n = \sigma_t + \sigma_\infty \exp(-E_b / kT)$

Eb = 80 meV, σ_{∞} =10^{-17} cm^{-2}

- Глубина залегания уровня Ec-Et=30 meV
- Ограничение заполнения положением уровня Ферми

$$n_0 = 10^{15} \text{ cm}^{-3}$$

Расчетные данные удовлетворительно описывают эксперимент

Заключение

- КП обладают встроенным положительным зарядом, величина которого уменьшается обратно пропорционально увеличению их размеров, что объясняется локализацией этого заряда в их нестехиометрических оболочках.
- КП, размерами несколько десятков нанометров, характеризуются широкой люминесцентной полосой в энергетическом диапазоне 0,82 эВ – 0,87 эВ, в то время как люминесцентная линия 0,79 относится к кислородным агломератам, декорирующих дислокации.
- Многоэлектронный по величине встроенный положительный заряд КП приводит к возрастанию барьера для эмиссии электронов по мере опустошения его состояний, что проявляется в логарифмической кинетике релаксации емкости.
- Результаты численного моделирования кинетики эмиссии электронов с состояний КП удовлетворительно описывают полученные экспериментальные результаты.

Спасибо за внимание!

Глубокие уровни

P. Omling, E.R. Weber, L. Montelius, H. Alexander, J. Michel, *Phys Rev B*. **1985**, 32, 6571-6581. D. Kot, T. McHedlidze, G. Kissinger, W. von Ammon, Ecs Journal of Solid State Science and Technology, 2 (2013) P9-P12

$E_{c} - 0.39$ эВ, $\sigma = 1.2 x 10^{-15}$ см²

V.V. Kveder, Y.A. Osipyan, W. Schroter, G. Zoth, *Physica Status Solidi a- Applied Research*. **1982**, 72, 701-713.

• Энергетические состояния протяженных дефектов.

ПЭМ исследования

MS-n3

Прорастающие дислокации ~ 10¹⁰ cm⁻²

TD **SD+OP** OP g 200 200 nm

Кислородные преципитаты

```
MS-n3 ~ 0.9*10^{10} cm<sup>-2</sup>
MS-n4 ~ 1.2*10^{10} cm<sup>-2</sup>
```

• Трехслойная дефектная структура:

прорастающие дислокации, структурные дефекты и кислородные преципитаты 53

Глубокие уровни кислородных преципитатов

• Необычная форма пика сохраняется.

Глубокие уровни кислородных преципитатов

 $E_c - 0.38 \ \Im B, \qquad \sigma = 1.7 \ x 10^{-15} \ \mathrm{cm}^2$ $E_c - 0.33 \ \Im B, \qquad \sigma = 3.2 \ x 10^{-16} \ \mathrm{cm}^2$

• Ограничение опустошения уровнем Ферми

