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Abstract: The application of the local polynomial splines to the solution of integro-differential equations was 
regarded in the author’s previous papers. In a recent paper, we introduced the application of the local 
nonpolynomial splines to the solution of integro-differential equations. These splines allow us to approximate 
functions with a presribed order of approximation. In this paper, we apply the splines to the solution of the 
integro-differential equations with a smooth kernel. Applying the trigonometric or exponential spline 
approximations of the fifth order of approximation, we obtain an approximate solution of the integro-
differential equation at the set of nodes. The advantages of using such splines include the ability to determine 
not only the values of the desired function at the grid nodes, but also the first derivative at the grid nodes. The 
obtained values can be connected by lines using the splines. Thus, after interpolation, we can obtain the value 
of the solution at any point of the considered interval. Several numerical examples are given. 
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1 Introduction 
Many mathematical models are  described by linear 
or nonlinear integral equations. Integral equations 
appear in nonlinear physical phenomenons such as 
electomagnetic fluid dynamics, reformulation of 
boundary value problem. Integro-differential 
equations are encountered in modeling various 
processes. 
   Integro-differential equations (IDEs) have been 
used extensively in biological models, economics, 
oscillation theory, ocean circulations, control theory 
of industrial mathematics and other fields [1], [2]. 
Paper [3] is devoted to the study of an integro-
differential system of equations modeling the 
genetic adaptation of a pathogen by taking into 
account both the mutation and selection processes. 
Using the variance of the dispersion in the 
phenotype trait space as a small parameter the 
authors provide a complete picture of the dynamical 
behaviour of the solutions of the problem. 
The (2+1) dimensional Konopelchenko–Dubrovsky 
equation (2D-KDE) is an integro differential 
equation which describes a two-layer fluid in 
shallow water near ocean shores and stratified 
atmosphere (see paper [4]). 

The charged particle motion for certain 
configurations of oscillating magnetic fields can be 
simulated by a Volterra integro-differential equation 
of the second order with time-periodic coefficients 
(see paper [5]). 
   In study [6], a numerical technique with hybrid 
approximation is developed for solving high-order 
linear integro-differential equations including 
variable delay under the initial conditions. These 
types of problems are of applications in 
mathematical physics, mechanics, natural sciences, 
electronics and computer science. 
   As noted in paper [7], the wireless sensor network 
and industrial internet of things have been a growing 
area of research which is being exploited in various 
fields such as smart homes, smart industries, smart 
transportation, and so on. There is a need for a 
mechanism which can easily tackle the problems of 
nonlinear delay integro-differential equations for 
large-scale applications of the Internet of Things. In 
paper [7], the Haar wavelet collocation technique is 
developed for the solution of nonlinear delay 
integro-differential equations for the wireless sensor 
network and the industrial Internet of Things. The 
method is applied to the nonlinear delay Volterra, 
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delay Fredholm and delay Volterra–Fredholm 
integro-differential equations which are based on the 
use of Haar wavelets. 
    Paper [8] noted that it is well known that the 
study of many processes of the natural sciences can 
be reduced to solving the Volterra 
integrodifferential equations. Recent studies on 
certain problems such as the HIV virus, bird flu 
virus, and diseases associated with mutations of 
viruses have become relevant. A solution to such 
problems is associated with finding solutions of 
VIDEs. There are several classes of methods for 
solving IDEs. In contrast to the known methods, 
paper [8] developed the finite difference hybrid 
method by a combination of power series and the 
shifted Legendre polynomial through a block 
method. 
  At present, many authors are trying to construct 
more accurate methods for solving integro-
differential equations. In paper [9] efficient 
numerical methods are given to solve the linear 
Volterra integral  equations and Volterra Integro 
differential equations of the first and second types 
with exponential, singular, regular and convolution 
kernels. 
    In paper [10] the authors introduce a numerical 
method for solving the nonlinear Volterra integro-
differential equations. In the first step, the authors 
apply the implicit trapezium rule to discretize the 
integral in a given equation. Further, the Daftardar-
Gejji and Jafari technique is used to find the 
unknown term on the right side.  
   In study [11], the second order linear Volterra 
partial integro-differential equation are solved with 
the collocation method based on the Lerch 
polynomials. 
   In paper [12], a 6th order Runge-Kutta with the 
seven stages method for finding the numerical 
solution of the Volterra integro-differential equation 
is considered. Here the integral term in the Volterra 
integro-differential equation approximated using the 
Lagrange interpolation numerical method is 
discussed. 
   Finite elements, splines and wavelets are often 
used to construct computational schemes for solving 
integro-differential equations. 
   In paper [13], the authors present a new mixed 
finite element method for a class of parabolic 
equations with p-Laplacian and nonlinear memory. 
   In paper [14], a new collocation method based on 
the Pell–Lucas polynomials is presented to solve the 
parabolic-type partial Volterra integro-differential 
equations. 
  In paper [15], a new three-point linear rational 
finite difference (3LRFD) formula is investigated, 

which is combined with the compound trapezoidal 
scheme to discretize the differential term and 
integral term of second-order linear Fredholm 
integro-differential equation (SOLFIDE) 
respectively, and then the corresponding 3LRFD-
quadrature approximation equation can be derived 
and then generate the large and dense linear system. 
  In paper [16], the authors consider the Jacobi 
collocation method for the numerical solution of the 
neutral nonlinear weakly singular Fredholm integro-
differential equations. 
    Paper [17], focuses on an efficient spline-based 
numerical technique for numerically addressing a 
second-order Volterra partial integrodifferential 
equation. In paper [George] the time derivative is 
discretized using a finite difference scheme, while 
the space derivative is approximated using the 
extended cubic B-spline basis.  
  Paper [18], aims to present a new method for the 
approximate solution of two-dimensional nonlinear 
Volterra–Fredholm partial integro-differential 
equations with boundary conditions using two-
dimensional Chebyshev wavelets. 
  In paper [19], the authors approximate the solution 
of Fredholm integro-differential equations of the 
second kind by using exponential spline function. 
The proposed method reduces to the system of 
algebraic equations. 
    Although two-dimensional (2D) parabolic 
integro-differential equations (PIDEs) arise in many 
physical contexts, there is no general available 
software that is able to solve them numerically. To 
remedy this situation, in paper [20], the authors 
provide a compact implementation for solving 2D 
PIDEs using the finite element method (FEM) on 
unstructured grids. Piecewise linear finite element 
spaces on triangles are used for the space 
discretization, whereas the time discretization is 
based on the backward-Euler and the Crank–
Nicolson methods. The quadrature rules for 
discretizing the Volterra integral term are chosen so 
as to be consistent with the time-stepping schemes; 
a more efficient version of the implementation that 
uses a vectorization technique in the assembly 
process is also presented.  
  In work [21], the Legendre wavelet collocation 
method is implemented for the numerical solution of 
nonlinear integral and integro-differential equations. 
The authors approximate the solution with the 
Legendre wavelet. 
      In this paper we consider the solution of the 
linear Volterra–Fredholm integro-differential 
equations of the second kind with a continuous 
kernel and a continuous right-hand side. When 
solving such equations, the application of 
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polynomial spline approximations is one of the 
possible ways to calculate a solution in the grid 
points (see the author's paper [22]). After we have 
computed the solution at the grid nodes, we can 
compute the solution at additional points between 
these nodes using the interpolation with these spline 
approximations. Moreover, the resulting line can not 
only be continuous, but it can also be quite smooth. 
Methods for constructing such approximations were 
previously considered in the author’s papers. 
    The method for calculating the error of 
approximation using the non-polynomial splines is 
given in the author’s paper [23]. When solving 
linear Volterra–Fredholm integro-differential 
equations of the second kind, the use of non-
polynomial splines can give a more accurate result. 
However, there may be problems with the 
calculation of the integral. In this case, it is 
necessary to apply the corresponding quadrature 
formulas. These quadrature formulas can also be 
built using the local non-polynomial splines. The 
second section presents formulas for the 
trigonometric, exponential and polynomial splines 
of the fifth order of approximation. The third section 
presents the results of numerical experiments. 
 

2 Construction of Nonpolynomial 

Approximations 
2.1 Nonpolynomial Approximations of the 

Fifth Order 

The basic splines of the fifth-order approximation 
are found separately on each grid interval. Recall 
that when constructing an approximation on a finite 
interval [𝑎, 𝑏], we have to use different types of 
fifth-order approximations. We have to distinguish 
between the approximations near the left end of the 
interval [𝑎, 𝑏], the right end of the interval [𝑎, 𝑏], 
and near the middle of the interval [𝑎, 𝑏]. We note 
that the approximation with the middle splines gives 
a smaller approximation error compared to the 
approximations with the left splines or with the right 
splines. To do this, we have to solve a system of 
approximation relations. Suppose that the functions 
𝜑𝑖 , 𝑖 = 0, 1, 2, 3, 4, form a Chebyshev system, and 
the determinant of the system is nonzero. Let the 
values of the function 𝑢(𝑥) be known at the nodes 
of the grid {𝑥𝑘}: 

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏. 

Approximation with the local splines of the fifth 
order of approximation is built separately on each 
grid interval [𝑥𝑗, 𝑥𝑗+1]. Denote 𝑢𝑘 = 𝑢(𝑥𝑘). In the 

case of the middle basis splines, the system of 
equations looks as follows: 

∑ 𝜑𝑖(𝑥𝑘)𝑗+2
𝑘=𝑗−2 𝑤𝑘

𝑠(𝑥) = 𝜑𝑖(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],   (1) 
𝑖 = 0, 1, 2, 3, 4. 

In the case of the left basis splines, the system of 
equations looks as follows: 

∑ 𝜑𝑖(𝑥𝑘)𝑗+4
𝑘=𝑗 𝑤𝑗

𝐿(𝑥) = 𝜑𝑖(𝑥), 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1],    (2) 

𝑖 = 0, 1, 2, 3, 4. 

In the case of the right basis splines, the system of 
equations looks as follows: 

∑ 𝜑𝑖(𝑥𝑘)𝑗+1
𝑘=𝑗−3 𝑤𝑗

𝑅(𝑥) = 𝜑𝑖(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1],   (3) 

 𝑖 = 0, 1, 2, 3, 4. 

Solving this system of equations, we obtain 
formulas for the basis splines.  

2.2 Trigonometric Splines of the Fifth Order 

of Approximation 

In order to simplify the expressions, we will do the 
following on the equidistant set of nodes with step ℎ 
on [𝑎, 𝑏]. Let us introduce a variable 𝑡 ∈ [0,1]. Now 
we get for 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1]: 𝑥 = 𝑥𝑗 + 𝑡 ℎ. To construct 
trigonometric splines of the fifth order of 
approximation, we take  

𝜑0 = 1, 𝜑1 = sin(𝑥) , 𝜑2 = cos(𝑥), 

 𝜑3 = sin(2𝑥) , 𝜑4 = cos(2𝑥).             (4) 

Let supp 𝑤𝑗 = [𝑥𝑗−2, 𝑥𝑗+3  ]. Now the middle 
trigonometric basis splines (according relation (1)) 
on the interval [𝑥𝑗 , 𝑥𝑗+1]: can be represented as 
followed: 

𝑤𝑗
𝑠(𝑥𝑗 + 𝑡 ℎ) = 1/128  (−1 − 2 cos(ℎ) 

+4 cos(3  ℎ) − 2 cos(9  ℎ)) − cos (6  ℎ) 
+cos (8  ℎ) + cos (10  ℎ)  − cos(𝑡  ℎ − 5  ℎ) 

− cos(𝑡  ℎ + 5  ℎ) + cos(𝑡  ℎ − 3  ℎ) 
+2 cos(𝑡  ℎ + 7  ℎ) − cos(𝑡  ℎ − ℎ) 
− cos(𝑡  ℎ + ℎ) − 2 cos(𝑡  ℎ − 4  ℎ) 

−2 cos(𝑡  ℎ + 4  ℎ) + 2 cos(−3  ℎ + 2  𝑡  ℎ) 
+2 cos(3  ℎ + 2  𝑡  ℎ) − 3 cos(−ℎ + 2  𝑡  ℎ) 

+2 cos(−2  ℎ + 2  𝑡  ℎ) − 2 cos(6  ℎ + 2  𝑡  ℎ) 
+2 cos(2  ℎ + 2  𝑡  ℎ) + cos(2  ℎ + 𝑡  ℎ) 

− cos(𝑡 ℎ − 6 ℎ) − cos(𝑡 ℎ + 6 ℎ) 
−3 cos(ℎ + 2 𝑡 ℎ) − cos(𝑡 ℎ − 9 ℎ) 
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+ cos(𝑡  ℎ + 3  ℎ) − 2 cos(−6 ℎ + 2 𝑡 ℎ) 
+ cos(−2 ℎ + 𝑡 ℎ) + cos(𝑡  ℎ − 8  ℎ) 
+ cos(𝑡  ℎ + 8  ℎ) + cos(2 𝑡 ℎ − 7  ℎ) 

+2 cos(𝑡 ℎ − 7 ℎ) + 2 cos(𝑡 ℎ) 
+ cos(7 ℎ + 2 𝑡 ℎ) 

−cos (𝑡 ℎ + 9 ℎ))/(sin4(ℎ)cos (ℎ)(4 cos5 (ℎ) 
−8 cos4(ℎ) + cos3(ℎ) + 5 cos2(ℎ) − cos(ℎ)

− 1)), 
𝑤𝑗+1

𝑠 (𝑥𝑗 + 𝑡 ℎ) = −1/128  (−1 + cos(ℎ)

− cos(2  ℎ)) 
+2 cos(4  ℎ) − cos(3  ℎ) − 2 cos(7  ℎ)

+ cos(5  ℎ)  
 + cos(9  ℎ) + cos(6  ℎ) − cos(8  ℎ)

+ 2 cos(𝑡  ℎ + 5  ℎ) 
−2 cos(𝑡  ℎ − 3  ℎ) − 3 cos(𝑡  ℎ − 4  ℎ) 

− cos(𝑡  ℎ + 4  ℎ) + 3 cos(−3  ℎ + 2  𝑡  ℎ) 
+ cos(−ℎ + 2  𝑡  ℎ) − 2 cos(6  ℎ + 2  𝑡  ℎ) 
+ cos(2  ℎ + 2  𝑡  ℎ) − 2 cos(2  ℎ + 𝑡  ℎ) 
+2 cos(𝑡  ℎ − 6  ℎ) − 2 cos(𝑡  ℎ + 6  ℎ) 

− cos(−4  ℎ + 2  𝑡  ℎ) + 3 cos(4  ℎ + 2  𝑡  ℎ) 
− cos(5  ℎ + 2  𝑡  ℎ) − 2 cos(ℎ + 2  𝑡  ℎ) 

+ cos(−6  ℎ + 2  𝑡  ℎ) + 2 cos(−2  ℎ + 𝑡  ℎ) 
− cos(𝑡  ℎ − 8  ℎ) + 2 cos(𝑡  ℎ + 8  ℎ) 

−2 cos(−5  ℎ + 2  𝑡  ℎ) + cos(𝑡  ℎ − 7  ℎ) 
+3 cos(𝑡 ℎ) − 2 cos(2 𝑡 ℎ) + cos(7 ℎ + 2 𝑡 ℎ) 

−cos (𝑡  ℎ + 9  ℎ))/(sin4 (ℎ)/cos (ℎ)/(4 cos5(ℎ) 
−8  cos4(ℎ) + cos3(ℎ) + 5  cos2(ℎ) − cos(ℎ)

− 1)), 
 

𝑤𝑗+2
𝑠 (𝑥𝑗 + 𝑡 ℎ) =  1/128  (−3 cos(ℎ)

+ 2 cos(2  ℎ)) 
+2 cos(3  ℎ) + cos(7  ℎ) − 2 cos(6  ℎ) 
+2 cos(𝑡  ℎ − 5  ℎ) + cos(𝑡  ℎ + 5  ℎ) 
−3 cos(𝑡  ℎ − 3  ℎ) − cos(𝑡  ℎ + 7  ℎ)

− cos(𝑡  ℎ − ℎ) 
+2 cos(𝑡  ℎ + ℎ) + cos(𝑡  ℎ − 4  ℎ)

− 3 cos(𝑡  ℎ + 4  ℎ) 
−3 cos(−3  ℎ + 2  𝑡  ℎ) + 4 cos(3  ℎ + 2  𝑡  ℎ) 

+4 cos(−ℎ + 2  𝑡  ℎ) + cos(−2  ℎ + 2  𝑡  ℎ) 
+ cos(6  ℎ + 2  𝑡  ℎ) − 2 cos(2  ℎ + 2  𝑡  ℎ) 

− cos(2  ℎ + 𝑡  ℎ) − cos(𝑡  ℎ − 6  ℎ)
+ 2 cos(𝑡  ℎ + 6  ℎ) 

+ cos(−4  ℎ + 2  𝑡  ℎ) + cos(4  ℎ + 2  𝑡  ℎ) 
−3 cos(5  ℎ + 2  𝑡  ℎ) − 2 cos(ℎ + 2  𝑡  ℎ)

+ 2 cos(𝑡  ℎ) 
−2  cos(2  𝑡  ℎ))/(sin4(ℎ)𝑐𝑜𝑠(ℎ)(4  cos5 (ℎ)

− 8  cos4(ℎ) + cos3(ℎ)
+ 5  cos2(ℎ) − cos(ℎ) − 1)), 

 
𝑤𝑗−1

𝑠 (𝑥𝑗 + 𝑡 ℎ) =  1/128  (1 − cos(ℎ) + cos(2  ℎ) 
−2 cos(4  ℎ)) + cos (3  ℎ) + 2  cos (7  ℎ)

− cos (5  ℎ) 

− cos(9  ℎ) − cos(6  ℎ) + cos(8  ℎ)
− 2 cos(𝑡  ℎ − 5  ℎ) 

− cos(𝑡  ℎ + 7  ℎ) + cos(𝑡  ℎ − 4  ℎ)
+ 3 cos(𝑡  ℎ + 4  ℎ) 

−3 cos(3  ℎ + 2  𝑡  ℎ) + 2 cos(−ℎ + 2  𝑡  ℎ) 
− cos(−2  ℎ + 2  𝑡  ℎ) − cos(6  ℎ + 2  𝑡  ℎ) 

−2 cos(2  ℎ + 𝑡  ℎ) + 2 cos(𝑡  ℎ − 6  ℎ) 
−2 cos(𝑡  ℎ + 6  ℎ) − 3 cos(−4  ℎ + 2  𝑡  ℎ) 
+ cos(4  ℎ + 2  𝑡  ℎ) + 2 cos(5  ℎ + 2  𝑡  ℎ) 

− cos(ℎ + 2  𝑡  ℎ) + cos(𝑡  ℎ − 9  ℎ)
+ 2 cos(𝑡  ℎ + 3  ℎ) 

+2 cos(−6  ℎ + 2  𝑡  ℎ) + 2 cos(−2  ℎ + 𝑡  ℎ) 
−2 cos(𝑡 ℎ − 8 ℎ) + cos(𝑡 ℎ + 8  ℎ)

+ cos(−5 ℎ + 2 𝑡 ℎ) 
− cos(−7 ℎ + 2 𝑡 ℎ) − 3 cos(𝑡 ℎ) 

+2 cos(2 𝑡 ℎ))/(sin4 (ℎ)𝑐𝑜𝑠(ℎ)(4 cos5 (ℎ)
− 8 cos4(ℎ) + cos3(ℎ)
+ 5 cos2(ℎ) − cos(ℎ) − 1)), 

 
𝑤𝑗−2

𝑠 (𝑥𝑗 + 𝑡 ℎ) =  1/128  (−3 cos(ℎ)

+ 2 cos(2 ℎ)) 
+2 cos(3  ℎ) + cos(7  ℎ) − 2 cos(6  ℎ) 

+ cos(𝑡 ℎ − 5 ℎ) + 2 cos(𝑡  ℎ + 5 ℎ)
+ 2 cos(𝑡 ℎ − ℎ) 

− cos(𝑡 ℎ + ℎ) − 3 cos(𝑡 ℎ − 4  ℎ)
+ cos(𝑡 ℎ + 4  ℎ) 

+4 cos(−3  ℎ + 2  𝑡  ℎ) − 3 cos(3  ℎ + 2 𝑡 ℎ) 
−2 cos(−ℎ + 2 𝑡 ℎ) − 2 cos(−2 ℎ + 2 𝑡 ℎ) 

+ cos(2 ℎ + 2 𝑡 ℎ) + 2 cos(𝑡 ℎ − 6  ℎ) 
− cos(𝑡  ℎ + 6  ℎ) + cos(−4  ℎ + 2 𝑡 ℎ) 
+ cos(4  ℎ + 2  𝑡 ℎ) + 4 cos(ℎ + 2 𝑡 ℎ) 

−3 cos(𝑡  ℎ + 3  ℎ) + cos(−6  ℎ + 2 𝑡 ℎ) 
− cos(−2  ℎ + 𝑡 ℎ) − 3 cos(−5  ℎ + 2 𝑡 ℎ) 

− cos(𝑡 ℎ − 7 ℎ) + 2 cos(𝑡 ℎ) 
−2cos(2𝑡 ℎ))/(sin4(ℎ)𝑐𝑜𝑠(ℎ)/(4 cos5 (ℎ)

− 8  𝑐𝑜𝑠4(ℎ) + cos3(ℎ)
+ 5 cos2(ℎ) − cos(ℎ) − 1)). 

It is easy to calculate that on the interval [𝑥𝑗 , 𝑥𝑗+1], 
the middle trigonometric basis functions satisfy the 
inequalities: 

|𝑤𝑗
𝑠| ≤ 1, |𝑤𝑗+1

𝑠 | ≤ 1, |𝑤𝑗−1
𝑠 | ≤ 0.21, |𝑤𝑗−2

𝑠 | ≤

0.08, |𝑤𝑗+2
𝑠 | ≤ 0.115. 

We construct an approximation with the middle 
splines on the interval [𝑥𝑗, 𝑥𝑗+1] according to the 
formula: 

𝑢𝑆4
𝑗 (𝑥) = ∑ 𝑢(𝑥𝑖)𝑤𝑖

𝑠(𝑥),
𝑗+2
𝑖=𝑗−2  𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1],    (5) 

In author [23]’s paper, a technique for constructing 
the error of approximation of functions by non-
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polynomial splines is given. In the case of using 
local trigonometric splines of the fifth order of 
approximation, following this technique, we note 
the following. According to this theory, on the 
interval  [𝑥𝑗, 𝑥𝑗+1], we represent the function 𝑢(𝑥) 
as 

𝑢(𝑥) =
2

3
∫(5𝑢(3) + 𝑢(5) + 4𝑢′)𝑠𝑖𝑛4 (

𝑥

2
−

𝑡

2
 )

𝑥

𝑥𝑗

𝑑𝑡 

+𝑐1 sin(𝑥) + 𝑐2 cos(𝑥) + 𝑐3 sin(2𝑥)
+ 𝑐4 cos(2𝑥) + 𝑐5. 

Here 𝑐𝑖, 𝑖 = 1, 2, 3, 4, 5, are arbitrary constants. 

It is easy to see that the expression 5𝑢(3) + 𝑢(5) +
4𝑢′ = 1 when 

𝑢(𝑥) = 𝑐1 sin(𝑥) − 𝑐2 cos(𝑥) + (
1

2
) 𝑐3 sin(2𝑥)

−
1

2
𝑐4 cos(2𝑥) +

𝑥

4
+ 𝑐5. 

And it is easy to see that the expression 

5𝑢(3) + 𝑢(5) + 4𝑢′ = 0, 

when 

𝑢(𝑥) = 𝑐1 sin(𝑥) + 𝑐2 cos(𝑥) + 𝑐3 sin(2𝑥)
+ 𝑐4 cos(2𝑥) + 𝑐5. 

It can be obtained that the next inequality is valid: 

|𝑢𝑆4
𝑗

 (𝑥) − 𝑢(𝑥)|

≤ 0.0243 ℎ5||5𝑢(3) + 𝑢(5) + 4𝑢′||. 

Having solved the systems of equations (2), (4) we 
obtain the formulas of the left trigonometric basis 
splines. Having solved the systems of equations (3), 
(4) we obtain the formulas of the right trigonometric 
basis splines.  

We construct the approximation with the left splines 
on the interval [𝑥𝑗, 𝑥𝑗+1] according to the formula: 

𝑢𝐿4
𝑗 (𝑥) = ∑ 𝑢(𝑥𝑖)𝑤𝑖

𝐿(𝑥),
𝑗+4
𝑖=𝑗  𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1].     (6) 

We construct the approximation with the right 
splines on the interval [𝑥𝑗, 𝑥𝑗+1] according to the 
formula: 

𝑢𝑅4
𝑗 (𝑥) = ∑ 𝑢(𝑥𝑖)𝑤𝑖

𝑅(𝑥),
𝑗+1
𝑖=𝑗−3  𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1].     (7) 

Note that approximations with the trigonometric 
splines have the following properties: 

𝑢4
𝑗(𝑥) − 𝑢(𝑥) = 0, 𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1], 

when 𝑢 = 1, sin(𝑥), cos(𝑥), sin(2𝑥), cos(2𝑥). 

 

2.3 Exponential Splines of the Fifth Order of 

Approximation 

In the case of applying a system of functions  

𝜑0 = 1, 𝜑1 = exp(𝑥) , 𝜑2 = exp(−𝑥), 

𝜑3 = exp(2𝑥) , 𝜑4 = exp(−2𝑥)           (8) 

we obtain the exponential basis splines.  
Let supp 𝑤𝑗 = [𝑥𝑗−4, 𝑥𝑗+1  ]. Solving a system of 
equations, we obtain the left exponential basis 
splines (see (2)) of the form: 

𝑤𝑗
𝐿(𝑥) = (exp(𝑥) − exp(𝑥𝑗+1)) (exp(𝑥) 

− exp(𝑥𝑗+3)) 
 (exp(𝑥) − exp(𝑥𝑗+4))(exp(𝑥) − exp(𝑥𝑗+2)) 

exp2(𝑥𝑗) /((exp (𝑥𝑗+2) − exp (𝑥𝑗))(exp(𝑥𝑗+4) 
−exp (𝑥𝑗))(exp (𝑥𝑗+3) − exp (𝑥𝑗))(− exp(𝑥𝑗) 

+exp (𝑥𝑗+1))exp2(𝑥)); 
 

𝑤𝑗+1
𝐿 (𝑥) = −(− exp(𝑥𝑗) + exp(𝑥))(exp(𝑥)

− exp(𝑥𝑗+3)) 
(exp(𝑥) − exp(𝑥𝑗+4))(exp(𝑥) − exp(𝑥𝑗+2)) 

𝑒𝑥𝑝2(𝑥𝑗+1)/((exp (𝑥𝑗+2)

− exp (𝑥𝑗+1))/(exp(𝑥𝑗+4) 
−exp (𝑥𝑗+1))(exp (𝑥𝑗+3) − exp (𝑥𝑗+1))(− exp(𝑥𝑗) 

+𝑒𝑥𝑝(𝑥𝑗+1))exp2(𝑥)); 
 

𝑤𝑗+2
𝐿 (𝑥) = (− exp(𝑥𝑗) + exp(𝑥))(exp(𝑥)

− exp(𝑥𝑗+1)) 
(exp(𝑥) − exp(𝑥𝑗+3))(exp(𝑥) − exp(𝑥𝑗+4)) 

exp2(𝑥𝑗+2)/((exp (𝑥𝑗+2) − exp (𝑥𝑗+4))(exp(𝑥𝑗+2) 
−exp (𝑥𝑗+3))(exp (𝑥𝑗+2)

− exp (𝑥𝑗+1))/((exp(𝑥𝑗+2) 
−exp(𝑥𝑗))exp2(𝑥)); 

 

𝑤𝑗+3
𝐿 (𝑥) = ((exp(𝑥𝑗) − exp (𝑥))(exp (𝑥)

− exp (𝑥𝑗+1)) 
(exp(𝑥) − exp(𝑥𝑗+4))(− exp(𝑥) + exp(𝑥𝑗+2)) 

exp2(𝑥𝑗+3)/((exp (𝑥𝑗+2) − exp (𝑥𝑗+3))(exp(𝑥𝑗+4) 
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−exp (𝑥𝑗+3))(exp (𝑥𝑗+3) − exp (𝑥𝑗+1))(exp(𝑥𝑗+3) 
−exp(𝑥𝑗))/exp2(𝑥)); 

 
𝑤𝑗+4

𝐿 (𝑥) = (−exp (𝑥𝑗) + exp (𝑥))(exp (𝑥)

− exp (𝑥𝑗+1)) 
(exp(𝑥) − exp(𝑥𝑗+3))(− exp(𝑥) + exp(𝑥𝑗+2)) 

exp2(𝑥𝑗+4)/((exp (𝑥𝑗+2) − exp (𝑥𝑗+4))(exp(𝑥𝑗+4) 
−exp (𝑥𝑗+3))(exp (𝑥𝑗+4) − exp (𝑥𝑗+1))(exp(𝑥𝑗+4) 
−exp(𝑥𝑗))/exp2(𝑥)). 
 
It is easy to calculate that on the interval [𝑥𝑗 , 𝑥𝑗+1], 
the left basis functions satisfy the 
inequalities:|𝑤𝑗

𝐿| ≤ 1, |𝑤𝑗+1
𝐿 | ≤ 1.37, |𝑤𝑗+2

𝐿 | ≤

0.85, |𝑤𝑗+3
𝐿 | ≤ 0.24, |𝑤𝑗+4

𝐿 | ≤ 0.02. 
We construct an approximation by such splines on 
the interval [𝑥𝑗, 𝑥𝑗+1] according to the formula: 

𝑢𝐿4
𝑗 (𝑥) = ∑ 𝑢𝑖𝑤𝑖

𝐿(𝑥),
𝑗+4
𝑖=𝑗  𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1]. 

Similarly, we obtain the middle exponential basis 
splines of the form: 

𝑤𝑗
𝑠(𝑥) = (exp2(𝑥𝑗)(exp (𝑥) − exp (𝑥𝑗+1))(exp(𝑥) 
−exp (𝑥𝑗−1))(exp (𝑥) − exp (𝑥𝑗−2))(exp(𝑥) 

−exp (𝑥𝑗+2)))/((−exp (𝑥𝑗)

+ exp (𝑥𝑗+1))(− exp(𝑥𝑗) 
+exp (𝑥𝑗−1))(−exp (𝑥𝑗) + exp (𝑥𝑗−2))(− exp(𝑥𝑗)) 

+exp(𝑥𝑗+2))exp2(𝑥)); 

𝑤𝑗+1
𝑠 (𝑥) = (−exp2(𝑥𝑗+1)(exp (𝑥) − exp (𝑥𝑗)) 

(− exp(𝑥) + exp (𝑥𝑗−1))(−exp (𝑥) + exp (𝑥𝑗−2)) 
(−exp (𝑥) + exp (𝑥𝑗+2)))/((− exp(𝑥𝑗+1) 

+exp (𝑥𝑗))(exp (𝑥𝑗−1) − exp (𝑥𝑗+1))(− exp(𝑥𝑗+1) 
+exp(𝑥𝑗−2))(exp(𝑥𝑗+2) − exp(𝑥𝑗+1))exp2(𝑥)); 

𝑤𝑗+2
𝑠 (𝑥) = (exp2(𝑥𝑗+2)(exp (𝑥)

− exp (𝑥𝑗))(exp(𝑥) 
−exp (𝑥𝑗+1))(exp (𝑥) − exp (𝑥𝑗−1))(exp(𝑥) 

−exp (𝑥𝑗−2)))/((−exp (𝑥𝑗)

+ exp (𝑥𝑗+2))(exp(𝑥𝑗+2) 
−exp (𝑥𝑗+1))/(exp (𝑥𝑗+2)

− exp (𝑥𝑗−1))(exp(𝑥𝑗+2) 
−exp(𝑥𝑗−2))exp2(𝑥)); 

𝑤𝑗−1
𝑠 (𝑥) = (exp2(𝑥𝑗−1)(exp (𝑥)

− exp (𝑥𝑗))(exp(𝑥) 
−exp (𝑥𝑗+1))(exp (𝑥) − exp (𝑥𝑗−2)) ∗ (exp(𝑥) 

−exp (𝑥𝑗+2)))/((−exp (𝑥𝑗)

+ exp (𝑥𝑗−1))(exp(𝑥𝑗−1) 
−exp (𝑥𝑗+1))(exp (𝑥𝑗−2) − exp (𝑥𝑗−1)) exp(𝑥𝑗+2)) 

−exp(𝑥𝑗−1))/exp2(𝑥)); 

𝑤𝑗−2
𝑠 (𝑥) = (−exp2(𝑥𝑗−2)(exp (𝑥) − exp (𝑥𝑗)) 

(exp(𝑥)) − exp (𝑥𝑗+1))(exp (𝑥) − exp (𝑥𝑗−1)) 
(exp (𝑥) − exp (𝑥𝑗+2)))/(− exp(𝑥𝑗) 

+exp (𝑥𝑗−2))/(−exp (𝑥𝑗+1)

+ exp (𝑥𝑗−2))(exp(𝑥𝑗−2) 
−exp(𝑥𝑗−1))(exp(𝑥𝑗+2) − exp(𝑥𝑗−2))exp2(𝑥)); 

 
It is easy to calculate that on the interval [𝑥𝑗 , 𝑥𝑗+1], 
the middle basis functions satisfy the inequalities 
|𝑤𝑗

𝑠| ≤ 1, |𝑤𝑗+1
𝑠 | ≤ 1, |𝑤𝑗+2

𝑠 | ≤ 0.02, |𝑤𝑗−2
𝑠 | ≤

0.0095, |𝑤𝑗−1
𝑠 | ≤ 0.125. 

We construct an approximation by such splines on 
the interval [𝑡𝑖, 𝑡𝑖+1] according to the formula 
 
𝑢𝑆4

𝑗 (𝑥) = ∑ 𝑢𝑖𝑤𝑖
𝑠(𝑥),

𝑗+2
𝑖=𝑗−2  𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1], 

 
In author [23]’s paper, a method for constructing an 
estimate of the approximation error with the 
exponential splines is given. First of all, we note 
that the function can be represented in the form: 

    

𝑢(𝑥) = 12 ∫(𝑢(5) − 5𝑢(3)

𝑥

𝑥𝑗

+ 4𝑢′)
(exp(𝑥) − exp(𝑡))4

exp(2𝑡 + 2𝑥 )
𝑑𝑡

+ 𝑐1 exp(𝑥) + 𝑐2 exp(−𝑥)
+ 𝑐3 exp(2𝑥) + 𝑐4 exp(−2𝑥) + 𝑐5. 

Here 𝑐𝑖 are arbitrary constants. It is easy to see that 
the expression 
 5𝑢(3) + 𝑢(5) + 4𝑢′ = 1 when 𝑢(𝑥) = 𝑐1 exp(𝑥) −
1

2
𝑐2 exp(−2𝑥) + (

1

2
) 𝑐3 exp(2𝑥) − 𝑐4 exp(−𝑥) +

𝑥

4
+ 𝑐5. 

It can be obtained that the next inequality is valid: 
 

|𝑢𝑆4
𝑗 (𝑥) − 𝑢(𝑥)| ≤ 0.03445 ℎ5  

∥ 𝑢(5) − 5𝑢(3) + 4𝑢′ ∥. 
 
Having solved the systems of equations (2), (8) we 
obtain the formulas of the left exponential basis 
splines. Having solved the systems of equations (3), 
(8) we obtain the formulas of the right exponential 
basis splines.  
We construct the approximation with the left 
exponential splines on the interval [𝑥𝑗, 𝑥𝑗+1] 
according to the formula: 
 

𝑢𝐿4
𝑗 (𝑥) = ∑ 𝑢(𝑥𝑖)𝑤𝑖

𝐿(𝑥),
𝑗+4
𝑖=𝑗  𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1], 
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We construct the approximation with the right 
exponential splines on the interval [𝑥𝑗, 𝑥𝑗+1] 
according to the formula: 

𝑢𝑅4
𝑗 (𝑥) = ∑ 𝑢(𝑥𝑖)𝑤𝑖

𝑅(𝑥),
𝑗+1
𝑖=𝑗−3  𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1]. 

Note that approximations with the exponential 
splines have the following properties: 

𝑢4
𝑗(𝑥) − 𝑢(𝑥) = 0, 𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1], 

when 𝑢 = 1, exp(𝑥), exp(−𝑥), exp(2𝑥), exp(−2𝑥). 

2.4 Polynomial Splines of the Fifth Order of 

Approximation 
To construct the polynomial splines of the fifth 
order of approximation, we take: 

𝜑0 = 1, 𝜑1 = 𝑥 , 𝜑2 = 𝑥2, 𝜑3 = 𝑥3, 𝜑4 = 𝑥4. 

The construction of polynomial basic splines is 
considered in detail in the author's articles earlier. 
The middle basis splines are used in the middle of 
the interval [𝑎, 𝑏]. The approximation with the 
middle basis splines has the form (see paper [23]): 

𝑈𝑆4
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗

𝑠(𝑥),𝑖+2
𝑗=𝑖−2  𝑥 ∊ [𝑥𝑖 , 𝑥𝑖+1], 

where 

𝑤𝑖−2
𝑠 (𝑥)

=
(𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖+1)(𝑥 − 𝑥𝑖+2)

(𝑥𝑖−2 − 𝑥𝑖−1)(𝑥𝑖−2 − 𝑥𝑖)(𝑥𝑖−2 − 𝑥𝑖+1)(𝑥𝑖−2 − 𝑥𝑖+2)
, 

𝑤𝑖−1
𝑠 (𝑥)

=
(𝑥 − 𝑥𝑖−2)(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖+1)(𝑥 − 𝑥𝑖+2)

(𝑥𝑖−1 − 𝑥𝑖−2)(𝑥𝑖−1 − 𝑥𝑖)(𝑥𝑖−1 − 𝑥𝑖+1)(𝑥𝑖−1 − 𝑥𝑖+2)
, 

𝑤𝑖
𝑠(𝑥)

=
(𝑥 − 𝑥𝑖−2)(𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖+1)(𝑥 − 𝑥𝑖+2)

(𝑥𝑖 − 𝑥𝑖−2)(𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1)(𝑥𝑖 − 𝑥𝑖+2)
, 

𝑤𝑖+1
𝑠 (𝑥)

=
(𝑥 − 𝑥𝑖−2)(𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖+2)

(𝑥𝑖+1 − 𝑥𝑖−2)(𝑥𝑖+1 − 𝑥𝑖−1)(𝑥𝑖+1 − 𝑥𝑖)(𝑥𝑖 − 𝑥𝑖+2)
, 

𝑤𝑖+2
𝑠 (𝑥)

=
(𝑥 − 𝑥𝑖−2)(𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖+1)

(𝑥𝑖+2 − 𝑥𝑖−2)(𝑥𝑖+2 − 𝑥𝑖−1)(𝑥𝑖+2 − 𝑥𝑖)(𝑥𝑖+2 − 𝑥𝑖+1)
 . 

It is easy to calculate that on the interval [𝑥𝑗 , 𝑥𝑗+1], 
the middle basis functions satisfy the inequalities: 

|𝑤𝑖
𝑠| ≤ 1, |𝑤𝑖+1

𝑠 | ≤ 1, |𝑤𝑖−1
𝑠 | ≤ 0.21, 

|𝑤𝑖−2
𝑠 | ≤ 0.08, |𝑤𝑖+2

𝑠 | ≤ 0.115. 

The error of approximation can be written in the 
form: 

|𝑢(𝑥) − 𝑈𝑆4
𝑖 (𝑥)| ≤ 1.42 

ℎ5

5!
max

𝜏∈[𝑥𝑖−2, 𝑥𝑖+2]
|𝑢(5)(𝜏)|  . 

At the end of the interval [𝑎, 𝑏], we apply the 
approximation with the right splines: 

𝑈𝑅4
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗(𝑥),

𝑖+1

𝑗=𝑖−3
 𝑥 ∊ [𝑥𝑖, 𝑥𝑖+1], 

where the basis splines are the following: 

𝑤𝑖−3(𝑥)

=
(𝑥 − 𝑥𝑖−2)(𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖+1)

(𝑥𝑖−3 − 𝑥𝑖−2)(𝑥𝑖−3 − 𝑥𝑖−1)(𝑥𝑖−3 − 𝑥𝑖)(𝑥𝑖−3 − 𝑥𝑖+1)
, 

𝑤𝑖−2(𝑥)

=
(𝑥 − 𝑥𝑖−3)(𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖+1)

(𝑥𝑖−2 − 𝑥𝑖−3)(𝑥𝑖−2 − 𝑥𝑖−1)(𝑥𝑖−2 − 𝑥𝑖)(𝑥𝑖−2 − 𝑥𝑖+1)
, 

𝑤𝑖−1(𝑥)

=
(𝑥 − 𝑥𝑖−3)(𝑥 − 𝑥𝑖−2)(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖+1)

(𝑥𝑖−1 − 𝑥𝑖−3)(𝑥𝑖−1 − 𝑥𝑖−2)(𝑥𝑖−1 − 𝑥𝑖)(𝑥𝑖−1 − 𝑥𝑖+1)
, 

𝑤𝑖(𝑥)

=
(𝑥 − 𝑥𝑖−3)(𝑥 − 𝑥𝑖−2)(𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖+1)

(𝑥𝑖 − 𝑥𝑖−3)(𝑥𝑖 − 𝑥𝑖−2)(𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1)
, 

𝑤𝑖+1(𝑥)

=
(𝑥 − 𝑥𝑖−3)(𝑥 − 𝑥𝑖−2)(𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖)

(𝑥𝑖+1 − 𝑥𝑖−3)(𝑥𝑖+1 − 𝑥𝑖−2)(𝑥𝑖+1 − 𝑥𝑖−1)(𝑥𝑖+1 − 𝑥𝑖)
 . 

The error of approximation with the right splines 
can be written in the form: 

|𝑢(𝑥) − 𝑈𝑅4
𝑖 (𝑥)| ≤ 3.63

ℎ5

5!
max

𝜏∈[𝑥𝑖,𝑥𝑖+4]
|𝑢(5)(𝜏)|  . 

Note that approximations with the polynomial 
splines have the following properties: 

𝑢4
𝑗(𝑥) − 𝑢(𝑥) = 0, 𝑥 ∊ [𝑥𝑗, 𝑥𝑗+1], 

when 𝑢 = 1, 𝑥, 𝑥2, 𝑥3, 𝑥4. 

Consider now the approximation by middle splines 
on a finite interval [𝑎, 𝑏]. 
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It follows from formulae (5), (6), (7) that when 
approximating with the splines of the fifth order of 
approximation on a finite interval [𝑎, 𝑏], the values 
of the function are required at points that go beyond 
this finite interval [𝑎, 𝑏]. In particular, when 
approximating with the middle splines on the finite 
interval [𝑎, 𝑏], it is necessary to take into account 
the values of the function in two additional nodes to 
the right and to the left of the boundaries of the 
interval [𝑎, 𝑏]. 
 Let us take  [𝑎, 𝑏] = [−1, 1], ℎ = 0.1. Denote 𝑎1 =
𝑎 − 𝑥−1 − 𝑥−2 , 𝑏1 = 𝑏 + 𝑥𝑛+1 + 𝑥𝑛+2. 

𝑅 = max
[𝑎1,𝑏1]

|𝑈𝑆4
𝑖  (𝑥) − 𝑢(𝑥)| . 

Thus, the grid of knots was extended to the left of 
the interval [𝑎, 𝑏] by two nodes: 𝑡−1, 𝑡−2 and to the 
right of the interval [𝑎, 𝑏] by two nodes: 𝑡𝑛+1, 𝑡𝑛+2. 
It was assumed that the function values at these 
additional nodes are known. To calculate the 
maximum error, each grid interval [𝑥𝑗, 𝑥𝑗+1] was 
divided into 100 parts. At each division point, an 
approximation with the cubic splines of the function 
𝑢 was calculated (the calculations  were done in 
Maple, 𝐷𝑖𝑔𝑖𝑡𝑠 = 15). Table 1 shows the maxima in 
absolute value of the actual errors of the 
approximation with the middle trigonometric splines 
of functions and their first derivative: Table 2 shows 
the maxima in absolute value of the actual errors of 
the approximation with the middle exponential 
splines of functions and their first derivative. Table 
3 shows the maxima in absolute value of the actual 
errors of the approximation with the middle 
polynomial splines of functions and their first 
derivative: 

Table 1 The actual errors of the approximation of 
functions with trigonometric splines  

𝑢(𝑥) 
Approximation of 𝑢(𝑥), 𝑢′(𝑥) 

Approximation of 
𝑢(𝑥) 

Approximation of 
𝑢′(𝑥) 

cos(𝑥)
− sin(𝑥) 0.121 ∙ 10−9 0.121 ∙ 10−10 

𝑥5 0.0000442 0.0191 

sin(5𝑥) 0.000290 0.0120 

exp(3𝑥) 0.000531 0.0305 

Table 2 The actual errors of the approximation of 
functions with the middle exponential splines  

𝑢(𝑥) 
Approximation of 𝑢(𝑥), 𝑢′(𝑥) 

Approximation of 
𝑢(𝑥) 

Approximation of 
𝑢′(𝑥) 

cos(𝑥)
− sin(𝑥) 0.166 ∙ 10−5 0.690 ∙ 10−4 

𝑥5 0.0000140 0.000582 

sin(5𝑥) 0.000429 0.0178 

exp(3𝑥) 0.000161 0.00927 

Table 3 The actual errors of the approximation of 
functions with the middle polynomial splines  

𝑢(𝑥) 
Approximation of 𝑢(𝑥), 𝑢′(𝑥) 

Approximation of 
𝑢(𝑥) 

Approximation of 
𝑢′(𝑥) 

cos(𝑥)
− sin(𝑥) 0.167 ∙ 10−6 0.694 ∙ 10−5 

𝑥5 0.0000142 0.000590 

sin(5𝑥) 0.000358 0.0148 

exp(3𝑥) 0.000329 0.0189 

Table 4 shows the maxima in absolute value of the 
errors of the theoretical approximation of functions 
with the trigonometric splines and with the 
exponential splines 

Table 4. The errors of the theoretical approximation of 
functions with the trigonometric splines and with 
exponential splines 

𝑢(𝑥) Approximation of 𝑢(𝑥) with 
trigonometric splines exponential splines 

cos(𝑥)
− sin(𝑥) 0.0 0.000004871 

𝑥5 0.000107 0.0000551 

sin(5𝑥) 0.000612 0.00130 

exp(3𝑥) 0.00190 0.000830 
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It is easy to see that the results presented in the 
Tables confirm the theoretical estimates. In the next 
section, we apply exponential, trigonometric and 
polynomial splines to solve integro-differential 
equations. 

 

3 Problem Solution 
In this section, three examples are given to illustrate 
the application of the splines  in the solving of 
integro-differential equations. 
   For an approximate calculation of the integral 
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
, we use the Newton-Cotes rule. Let 𝑚 ≥

1 be integer number. As is known, the Newton-
Cotes quadrature rules have the form: 

∫ 𝑓(𝑥)𝑑𝑥 ≈ (𝑏 − 𝑎) ∑ 𝐵𝑘
𝑚𝑓(𝑎 + 𝑘𝜏)

𝑚

𝑘=0

𝑏

𝑎

 , 

 𝜏 =
(𝑏 − 𝑎)

𝑚
 , 

where 

𝐵𝑘
𝑚 =

(−1)𝑚−𝑘

𝑚 𝑘! (𝑚 − 𝑘)!
∫ 𝑠(𝑠 − 1) … (𝑠 − 𝑘 + 1)(𝑠

𝑚

0

− 𝑘 − 1) … (𝑠 − 𝑚)𝑑𝑠 

When 𝑚 = 4, we have 

 𝐵0
4 = 𝐵4

4 =
7

90
, 𝐵1

4 = 𝐵3
4 =

32

90
, 𝐵2

4 =
12

90
.  

For constructing the numerical method of solving 
the integro-ifferential equation with the splines we 
can take  

∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠
𝑏

𝑎

= ∑ ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠

𝑥𝑗+1

𝑥𝑗

𝑛−1

𝑗=0

≈ ∑ ∫ 𝐾(𝑥, 𝑠)�̃�(𝑠)𝑑𝑠 = ∑ 𝐽𝑗

𝑛−1

𝑗=0

𝑥𝑗+1

𝑥𝑗

𝑛−1

𝑗=0

, 

where �̃� is the approximation of 𝑢, 

𝐽𝑗 = ∫ 𝐾(𝑥, 𝑠)�̃�(𝑠)𝑑𝑠

𝑥𝑗+1

𝑥𝑗

 . 

In the case of using the middle splines we get 

𝐽𝑗 = ∫ 𝐾(𝑥, 𝑠) ∑ 𝑢𝑘𝑤𝑘(𝑠)

𝑗+2

𝑘=𝑗−2

𝑑𝑠

𝑥𝑗+1

𝑥𝑗

 . 

In the case of using the left splines we get 

𝐽𝑗 = ∫ 𝐾(𝑥, 𝑠) ∑ 𝑢𝑘𝑤𝑘(𝑠)

𝑗+4

𝑘=𝑗

𝑑𝑠 .

𝑥𝑗+1

𝑥𝑗

 

Thus, using the Newton-Cotes rule when 𝑚 = 4 we 
have in case of the left splines: 

𝐽𝑗 = (
7ℎ

90
) 𝐾(𝑥, 𝑥𝑗) ∑ 𝑢𝑘𝑤𝑘(𝑥𝑗) + 

𝑗+4

𝑘=𝑗

 

+
32ℎ

90
 𝐾(𝑥, 𝑥𝑗 + ℎ/4) ∑ 𝑢𝑘𝑤𝑘(𝑥𝑗 + ℎ/4)  

𝑗+4

𝑘=𝑗

 

+
12ℎ

90
 𝐾(𝑥, 𝑥𝑗 + ℎ/2) ∑ 𝑢𝑘𝑤𝑘(𝑥𝑗 + ℎ/2)  

𝑗+4

𝑘=𝑗

 

+
32ℎ

90
 𝐾(𝑥, 𝑥𝑗 + 3ℎ/4) ∑ 𝑢𝑘𝑤𝑘(𝑥𝑗 + 3ℎ/4)  

𝑗+4

𝑘=𝑗

 

+
7ℎ

90
 𝐾(𝑥, 𝑥𝑗 + ℎ) ∑ 𝑢𝑘𝑤𝑘(𝑥𝑗 + ℎ) .

𝑗+4

𝑘=𝑗

 

Example 1. First let us solve the Volterra integro-
differential equation 

𝑢′ + sin(𝑥) − 1 − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 = 0

𝑥

0

 , 

when 0 ≤ 𝑥 ≤ 1, 𝐾(𝑥, 𝑡) = 1,  𝑢(0) = 0. The exact 
solution is the next: 𝑢(𝑡) = sin (𝑥).    

The calculations were carried out in the Maple 
environment. Fig.1. shows the plot of the error of 
approximation of the solution of Example 2 
obtained with the trigonometric splines when 𝑛 = 8. 
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In the figures along with the abscissa axis, the grid 
nodes from the interval [0,1] are marked with blue 
circles. 

 
Fig.1. The plot of the error of approximation obtained 

with the trigonometric splines (Example 1) 

    Now the goal of the section is to inspect the 
numerical technique to approximate the solution of 
the linear second-order Fredholm integro-
differential equations (FIDEs) of the form:  

𝑢′′(𝑥) = 𝛼(𝑥)𝑢′(𝑥) + 𝛽(𝑥)𝑢(𝑥) + 𝛾(𝑥)

+ ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,

𝑏

𝑎

 

𝑎 ≤ 𝑥 ≤ 𝑏, with boundary conditions at two points 
𝑢(𝑎) = 𝑢0, 𝑢(𝑏) = 𝑢𝑛. 

 

    Example 2. Let us apply our theory to solve the 
integral equation 

𝑢′′ + sin(𝑥) + 𝑥(sin(1) − cos( 1))

− ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 = 0

1

0

 

0 ≤ 𝑥 ≤ 1, with boundary conditions  𝑢(0) =
0, 𝑢(1) = sin (1). The exact solution is the next: 
𝑢(𝑡) = sin (𝑥).    

Fig.2. shows the plot of the error of approximation 
of the solution of Example 2 obtained with the 
polynomial splines when 𝑛 = 16 

 
Fig.2. The plot of the error of approximation obtained 

with the polynomial splines (Example 2) 
 

Fig.3. shows the plot of the error of approximation 
of the solution of Example 2 obtained with the 
trigonometric splines when 𝑛 = 16 

 
Fig.3. The plot of the error of approximation obtained 

with the trigonometric splines (Example 2) 

The half-sweep (HS) concept is combined with the 
refinement of the successive over-relaxation 
(RSOR) iterative method to create the new half-
sweep successive over-relaxation (HSRSOR) 
iterative method, which is implemented to get the 
numerical solution of a system of linear algebraic 
equations (see paper [1]). In paper [1] the 
applicability of the half-sweep successive over-
relaxation (HSRSOR) method has been successfully 
proven.  

 

Example 3. (This example is taken from the paper 
[1]). 

𝑢′′ − exp(𝑥) + 𝑥 − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 = 0

1

0

 , 

𝐾(𝑥, 𝑡) = 𝑥 𝑡 . Exact solution is 𝑢(𝑡) = exp (𝑥),   
𝑢(0) = 1, 𝑢(1) = exp(1). 
Method FSRSOR-3LRFD from paper [1] gives the 
error of approximation 6.0313E-06 when 32 nodes 
were taken. 
Fig.4. shows the plot of the error of approximation 
of the solution of Example 3 obtained with the 
exponential splines when 𝑛 = 32, Digits=20. Fig.5. 
shows the plot of the error of approximation of the 
solution of Example 3 obtained with the exponential 
splines when 𝑛 = 16, Digits=20. 
 

 
Fig.4. The plot of the error of approximation obtained 

with the exponential splines, 32 nodes (Example 3) 
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Fig.5. The plot of the error of approximation obtained 

with the exponential splines, 16 nodes (Example 3) 

Fig.6. shows the plot of the error of approximation 
of the solution of Example 3 obtained with the 
polynomial splines when 𝑛 = 16, Digits=20 

 
Fig.6. The plot of the error of approximation obtained 

with the polynomial splines, 16 nodes (Example 3) 

Fig.7. shows the plot of the error of approximation 
of the solution of Example 3 obtained with the 
trigonometric splines when 𝑛 = 16, Digits=20 

 
Fig.7. The plot of the error of approximation obtained 
with the trigonometric splines, 16 nodes (Example 3) 

 
Fig.8. The plot of the error of approximation obtained 

with the polynomial splines, 32 nodes 
 (Example 3) 𝑅𝑚𝑎𝑥 = 0.146 ∙ 10−6  

 
Fig.9. The plot of the error of approximation obtained 
with the trigonometric splines, 32 nodes (Example 3) 

 𝑅𝑚𝑎𝑥 = 0.140 ∙ 10−5  

The advantages of using such splines include the 
ability to determine not only the values of the 
desired function at the grid nodes, but also the first 
derivative at the grid nodes. The obtained values can 
be connected by lines using the splines. Thus, after 
interpolation, we can obtain the value of the solution 
at any point of the considered interval. Several 
numerical examples are given. 

From the results presented in the numerical 
examples, it follows that before the numerical 
solution of the integral equation, the kernel and the 
right side of this equation should be analyzed. If the 
kernel and the right side are a trigonometric 
expression, then it is advisable to use a numerical 
method for solving the integral equation based on 
trigonometric splines. 

If the kernel and the right side are an exponential 
expression, then it is advisable to apply a numerical 
method for solving the integral equation based on 
exponential splines. If the kernel and the right side 
are a polynomial expression, then it is advisable to 
use a numerical method for solving the integral 
equation based on polynomial splines.  

The considered examples show, that the use of 
non-polynomial splines can give a smaller solution 
error even with a small number of grid nodes if the 
choice of spline approximation corresponds to the 
form of the kernel and the right side of the integral 
equation. 

 

4 Conclusion  
In this paper, we construct a solution to an integro-
differential equation using non-polynomial splines 
on a uniform grid of nodes. To apply quadrature 
formulas, the kernel of the integral equation and the 
solution are assumed to be sufficiently smooth 
functions. In the future, it is planned to construct a 
solution to the integro-differential equation on a 
non-uniform adaptive grid of nodes. 
 
 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.84 I. G. Burova

E-ISSN: 2224-2880 728 Volume 21, 2022



References: 

[1] Ming-Ming Xu, Jumat Sulaiman, Nur Afza Mat 
Ali, Half-Sweep Refinement of SOR Iterative 
Method via Linear Rational Finite Difference 
Approximation for Second-Order Linear 
Fredholm Integro-Differential Equation, 
Mathematics and Statistics, Vol.10, No 3, 
2022, pp. 486-497. 

[2] M. Efendiev and V. Vougalter, Existence of 
solutions for some non-Fredholm integro-
differential equations with mixed diffusion, 
Journal of Differential Equations, Vol. 284, 
2021, pp. 83-101. 

[3] J.-B.Burie, R.Djidjou-Demasse, A. Ducrot, 
Slow convergence to equilibrium for an 
evolutionary epidemiology integro-differential 
system, Discrete and Continuous Dynamical 

Systems - Series B, Vol.25, No 6, 2020, pp. 
2223-2243. 

[4] H.I.Abdel-Gawad, M. Tantawy, A.M. 
Abdelwahab, Similarity solutions of a 
generalized inhomogeneous-nonautonomous 
(2+1)-dimensional Konopelchenko–Dubrovsky 
equation, Stability analysis, Alexandria 

Engineering Journal, Vol.61, No 12, 2022, pp. 
11225-11237. 

[5]  P.Assari, F.Asadi-Mehregan, The approximate 
solution of charged particle motion equations in 
oscillating magnetic fields using the local 
multiquadrics collocation method, Engineering 

with Computers, Vol. 37, No 1, 2021, pp. 21-
38. 

[6] B.Gürbüz, Hybrid approximation for solutions 
of high-order integro-differential equations 
including variable delay, Journal of Physics: 

Conference Series, Vol.1641, No 1, paper 
012062, 2020. 

[7] R.Amin, S.Nazir, I.García-Magariño, A 
collocation method for numerical solution of 
nonlinear delay integro-differential equations 
for wireless sensor network and internet of 
things, Sensors (Switzerland), Vol.20, No 7, 
paper 1962, 2020. 

[8] K.N.Mahwash, K.M. Geoffrey, Developing a 
finite difference hybrid method for solving 
second order initial-value problems for the 
volterra type integro-differential equations, 
Songklanakarin Journal of Science and 

Technology, Vol.42, No 3,  2020, pp. 590-595. 
[9]  J.T.Abdullah, H.S.Ali, Laguerre and Touchard 

Polynomials for Linear Volterra Integral and 
Integro Differential Equations, Journal of 

Physics: Conference Series, Vol.1591, No 1, 
paper 012047, 2020. 

[10] J.Patade, S.Bhalekar, A Novel Numerical 
Method for Solving Volterra Integro-
Differential Equations, International Journal of 

Applied and Computational Mathematics, Vol. 
6, No 1, paper 7, 2020. 

[11] S. Çayan, M. Sezer, Lerch matrix collocation 
method for 2D and 3D Volterra type integral 
and second order partial integro differential 
equations together with an alternative error 
analysis and convergence criterion based on 
residual functions, Turkish Journal of 

Mathematics, Vol.44, No 6, 2020, pp. 2073-
2098. 

[12] A.F.Al-Shimmary, A.K.Hussain, S.K. Radhi, 
Numerical Solution of Volterra Integro-
Differential Equation Using 6thOrder Runge-
Kutta Method, Journal of Physics: Conference 

Series, Vol.1818, No 1, paper 012183, 2021. 
[13] R.M.P.Almeida, J.C.M. Duque, B.C.X. Mário, 

A mixed finite element method for a class of 
evolution differential equations with p-
Laplacian and memory,  Applied Numerical 

Mathematics, Vol. 181, 2022, pp. 534-551. 
DOI: 10.1016/j.apnum.2022.07.004. 

[14] Ş.Yüzbaşı, G.Yıldırım, A collocation method 
to solve the parabolic-type partial integro-
differential equations via Pell–Lucas 
polynomials, Applied Mathematics and 

Computation, Vol. 421, paper 126956, 2022. 
[15]  M.-M.Xu, J.Sulaiman, L.H. Ali, SOR Iterative 

Method for the Linear Rational Finite 
Difference Solution of Second-Order Fredholm 
Integro-Differential Equations,  Lecture Notes 

in Electrical Engineering, Vol.835, 2022, pp. 
357-369. 

[16] T.Rezazadeh, E. Najafi, Jacobi collocation 
method and smoothing transformation for 
numerical solution of neutral nonlinear weakly 
singular Fredholm integro-differential 
equations, Applied Numerical Mathematics, 
Vol.181, 2022, pp. 135-150. 

[17] R.George, M.Yaseen, S.Khan, Collocation 
Approach Based on an Extended Cubic B-
Spline for a Second-Order Volterra Partial 
Integrodifferential Equation, Journal of 
Function Spaces, Vol. 2022, paper 5431057, 
2022. 

[18] Y.Rostami, Operational matrix of two 
dimensional Chebyshev wavelets and its 
applications in solving nonlinear partial 
integro-differential equations, Engineering 

Computations (Swansea, Wales), Vol.38, No 2, 
2021, pp. 745-761. 

[19] R.Jalilian, T.Tahernezhad, Exponential spline 
method for approximation solution of 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.84 I. G. Burova

E-ISSN: 2224-2880 729 Volume 21, 2022



Fredholm integro-differential equation, 
International Journal of Computer 

Mathematics, Vol.97, No 4, 2020, pp. 791-801. 
[20] G.M.M.Reddy, A.B. Seitenfuss, D.O.Medeiros, 

L.Meacci, M.Assunção, M.Vynnycky, A 
compact FEM implementation for parabolic 
integro-differential equations in 2D, 
Algorithms, Vol. 13, No 10, 2020, paper 242. 

[21] M.Sohaib, S. Haq, An efficient wavelet-based 
method for numerical solution of nonlinear 
integral and integro-differential equations, 
Mathematical Methods in the Applied 
Sciences, 2020, DOI:10.1002/mma.6441 

[22] I.G. Burova, Fredholm Integral Equation and 
Splines of the Fifth Order of Approximation, 
WSEAS Transactions on Mathematics, Vol.21, 
2022, pp. 260-270. 

[23] I.G.Burova, On left integro-differential splines 
and Cauchy problem, International Journal of 

Mathematical Models and Methods in Applied 

Sciences, Vol.9, 2015, pp. 683-690. 

 
Sources of funding for research 

presented in a scientific article or 

scientific article itself 
The authors are gratefully indebted to St. Petersburg 
University for financial supporting the preparation 
of this paper (Pure ID 92424538, 93852135) as well 
as a resource center in St. Petersburg University for 
providing the Maple package  

 

Creative Commons Attribution 

License 4.0 (Attribution 4.0 

International , CC BY 4.0)  
This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.84 I. G. Burova

E-ISSN: 2224-2880 730 Volume 21, 2022

http://dx.doi.org/10.1002/mma.6441
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



