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Abstract 
 
We discuss here images with complex 

structure such as biocrystals, which are 
very often turn out to be fractals or 
multifractals. We present 3 types of 
multifractal spectra, and vector 
characteristics based on using blanket 
technic for the surface of grey-level 
function constructed for a halftone or 
monochrome image. Such a set of 
characteristic describes the image 
structure quite complete. In this work we 
apply several different fractal and 
multifractal methods to analyze images. 
Our experiments make it obvious that for 
every class of images at least 2 methods 
allow obtaining reliable separation of 
numerical signs. The algorithms for 
calculation multifractal characteristics are 
implemented. For each class of images the 
most appropriate signs were 
recommended. 

 
 

1. Introduction  
 
The study of the properties of various 

biological substances often uses the 
technique of obtaining their crystalline 
forms. In medicine, such methods of crystal 
growth as adding a substance to a solution 
of copper chloride, as well as adding a 

medicinal solution to an oil base, are well 
known. 

In many cases, the properties of the 
substance under study can be judged by 
the type of crystal obtained. Methods of 
analysis and classification of digital images 
play an important role in the study of the 
properties of biocrystals. For example, in 
[1, 2] various approaches to the analysis of 
images of wheat samples are described, 
including using artificial neural networks. 

Very often in applied problems of biology 
and medicine, researchers work in 
conditions of the so-called small sample, 
when the number of samples is in the tens, 
whereas most machine learning methods 
rely on the assumption of samples that 
differ by orders of magnitude. Therefore, 
mathematical methods for obtaining fine 
classification features and the use of expert 
knowledge are of great importance here. 
Thus, in [3], the method of multifractal 
analysis was applied to the study of a set 
of 60 wheat samples. The obtained 
characteristics combined with expert 
assessments allowed us to divide the initial 
set into 5 classes. 

The successful application of multifractal 
characteristics in the analysis of 
microscopic images of metal sections [4, 5] 
and in the study of nanostructures [6] 
shows that the same methods can be used 
in the analysis of such complex 
compounds as biocrystals. 
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The relevance of this research is due to 
an increasing number of areas in biological 
and medical research, where the results of 
experiments can be recorded by obtaining 
digital images using modern equipment. 

In this work, we apply basic methods of 
fractal and multifractal analysis of digital 
images to the study of crystals of biological 
substrates and drugs, which is used in 
assessing the quality of biological products 
and laboratory control of drugs. 

As classification features in this paper, 
we use the characteristics obtained by 
calculating such indicators as the 
Minkowski dimension, the Renyi spectrum 
and the multifractal spectrum determined 
by so called local density function, as well 
as parametrized spectra. 

We show that decomposing an image 
into disjoint level sets using "local density 
function" allows filtering by selecting the set 
with the largest capacity dimension. Such 
sets preserve the main features of the 
original image, and the use of fractal 
technic allows for a clearer separation of 
images. 

For images of various classes of 
biological substrates and drugs, we present 
the results of experiments. 

 

2. Main definitions 
 

2.1. Fractal and multifractal 
characteristics 

 
A natural characteristic of the sets of 

Euclidean geometry is their topological 
dimension. It is based on the concept of 
the multiplicity of the covering (the smallest 
number of adjacent elements of the 

covering −1, provided that the covering 
consists of elements having a finite size) 
and is an integer. Another approach to the 

notion of dimension was proposed by 
Hausdorff [7]. For a countable cover with a 
diameter of elements not exceeding a 
certain number, we consider a numerical 
series composed of the diameters of sets 
raised to a certain power p. The sum of the 
series is called the Hausdorff measure, it 

determines the value of 𝑝 at which the 
series converges. This value, which is not 
necessarily an integer, is called the 
Hausdorff dimension. It is known that for 
sets of Euclidean geometry, this 
characteristic coincides with the topological 
dimension. It turned out that the Hausdorff 
dimension can also be a characteristic for 
objects of a more complex structure, 
namely fractals. Such objects are 
characterized by fractional dimension. 
According to the definition proposed by the 
developer of fractal geometry B. 
Mandelbrot, a set is called fractal if its 
Hausdorff dimension is strictly greater than 
its topological dimension.  

Fractal sets have the property of self-
similarity. This means that the structure of 
a part of a fractal set is in some way 
"similar" to the structure of the whole set. 
Self-similarity can be strict and statistical. 
The sets for which the law of their 
construction is known (the Cantor set, the 
Serpinsky carpet, etc.) of course have strict 
self-similarity. Most natural objects with a 
complex structure can be considered as 
fractals (or multifractals) with statistical 
self-similarity. 

Sets with strict self-similarity are usually 
constructed iteratively, from a formal point 
of view, the process of their construction is 
endless. When depicting such structures, it 
is believed that the constructed figure 
approximates the fractal well and gives a 
visual representation of its shape, if at a 
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certain step of construction the differences 
become visually imperceptible. 
 

2.2. Capacity dimension 
 
In practice, calculating the Hausdorff 

dimension is a time-consuming task, 
therefore, the  class of so-called "box-
counting" (capacity) dimensions is used. 
The method of calculation is to count the 

number of elements of linear size 휀 
necessary to cover the set under 
consideration. When working with fractal 
sets, we assume that the so-called power 
law holds, namely, the number of elements 
of the cover 𝑁(휀) is proportional to the 
linear size of an element in some 

degree,i.e. 𝑁(휀) ≈ 𝑐휀−𝐷. This assumption 
is empirically conditioned. 

Usually the capacity dimension of a 

nonempty bounded set 𝐹 ∈ 𝑅𝑛 is defined 
as follows 

 

𝐷 = lim
→0

ln 𝑁(휀) 

− ln 휀
. 

 
An approximate value of the capacity 

dimension can be obtained, for example, 
by using the least squares method. 

 

2.3. Minkowski dimension 
 
It should be noted that when analyzing 

images of fractal sets, the capacity 
dimension is determined only for black-
and-white images. 

To calculate the fractal dimension of the 
sets represented by halftone (gray-scale) 
images, we can use the Minkowski 
dimension. The method of calculation is 
based on the so-called blanket technic and 
does not use a coverage. 

A detailed description of this method can 
be found in [7, 8], so we will provide here 
only the information necessary to describe 
the algorithm for its implementation. 

 
Let 𝐹 = {𝑋𝑖𝑗, 𝑖 = 0,1, … , 𝐾, 𝑗 = 0,1, … , 𝐿} 

be a gray-scale image and 𝑋𝑖𝑗 be the gray 

level of the (𝑖, 𝑗)-th pixel. This is a gray-
level surface for the image, which can be 
viewed as a fractal for a certain measure 
range. 

Let 𝐹 ⊂ ℝ𝑛. Then 𝛿-parallel body 𝐹δ is a 
set of points distant from 𝐹 by no more 
than 𝛿: 

 

𝐹δ = {𝑥 ∈ ℝ𝑛: |𝑥 − 𝑦| ≤ δ, y ∈ 𝐹} 
 

and we say, that 𝑉𝑜𝑙(𝐹δ) — 𝑛-dimensional 

volume of 𝐹δ.  
If for some constant 𝑠 at 𝛿 → 0 the limit 

𝑉𝑜𝑙(𝐹𝛿)/𝛿𝑛−𝐷 is positive and bounded, then 

the number 𝐷 is called the Minkowski 
dimension of the set 𝐹. 

We build blankets 𝑢𝛿 , 𝑏𝛿 for a gray level 
surface as follows 

 

𝑢𝛿(𝑖, 𝑗) =
𝑚𝑎𝑥 {𝑢𝛿−1(𝑖, 𝑗) +

1, 𝑚𝑎𝑥|(𝑚,𝑛)−(𝑖,𝑗)|≤1 𝑢𝛿−1(𝑚, 𝑛)}  

𝑏𝛿(𝑖, 𝑗) =
𝑚𝑖𝑛 {𝑏𝛿−1(𝑖, 𝑗) −

1, 𝑚𝑖𝑛|(𝑚,𝑛)−(𝑖,𝑗)|≤1 𝑢𝛿−1(𝑚, 𝑛)}  

 𝑢0(𝑖, 𝑗) = 𝑏0(𝑖, 𝑗) = 𝑋𝑖𝑗  

 
A point 𝐹(𝑥, 𝑦) is included in a 𝛿-parallel 

body if 𝑏𝛿(𝑖, 𝑗) < 𝐹(𝑥, 𝑦) < 𝑢𝛿(𝑖, 𝑗). The 
definition of a blanket is based on the fact 

that the blanket for a surface of radius 𝛿 
includes all the points of the blanket for a 

surface of radius 𝛿 − 1 together with the 
points that are at the distance of 1 from this 
blanket. 
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The volume of a 𝛿-parallel body is 
calculated by 𝑢𝛿 and 𝑏𝛿: 

 
𝑉𝑜𝑙(𝐹𝛿) = ∑ (𝑢𝛿(𝑖, 𝑗) − 𝑏𝛿(𝑖, 𝑗))𝑖,𝑗 . 

 
The surface area is calculated using one 

of two formulas 
 

𝐴𝛿 =
𝑉𝑜𝑙𝛿 

2𝛿
  

 

 𝐴𝛿 =
𝑉𝑜𝑙𝛿−𝑉𝑜𝑙𝛿−1

2
. 

 
Minkovsky dimension is defined as 
 

𝐷 ≈ 2 −
𝑙𝑛 𝐴𝛿

𝑙𝑛 𝛿
⁄  

 
To obtain the image characteristics, we 

use a vector ((ln 𝛿 , ln 𝐴𝛿)), the size of 
which is determined by the number of 
different values of δ. 

 

2.4. Rényi spectra 
 

Consider the set 𝑀 ⊂ 𝑅𝑛, and its 

partition into 𝑁(휀) cells with side (or 
volume) 휀. We define the probability 
measure 𝑝(휀) = {𝑝𝑖(휀)},  𝑖 = 1, … , 𝑁(휀),

∑ 𝑝𝑖(휀) = 1.𝑁( )
𝑖=1  Also consider the 

generalized statistical sum (or the sum of 
the moments of the measure) [9] 

 

𝑆(𝑞, 휀) = ∑ 𝑝𝑖
𝑞

𝑁( )

𝑖=1

(휀), 𝑞 ∈ 𝑅             (1) 

 
As usual we assume that the power law 

holds 
 

𝑝𝑖(휀)~휀𝛼𝑖                              (2) 

 
We also assume that the statistical sum 

itself also follows the power law: 
 

𝑆(𝑞, 휀)~휀𝜏(𝑞)                        (3) 
 

where 𝜏(𝑞) is a function of class 𝐶1. 
 

The symbol ~ in (2) and (3) is 
understood as follows: 

 

𝛼𝑖 = lim
→0

ln  𝑝𝑖(휀)

ln 휀
, 𝜏(𝑞) = lim

→0

ln  𝑆(𝑞, 휀)

ln 휀
   (4) 

 
Under these assumptions, the 

characteristic of a set with a complex 
structure is a set of generalized Renyi 
dimensions: 

 

𝐷𝑞 = lim
→0

1

𝑞 − 1

ln 𝑆 (𝑞, 휀)

ln 휀
             (5) 

 
 

2.5. Parametrized spectra 
 
A multifractal set can be represented as a 

set of fractal subsets, each of which has its 
own fractal dimension. A multifractal 
spectrum is a set of dimensions of these 
subsets. Each subset is the union of 
covering elements having close values of 

exponents 𝛼𝑖 in (4). 
In this sense  Renyi spectrum is not 

multifractal one, because it shows the 
changing of initial measure when 
parameter q changes. But one may go 
from Renyi spectrum to multifractal one by 
using parametrized spectra [10]. 

Let M be a set and {𝑀𝑖} be its partition 
on 𝑁(휀) cells by size 휀. Consider a normed 

measure {𝑝𝑖(휀)} on {𝑀𝑖} and construct a 

https://en.wikipedia.org/wiki/R%C3%A9nyi_entropy
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sequence of measures 𝜇(𝑞, 휀) = {𝜇𝑖(𝑞, 휀)}, 
where 

 

𝜇𝑖(𝑞, 휀) =
𝑝𝑖

𝑞(휀)

∑ 𝑝𝑖
𝑞𝑁( )

𝑖=1 (휀)
. 

 

Define the average 𝛼(𝑞) of exponents 𝛼𝑖 
by a chosen measure 

 

𝛼(𝑞) = 𝑙𝑖𝑚
→0

∑ 𝑙𝑛 𝑝𝑖(휀)𝜇𝑖(𝑞, 휀)𝑁
𝑖=1

𝑙𝑛 휀
 

 
For every measure 𝜇(𝑞, 휀) calculate 

information dimension 𝑓(𝑞) of its support 
 

𝑓(𝑞) = lim
→0

∑ 𝜇𝑖(𝑞, 휀) ln 𝜇𝑖(𝑞, 휀)𝑁
𝑖=1

ln 휀
 

 
Excluding parameter q we obtain 

multifractal spectra (𝛼, 𝑓(𝛼)). 
 

2.6. Local density function 
 
This method was proposed in [11]. 

Consider an image 𝐼 in 𝑅2 and denote the 

square with center 𝑥 and radius 𝑟 (half of 
the side length) by 𝐵(𝑥, 𝑟). Denote the 

measure of pixel intensities by 𝜇. 
Assume that 
 

𝜇(𝐵(𝑥, 𝑟)) = 𝑘𝑟𝑑(𝑥)(𝑥),                 (6) 

 

where 𝑑(𝑥)  — local density function and 𝑘 
is a constant.  

Consider (6) for 𝑟 small enough, then it 
follows  

 

𝑑(𝑥) = 𝑙𝑖𝑚
𝑟→0

𝑙𝑜𝑔 𝜇(𝐵(𝑥, 𝑟))

𝑙𝑜𝑔 𝑟
 

 

The function 𝑑(𝑥) characterizes the 
degree of heterogeneity of the pixel 

intensities distribution in a neighbour of 𝑥. 

The points 𝑥 with local density 𝛼 form the 
level set 

𝐸𝛼 = {𝑥 ∈ I: 𝑑(𝑥) = α}. In practice we 
calculate 𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥 , 𝛼 ∈ [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥] and 
form the sets  

 

𝐸(𝛼, 휀) = {𝑥 ∈ 𝐼: 𝑑(𝑥) ∈ [𝛼, 𝛼 + 휀)},  
 

where 휀 is a parameter.  
We obtain a set of binary images. 

Obviously, this parameter controls the 
number of level sets and allows the 
separation of the image on nonintersecting 
level sets, and the procedure of separation 
is a kind of filtration. 

Then we calculate capacity dimensions 
for level sets and obtain multifractal 

spectrum 𝑓(𝛼). 

 

3. Experiments 
 

3.1. The effect of cyna 
 
The effect of Cyna 6 on biosubstrates 

was studied. The images from 2 classes 
(each contains 5 images) were analyzed by 
the methods described. 

The results are shown below. 
 

  

 
Figure 1. Biosubstrate without correction (left) and 

after correction (right) . 
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Graphs are given below. All the 
calculated features show the separation. 

 

 
Figure 2. Renyi spectra and multifractal spectra by 

local density function 

 

 

Figure 3. Parametrized spectra and graphs of 
characteristic vectors 

 

3. 2 Crystals of drugs 
 
3 types of crystals of drugs (medical 

solution is added to oil, crystals are formed 
on the boundary of matters). 

Images are obtained by microscope, 
every class contains 7-8 images. 

 

           

 

Figure 4. Class 1 (left) and class 2(right) 

       
 

Figure 5. Class 3 

 

 
Figure 6. Renyi spectra and multifractal spectra by 

local density function 
 

 

 

Figure 7. Parametrized spectra and graphs of 
characteristic vectors 
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4. Conclusion 
 
As a rule, researches work with images 

biomedical preparations under conditions 
of so called small sample — the number of 
images is estimated in tens, not thousands. 
It is expert knowledge that has a decisive 
meaning. However, the practical 
experience shows that a description of 
images in terms of numerical 
characteristics is useful addition to visual 
perception. Any description of an image 
structure may be thought as a formalization 
of expert knowledge. In this work we 
demonstrate the results of application of 
several fractal and multifractal methods to 
analyze images of crystals of drugs. The 
experiments showed that for every class of 
images at least 2 methods allow obtaining 
reliable separation of numerical signs. 
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