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Abstract: Agricultural development in northern polar areas has potential as a result of global warm-
ing. Such expansion requires modern soil surveys and large-scale maps. In this study, the abandoned
arable experimental field founded by I.G. Eichfeld one century ago in Salekhard city (Russian Arctic),
located in the polar circle, was investigated. Our aims were to assess the nutritional soil properties
and their spatial variability. For spatial assessment and mapping, ordinary kriging (OK) and inverse
distance-weighted (IDW) methods were employed. We found that due to long-term agriculture use,
the soil cover was represented by a unique Plaggic Podzol (Turbic) that is not typical of the region.
The soil was characterized by relatively low soil organic carbon (SOC) content, high acidity and a
high content of plant-available forms of phosphorus in the humus-accumulative horizon. The results
showed that some properties (pH H2O, pH CaCl2) were characterized by large-scale heterogeneity
and showed clear spatial dependence. However, some properties (ammonium and nitrate nitrogen,
basal respiration) showed a pure-nugget effect, presumably due to experimentation with fertilizer
over a long period of time.

Keywords: the Arctic; polar agriculture; agrochemical properties; nutrients; Plaggic Podzol; kriging;
spatial interpolation; digital soil mapping

1. Introduction

Agriculture is the most sensitive to climate change among all sectors of the economy.
Numerous global climate change reports indicate that the rate of warming in Arctic regions
is accelerating [1–3]. Despite the many negative consequences for agro-ecosystems (dis-
eases, insect pests, carbon emissions, erosion, etc.), warming in the northern regions can
have advantages [4]. These benefits include an expansion of arable land and an increase
in crop diversity and yields [5]. For example, farming practices have been carried out for
centuries in the circumpolar areas of Russia [6–8], as well as in other Nordic countries [9].

Nowadays the majority of agricultural soils are in an abandoned, fallow state due to
the winding down of agricultural practices in the 1990s. Only small areas of arable soil were
cultivated without interruption in the Arctic zone in the post-Soviet period. Numerous
experimental fields were founded according to Vavilov’s idea of polar agriculture in the first
part of the 20th century [10]. One of them is the experimental field of the Yamal monitoring
station (Figure 1). Arable land began to be cultivated in 1932 as an experimental site to
study the adaptation of different types of crops to the conditions of the Far North [11]. Here,
Soviet scientists were engaged in the development of new frost-resistant varieties of cereals,
vegetables and forage crops, and the creation of local agro-technical measures. During the
initial development, the adverse effects on yields of factors such as slow soil thawing, high
moisture in the spring period, high soil acidity, early frost and the irregular distribution
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of precipitation during the growing season were noted. In this context, the first plantings
were followed by the application of fertilizers: manure, mulch, potassium and phosphate
fertilizers, and ash. In the last 100 years, the cultivated area decreased 10-fold [11]. The field
of the experimental station worked in this way until the collapse of the USSR (potatoes,
cabbage, turnips, beets, peas and other crops were grown) and after it was practically
abandoned until 2010. At present, the field has not been cultivated since 2019, although
back in 2017 and 2018, potatoes were grown there (yields up to 12 t/ha) [11,12].
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Figure 1. Maps showing the location of the Yamal-Nenets Autonomous District (YANAO) in Russia
(a); the studied arable plot location (red square) in Salekhard (b); the plot (c) and the sampling
locations (yellow dots). Sources: Esri, USGS, NOAA, Google maps.

In recent years, Russia has implemented many global projects to foster new develop-
ment of the Arctic territories [13]. The expansion of farming in the Arctic areas may become
more necessary in the future due to the increasing population and depleting soil resources
in the southern regions. The successful management and use of arable land require the
study of soil properties and their spatial distribution [14]. Thus, up-to-date large-scale
soil-property maps are also required. The process of creating large-scale soil maps requires
field sampling work, while medium- and small-scale maps can be created via cartographic
generalization of larger-scale maps.

In the USSR, large-scale soil mapping began to actively develop in the first half of
the 20th century. This was necessary to account for and value agricultural land and for
the rapid recovery of the economy and agriculture [15]. Almost all agricultural land in
the USSR was covered by a network of large-scale soil maps. These cartographic works
were completed using the traditional soil-cartography method based on the idea of V.V.
Dokuchaev—formed at the turn of the 19th–20th centuries—which stated that under certain
conditions of soil formation factors in a particular area, only a certain soil could form [16].
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This approach has formed the basis of soil mapping around the world [17]. After the
collapse of the Soviet Union, the economy and agriculture deteriorated, and this also
affected soil mapping [18]. Nowadays, digital large-scale mapping of the soil properties of
arable land in Russia is predominantly carried out at more southern latitudes [19–24].

Under climate change, Siberian territories have become the potential food basket of
Eurasia. Thus, the soils of many cryolithozone regions will be involved or reinvolved in
agriculture. That is why the investigation of the quality of arable soils of the cryolithozone
should be intensified in terms of ecosystem services of agricultural ecosystems. The aims
of this study are the following: 1. To evaluate the soil agrochemical properties of an arable
plot located in Salekhard city (Yamalo-Nenets Autonomous District, Russia), and 2. to
estimate the spatial variability of soil properties using geostatistical methods and create
digital maps.

2. Materials and Methods
2.1. Study Site Description

The study area is an abandoned arable field of the Yamal Agricultural Experimental
Station and is located within the city of Salekhard (Yamal-Nenets Autonomous District)
(Figure 1). The district occupies the Arctic, subarctic and temperate climate zones. Salekhard
city and the study area are located on the border between subarctic and temperate climates,
and are characterized as “cold continental” (Dfc) by the Köppen climate classification [25].
The climate is characterized by short summers and very harsh, long winters with polar
nights. The average January temperature is −23.2 ◦C; the average July temperature is
+14.8 ◦C. The average annual precipitation ranges from 450 to 500 mm, most of which falls
in July and August. The number of days with snow cover and persistent frost is up to 200
per year.

The area is characterized by naturally leveled topography with an elevation range of
8–14 m above sea level. No erosion processes have been observed. The parent materials of
the region are modern alluvial and lake alluvial Quaternary sediments of loamy and sandy
loam composition [26], while that of the study plot is alluvial middle-Holocene sands.
Pristine soils in the vicinity of Salekhard city are mainly represented by reference groups of
Histic Cryosols, Histic Gleysols and Podzols (without the thick organic horizon) [27,28].
Today, the abandoned field that represents the research object contains motley-grass vege-
tation cover of Artemisia tilesii Ledeb, Poaceae, Calamagróstis epigéjos, Campanula rotundifolia
L., Chamaenérion angustifolium, Crepis nigrescens Pohle, Deschampsia cespitosa, Elytrígia répens,
Mathricaria hookeri (Sch. Bip.), Ranunculaceae Juss, Stellāria gramı̄nea, Taráxacum officinále,
Vícia crácca, etc.

2.2. Soil Samples and Analyses

The soil sampling and assessment work were carried out under dry conditions in
August 2021. One full soil profile pit was excavated. Soil samples were collected in two
replicates from each soil genetic horizon, whereas the Ap horizon was divided into 3 parts
and samples were taken every 10 cm. For the geostatistical analyses, the soil sampling work
was conducted via a stratified simple random-sampling scheme. Most of the studies on
digital soil mapping approaches predict soil property from a single topsoil depth (0–30, or
various intervals from 0 to 30 cm) [29]. Considering the surface layer as the most vulnerable
to change, we estimated the spatial variability of soil properties for a depth of 0–10 cm. A
total of 75 soil samples for the analysis were collected from the surface layer (Figure 1). The
exact coordinates of each soil point were identified using a global positioning system (GPS)
with an accuracy of ±0.5 m.

All collected samples were air-dried, homogenized and sieved. The chemical analyses
were carried out using standard laboratory methods [30–33]. Values of pH in water and
salt suspension were measured using pH −150 m (1:2.5 soil:solution ratio). SOC content
was determined via a wet-combustion method (Walkley–Black method). The content of
available forms of ammonium (N-NH4) and nitrate nitrogen (N-NO3) were determined
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using a potassium chloride solution. The content of mobile available phosphorus (P2O5)
and potassium (K2O) was determined using the Kirsanov method. Soil basal respiration is
defined as the steady rate of respiration in soil, which originates from the mineralization of
organic matter. Basal respiration was evaluated by measuring CO2 in a sodium hydroxide
0.1 molar solution. The incubation of CO2 was conducted for 10 days in plastic sealed
containers, according to the standard protocol [34,35].

2.3. Spatial Assessment and Digital Mapping

The ordinary kriging (OK) method was used to determine the spatial variability
of soil properties on the study plot. The basic OK approach is to predict values in the
nonsampled points from a weighted average of the observed points [36]. We selected a
spherical variogram to fit the models. The formula for OK is defined as:

Z(x0) =
n

∑
i=1

wiZ(xi)

where Z(x0) is the predicted value at the nonsampled location x0; Z(xi) is the observed
value at location xi; and wi is the weight.

To verify the spatial distribution based on the OK approach, we created maps using
the inverse distance-weighting (IDW) method. The IDW is one of the most widely used
tools for interpolating various values, including soil properties [37]. The formula for IDW
is defined as:

Z(x0) =

∑n
i=1

xi

hβ
ij

∑n
i=1

xi

hβ
ij

where Z(x0) is the predicted value at the nonsampled location x0; xi is the ith data value; hij
is the separation distance between the interpolated values; and β indicates the weighting
power.

For the assessment of the spatial correlations between the study properties, we used the
nugget/sill ratio (C0/(C0 + C1)). A ratio ≤ 25% indicates that the variable has strong spatial
correlation; 25–75% indicates a moderate spatial correlation; and a ratio ≥ 75% indicates
a weak spatial correlation [38]. Additionally, we applied a cross-validation procedure for
evaluating the performance of the OK approach. The root-mean-square error (RMSE) was
used to validate the spatial-prediction accuracy. The RMSE is defined as:

RMSE =

√
∑n

i=0(Oi − Pi)
2

n

where Oi and Pi are the observed and predicted values of the soil properties, and n is the
number of samples.

For the statistical analyses, OK and IDW interpolations were performed using the
“gstat” packages in R 4.0.4 [39] and RStudio (version 1.3.1093, Boston, MA, USA) [40].

3. Results and Discussion

The long-term agricultural use of this site has resulted in the formation of a unique
soil profile (Figure 2), radically different from the typical soils of the region [41]. Over
nearly a century of agro-industrial activities has formed a thick (up to 30 cm), brown, light
loamy, root-penetrated humus-accumulative (Ap) horizon. The organomineral horizon is
underlain by a massive (45 cm) illuvial-iron, sandy loam, gleyic with placic-horizon layers
(Bs). Further, the soil texture changes to sandy and unstructured with placic-horizon layers
(BCg and Cg@ (Turbic)) with reductimorphic colors and spots and features of cryoturbation.
Based on the morphological description, the soil cover of the plot is represented by Plaggic
Podzol (Turbic) according to the IUSS Working Group WRB classification [42]. It should be
noted that an active permafrost layer on this plot was already detected at a depth of 160 cm
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in previous studies [43]. Nevertheless, in our field studies, a permafrost upper boundary
was not detected at a depth of 230 cm, even though studies were conducted in the same
periods of the year (August).
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Figure 2. Morphological features of studied soil.

The vertical distribution of Plaggic Podzol (Turbic) soil properties is shown in Figure 3.
The pH values over the soil profile on the field of the Yamal agricultural station are dis-
tributed heterogeneously. The lowest acidity values are detected in the humus-accumulative
horizon (Ap). Below, in the Bg and BCg horizons and parent material, the pH H2O is close
to 7. The distribution of the organic-matter content in the soil profile is quite inhomoge-
neous. The highest content is in the top 30 cm of the soil profile (horizon Ap), where the
quantity of soil organic matter reaches 2%. A reduced concentration occurs in the mineral
horizons Bs-Cg@, but it should be noted that the processes of removing organic matter
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down the profile occurs, as highlighted by the morphological features and by the results
of chemical analysis (Figure 3). The main stock of soil organic matter is concentrated in
the Ap horizon (6911 g/m2) against 825 g/m2 in the mineral horizons. The percentage
distribution of humus stocks is 89% in the 0–30 cm layer and 11% in the 30–200 cm layer.
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The content of key nutrients is one of the main factors reflecting the fertility of soils.
The concentration of available phosphorus, exchangeable potassium and mineral forms of
nitrogen is especially important to know for the humus-accumulative (arable) horizon, as it
is the main plant-feeding and root-containing horizon [44,45]. The soil is characterized by
high acidity, and at the same time, in the humus-accumulative horizon Ap, we observe an
extremely high content (Figure 3) of plant-available forms of phosphorus (>400 mg/kg)
according to the classification [46].

The processes of nutrient migration are also related to the particle size distribution of
soils [47]. In our study, the humus-accumulative horizon Ap and the underlying mineral
horizons are fundamentally different in this parameter (from sandy loam to sand). This
reflects in the vertical distribution of potassium, which gradually increases down the Ap
horizon; then, its concentration decreases sharply at the transition to the mineral horizons.
The study of denitrification–ammonification processes is especially relevant in polar regions
in the context of climate change. The maximum content of N–NO3 (the end-product of
the nitrification of nitrogen) is in the upper 10 cm of the soil profile, which, during the
growing season, is maximally heated and dried out. The maximum content of NNH4 and
N–NO3 is in the organomineral humus-accumulative Ap horizon. According to the content
of nitrogen at different depths of the Ap horizon, we can conclude that the nitrification
processes proceed differently. As shown in Figure 3, the content of N-NH4 is higher at
depths below 10 cm, and the reverse is the case for N–NO3; this may be due to both the
depth of penetration of the root systems of plants and the features of aeration.

The agriculture development of the Arctic soils leads to a significant transformation
of the soil profile. The pristine soil cover of the Yamalo-Nenets Autonomous District



Soil Syst. 2022, 6, 65 7 of 14

is characterized by strong acidity (pH H2O < 5) caused by the course of podzolization
processes [28,48]. Previously, it was also found that abandoned agricultural soils are highly
acidic, despite the implementation of melioration measures (the application of ash to the
soil) to reduce the soil acidity that occurred in the past [43,48].

According to previous studies, the native soils of adjacent areas are characterized by
higher SOC values compared to the studied soils [41,43]. Soils under natural vegetation
have a surface layer (O) up to 10–15 cm thick, formed by decomposed organic residues,
with SOC content up to 15%; this disappeared as a result of plowing, but in the underlying
horizons, the SOC content is comparable.

Native northern soils are not high in nutrients [49]. The concentrations of nutrients
(P2O5, K2O and N–NH4) in the study plot are higher than in the background soils. It was
previously shown that the content of available phosphorus and exchangeable potassium
between abandoned agricultural soils and the background soils of the region can be in-
creased up to 10-fold [50]. However, the degradation of soil fertility in polar ecosystems
has not been studied enough, although it has long been proven that the content of avail-
able phosphorus closely correlates with soil acidity and the types of fertilizers used [47].
The above-described differences between abandoned and virgin soils can be explained by
anthropogenic factors, including fertilizer application.

The general statistics of soil properties (mean, minimum, maximum, standard devi-
ation (SD), coefficient of variation (CV) and median) based on 75 samples at a 0–10 cm
depth for geostatistical modeling are shown in Table 1. The studied soil samples have
low-to-medium SOC content, and according to pH, the H2O values are characterized as
moderately- to slightly-acidic reactions. The values of basal respiration range from 14.62 to
30.93 mg CO2/100 g/day. The content of available phosphorus (P2O5) in the soil ranges
from 165 to 1268 mg/kg, which also characterizes the plant availability of phosphorus as
high-to-very high.

Table 1. General statistics of soil properties at a 0–10 cm depth.

Parameter pH H2O pH CaCl2 SOC, %
Basal Respiration mg

CO2/100 g/Day

Available
N–NH4 N–NO3

P2O5 K2O

mg/kg

n = 75

Min 4.71 3.62 0.89 14.62 165.06 53.08 0 0
Max 5.88 5.11 5.12 30.93 1268.05 294.05 10.26 62.83

Mean 5.02 3.81 3.06 21.28 665.65 106.82 4.45 23.53
SD 0.22 0.24 0.99 4.14 232.62 47.28 2.41 19.44

CV (%) 4.38 6.29 32.5 19.45 35.48 44.26 54.16 82.62
Median 5.04 3.76 2.8 20.67 630.02 98.03 4.38 19.35

The parameters of the models and their evaluation using the nugget/sill ratio and
RMSE values are presented in Table 2. The spherical model was applied for describing the
variograms of the studied agrochemical properties. The spatial correlation of the study
properties is different. Strong spatial dependence is revealed for pH values and phosphorus,
with their nugget/sill ratios varying from 5 to 9%.



Soil Syst. 2022, 6, 65 8 of 14

Table 2. Parameters used in the OK adopted models and RMSE values for OK and IDW models.

Properties Type of Model Nugget
(C0) PSill (C1) Sill

(C0 + C1)
Range, m C0/(C0 + C1),

%
Spatial

Dependence

RMSE

OK IDW

pH (H2O) Sph 0.03 0.54 0.57 >350 5 Strong 0.2 0.2
pH (CaCl2) Sph 0.01 0.1 0.11 >350 9 Strong 0.2 0.2

SOC Sph 0.61 0.39 1 41 61 Moderate 1 1.1
CO2 Pure nugget 26 0 26 - 100 No 4.2 5.6
P2O5 Sph 0 5125 5635 29 9 Strong 255.7 305.9
K2O Sph 527 1470 1997 51 26 Moderate 49.1 51.4

N–NH4 Pure nugget 0 0 0 - 100 No 3.1 2.9
N–NO3 Pure nugget 0 0 0 - 100 No 23.6 24.8

The study and spatial modeling of SOC content have received particular attention
as key indicators of soil fertility. In our study, the nugget/sill ratio of SOC and K2O
is characterized as moderate (61 and 26%, respectively). Despite the moderate spatial
correlation of SOC content, it is close to a weak correlation. The SOC model using the
OK approach is also characterized by a relatively high RMSE value. Various studies have
reported better results for spatial modeling of SOC and humus content in croplands using
the kriging approach [24,51–53], remote-sensing data [54,55] and morphometric parameters
of topography calculated using a digital elevation model [20,23].

An assessment of the spatial variation in agrochemical soil properties using the OK
method is shown in Figure 4. We do not illustrate CO2, N–NO3 and N–NH4 variability
maps due to the nugget effect, as they suggest that the variation is not spatially structured,
and they are not informative. Maps of the spatial distribution of soil acidity and K2O are
characterized by relatively large-scale heterogeneity and clear spatial dependence. Areas
showing a particular property value are few and smoothly continuous.
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The spatial distribution of properties using the IDW approach is show in Figure 5. We
observe a slightly different spatial mapping of some properties in comparison to OK. This
is a characteristic of the pure-nugget model when using the kriging method. Although the
spatial variability of CO2, N–NO3 and N–NH4 is random, the IDW maps allow for a clearer
assessment of very short-scale heterogeneity compared to OK.
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The spatial-prediction accuracy according to the RMSE parameter for almost all the
properties is slightly higher for OK in comparison to the IDW method, while the prediction
results of the pH values are similar (Table 2). Qiao [56] reported similar results for estimating
the spatial distribution of arsenic content in Beijing soils. In this work, the results of cross-
validation using the OK and IDW methods were almost the same. The authors concluded
that the OK method is more subjective and requires more soil samples. Similarly, there
were no significant differences in the accuracy of similar models for the spatial prediction
of the physical and chemical properties of soils at a site in Iran [57]. However, the accuracy
the phosphorus OK model is markedly superior to the IDW model, which necessitates the
verification of these approaches for future research and mapping.

Such different features of the spatial distribution of soil elements, especially at a
short distance, are important for the implementation of precision-farming systems. The
degree of heterogeneity of the mapped soil properties within the same field can be in-
fluenced by various factors. Usually, a strong spatial correlation of soil properties may
be due to internal factors, while a weak correlation is due to external (anthropogenic)
factors [36,38,58]. The variability of properties in arable areas also depends on the factors
of soil formation (microtopography), erosion processes, plowing duration, fertilizer and
irrigation systems [52,59–61]. Since the site is not subject to degradation processes and no
irrigation measures have been carried out on it, we exclude these factors as leading to the
variability. The inhomogeneity of properties can also be explained by the presence of vari-
ability on a smaller scale (smaller than the distance between measurements), measurement
error and an incorrect choice of point locations [62].

At our experimental site, we primarily relate the absence of spatial correlation to a
large number of different fertilization and crop-cultivation experiments in previous years
(Table A1). During this period, the field was divided into separate micro-parts, where
fertilizers at different doses were applied annually, crops were grown under different
precursors, and harrowing and plowing at different depths were carried out. A recent
study [63] also links the history of previous agricultural practices (plot division, nutrient-
application rates, crop rotations) to poor predictions of soil properties.

Among the studied properties, the highest coefficients of variation were determined
for SOC and nutrients (Table 1), where N–NH4 and N–NO3 have the highest values (54.16
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and 82.62%, respectively). Alternating organic- and mineral-fertilizer applications in recent
years of experimentation still determine increased nutrient content (Table A1). Previous
studies of abandoned lands in this region have also shown that the nutrient content can
remain high, even after 20 years [12]. Thus, we assume that the content and spatial
distribution of some nutrients is still chaotic due to the fragmented application of different
fertilizers. Such features must be taken into account in the further management of arable
land and nutrient application. Since northern soils are less involved in agriculture and
the warming climate provides an opportunity to expand arable land in this region, more
research is needed regarding agricultural practices.

We also emphasize that improving the accuracy of digital maps is possible by us-
ing additional explanatory variables (satellite data, digital elevation models and others).
However, for small plots, as in this study, the use of free-access covariates is not always
appropriate due to their relatively low spatial resolution. In such cases, spatial data should
have high and ultra-high resolutions, which leads to additional costs in purchasing them.
Therefore, at the preliminary stage, the use of geostatistical methods to assess the variability
and mapping of properties is advisable.

4. Conclusions

The expansion of northern farming as a result of a milder climate requires the deeper
study of local soils and farming practices, including fertilization application. The present
study demonstrated an assessment of the agrochemical properties of an abandoned arable
plot with a long and unique history in Salekhard city (Russian Arctic). As a result of the
involvement of soils in plowing and long-term use, the site has soil cover that differs
from other pristine soils in the region. The soil cover is represented by Plaggic Podzol
(Turbic) and is characterized by relatively low SOC content and high acidity caused by
podzolization processes. We found that nutrient content can remain high, even after
15 years of abandonment.

We investigated the spatial distribution of the studied properties using ordinary
kriging and inverse distance-weighted methods in the upper 0–10 cm layer. Our study
showed that, in general, the accuracy of the two mapping approaches is comparable. We
were not able to estimate a reliable spatial distribution for all of the properties. Some
properties were characterized by spatial dependence, while others had a pure-nugget effect.
We consider external factors, such as long-term experiments with fragmented fertilizer and
crop rotation, as major influences on the random and short-scale distribution of the study
properties. Nevertheless, spatial-prediction techniques such as kriging can be used as an
initial method for large-scale mapping on a small plot. For effective land management,
there is a need for modern and accurate digital maps to assess the spatial distribution
of soils and their properties. Further, the accuracy of digital maps could be improved
by adding spatial explanatory variables and increasing the number and density of soil
samples.
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Appendix A

Table A1. Experiments on the use of fertilizers and crop cultivation in the field of the Yamal agricul-
tural experimental station in the period from 1937 to 2005.

Year Quantity of Experiences Options

1937 Experience for 8 options

I. Manure 100 t/ha plowing to a depth of 18 cm + furnace ash (1 t/ha)
under the furrow:
(1) Potato (200 m2)
(2) Radish (300 m2)
(3) Turnip (500 m2)
(4) Radish (200 m2)

(5) Beet (196 m2)
(6) Turnip (3920 m2)

II. Sprinkled on top: manure 80 t/ha + superphosphate + potassium salt:
(7) Vetch oat mixture (600 m2)

(8) Cabbage (1176 m2).

1948–1949 Experience for 9 options

(1) 60 t/ha manure
(2) 120 t/ha manure

(3) 120 t/ha manure + N40P60K60
(4) 60 t/ha manure + N40

(5) 60 t/ha manure + N40P60
(6) 60 t/ha manure + N40K60
(7) 60 t/ha manure + P60K60

(8) N40P60K60
(9) N80P120K120.

1962–1964

Experience for 10 options on the
background without manure +

10 options on the background with
manure (60 t/ha)

10 options on the background without manure:
(1) K180
(2) P90

(3) N180
(4) N180P90K180

(5) K90
(6) P45
(7) N90

(8) N90P45K90
(9) Without applying any fertilizer

(10) 60 t/ha manure
10 options on the background with manure (60 t/ha):

(1) K180
(2) P90

(3) N180
(4) N180P90K180

(5) K90
(6) P45
(7) N90

(8) N90P45K90
(9) Without applying any fertilizer

(10) 60 t/ha manure.

1974 Experience for 52 options Experiments on growing 52 varieties of potatoes
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Table A1. Cont.

Year Quantity of Experiences Options

1985–2005

Experience for 5 options

1. Without peat
2. Peat 120 t/ha
3. Peat 240 t/ha
4. Peat 480 t/ha
5. Peat 720 t/ha

Experience for 4 options

1. Without applying any fertilizer
2. Manure 120 t/ha
3. Manure 240 t/ha
4. Manure 480 t/ha

Experience for 4 options

1. Without applying any fertilizer
2. N120P90K120
3. N120P150K180
4. N180P210K240

Experience for 4 options

1. Spring rapeseed
2. Rapeseed + oats

3. Rapeseed + annual ryegrass
4. Rapeseed + peas

Experience for 6 options

1. Without applying any fertilizer
2. N120P90K90

3. Lime
4. Lime
5. Lime
6. Lime

Micro-field experience for 6 options

1. Without applying any fertilizer
2. 60 t/ha manure + P90K120

3. Ammonium nitrate
4. Ammonium sulfate

5. Urea
6. Ammonia water

Micro-field experience for 4 options

1. Without fertilizer
2. 60 t/ha manure + N120P90

3. 60 t/ha manure + K60
4. 60 t/ha manure +K120
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