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Dear Editor, 

 

       We would like to submit our paper “Model of inverse "dry" micelles with coexisting spheri-

cal, globular and cylindrical aggregates” by Yury Eroshkin, Loran Adzhemyan, and Alexander 

Shchekin for publication in Physica A: Statistical Mechanics and its Applications as a research 

article. 

       In this manuscript, a new statistical thermodynamic model of inverse non-ionic aggregates 

of surfactant molecules in non-polar solvents is described. The model allows fluctuation coexist-

ence of spherical, globular, and spherocylindrical aggregates without activation barriers between 

them. It is shown that for any aggregation numbers in this model, the work of aggregation de-

pends not only on the aggregation numbers and the concentration of surfactant monomers, but 

also on the parameters characterizing the deviation from the spherical form of the aggregate to-

wards globular and spherocylindrical aggregates. A method for estimating the normalization fac-

tor for the distribution of aggregates by aggregation numbers and form parameters is proposed, 

which makes it possible to find the degree of micellization of a surfactant solution in the pres-

ence of micelles of different forms. It is shown that the optimal values of the form parameters, 

which minimize the work of aggregation, are in good agreement for spherocylindrical aggregates 

with the predictions of a purely geometric model of such aggregates under the additional as-

sumption of a uniform surface density of molecular groups on the micelle core.   

 We hope that the results presented in the manuscript will be of interest for the audience of 

Physica A: Statistical Mechanics and its Applications.  

      This paper has been neither copyrighted, classified, published, nor is being considered for 

publication elsewhere.  

 

On behalf of all contributors,  

 

Alexander K. Shchekin 
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A new statistical thermodynamic model of inverse nonionic aggregates of surfactant molecules 

in nonpolar solvents is considered. This model admits the fluctuation coexistence of inverse 

spherical, globular, and spherocylindrical aggregates without activation barriers between them. 

The model is based on the assumption of a uniform bulk density of the number of molecular 

groups inside the core of an aggregate that can continuously transform into a sphere, a globule, 

and a spherocylinder. In this model, for any aggregation numbers, the work of aggregation de-

pends not only on the aggregation numbers and the concentration of surfactant monomers, but 

also on two independent geometric parameters characterizing, at the same aggregation numbers, 

the deviation from the spherical form of the aggregate towards globular and spherocylindrical 

forms. Even in the range of small aggregation numbers, this fact leads to a significant difference 

between the equilibrium distribution function of aggregates, which depends on the aggregation 

number and two form parameters, and the one-dimensional distribution function in terms of ag-

gregation numbers. It is shown that the optimal values of the form parameters, which minimize 

the work of aggregation, are in good agreement for spherocylindrical aggregates with the predic-

tions of a purely geometric model of such aggregates under the additional assumption of a uni-

form surface density of molecular groups at the micelle core. The predictions of a new molecular 

thermodynamic model for the degrees of surfactant micellization in inverse aggregates of various 

forms at different surfactant concentrations are considered. 

 

INTRODUCTION 

 

The creation of a molecular thermodynamic model capable of explaining the mechanism of 

surfactant aggregation in a nonpolar solvent in the absence of water, predicting the critical mi-

celle concentration (CMC), forms and characteristic numbers of aggregation of “dry” (i.e., with-

out water molecules in the micelle core) inverse micelles is an actual task. Experimental works 

[1–3] and molecular dynamics and thermodynamic modeling of inverse micelles [4–6] show that 

CMC and dry inverse nonionic and ionic micelles actually exist in nonpolar solutions, and their 
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form may differ from a spherical one. Recently we have derived [7], based on the extended drop-

let model of micelles, an analytical expression for the minimal work of aggregation of inverse 

spherical micelles. This expression was constructed taking into account the contributions due to 

electrostatic interactions of the surfactant polar heads in the inverse micelle core, the effects of 

the conformation of hydrocarbon tails in the micellar crown and polar heads in the micellar core, 

the effects of the excluded area on the surface of the micelle core described by two-dimensional 

equation of the theory of scaled particles [8]. In general terms, the constructed expression for the 

work of aggregation did not depend on the form of the aggregates, and in the case of spherical 

inverse micelles it predicted the existence of CMC and made it possible to find the equilibrium 

distribution of micelles over the aggregation numbers.  

It is usually accepted that various forms of micelles, among which spherical, globular, and 

spherocylindrical micelles are distinguished, arise sequentially with an increase in the total sur-

factant concentration in a solution. In such a case, the first CMC is associated with spherical mi-

celles, the second CMC is associated with the accumulation of a significant proportion of surfac-

tants in spherocylindrical micelles. The first thermodynamic models for spherical, globular, and 

spherocylindrical micelles were proposed in [9–11] and later expanded in [12–17]. Based on 

these models, the micelle formation kinetics was considered taking into account transitions be-

tween different forms of micelles [18–33]. There were studied situations when several potential 

humps separated by potential minima appear in the aggregation work as a function of the aggre-

gation number with increasing total surfactant concentration, as well as situations where the ag-

gregation work has several separate branches corresponding to micelles of different forms.  

In this paper, we consider a new statistical thermodynamic model of non-ionic inverse ag-

gregates of surfactant molecules in non-polar solvents, which allows for the fluctuation coexist-

ence of spherical, globular, and spherocylindrical aggregates without activation barriers between 

them. According to this model, the minimal work of aggregation for any aggregation numbers 

will depend not only on the aggregation numbers and concentration of surfactant monomers, but 

also on two geometric parameters that characterize the deviation from the spherical form of the 

aggregate towards globular and spherocylindrical aggregates. Thus, it is assumed that for the 

same aggregation numbers, globular and spherocylindrical inverse aggregates can exist together 

with spherical inverse aggregates. Below we will see that even in the range of small aggregation 

numbers, this assumption leads to a significant difference between the equilibrium distribution 

function of aggregates, which now depends on three internal variables, and the one-dimensional 

distribution function in aggregation numbers only. Our task will be to investigate the optimal 

values of the form parameters for globular and spherocylindrical aggregates and construct the 

corresponding optimal one-dimensional aggregation work of inverse dry micelles, to consider 
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the integral one-dimensional aggregation work of micelles, which would determine the concen-

tration of surfactant aggregates of any form with the given aggregation number, to find the first 

and second CMC within the framework of the proposed model and to calculate the relative frac-

tions of short and long micelles depending on the concentration of surfactant monomers. 

 

1. FORMS OF MOLECULAR AGGREGATES AND INITIAL ASSUMPTIONS 

 

 Let us consider an aggregate of surfactant molecules, which, at various values of the form 

parameters, continuously transforms into a sphere, a globule, and a spherical cylinder. The shape 

of core of such an aggregate is shown 

in Fig.1. Here, the form parameter   

expressed in units of the radius r  of 

the spherical part of the aggregate 

shows the length of the cylindrical part 

of the micelle. The parameter   

changes in the interval  0; , it is ze-

ro for spheres and globules and strictly 

greater than zero for cylinders. 

 Also expressed in units of radius r , the form parameter   shows the depth of entry of the 

spheres into the cylindrical part of the aggregate. The parameter   varies in the interval  0,1 , 

1   for spheres and   is strictly less than 1 for globules. Parameters    and   will be im-

portant additional independent variables in the model what follows. 

 Figure 1 also shows the additional parameter   (also expressed in units of radius r ), which 

is equal to the radius of the excluded spherical segment, and which coincides with the cylinder 

radius in the presence of a cylindrical part of the aggregate. The parameter   changes in the in-

terval  0,1  and is equal to 1 for spherical aggregates, 1   for globules. This parameter is of 

interest, since it was previously discussed in the literature [14] with certain fixed estimates. Fig-

ure 1 shows that this parameter can be expressed through the parameter   as 

   2    .  (1.1) 

 With the help of parameters   and   it is possible to express the area S  and the volume V  

of the aggregate in the form 

  sph cylS S S  , sph cylV V V  , (1.2) 

 

 

Fig.1.  Shape of the inverse micellar core. 
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where sphS  and cylS  are the areas of the spherical and, respectively, the cylindrical part of the ag-

gregate, sphV  and cylV  are the volumes of the spherical and, respectively, the cylindrical part of 

the aggregate. For sphS  and cylS , sphV  and cylV , we find 

   2

sph 4 2S r   ,    (1.3) 

  2

cyl 2 (2 )S r     ,  (1.4) 

     
23

sph

2
2 1

3
V r    ,    (1.5) 

   3

cyl (2 )V r     . (1.6) 

 Let the total number of surfactant molecules in the aggregate be equal to n . Let us denote 

the number of surfactant molecules in the spherical part of the aggregate as sphn , and that in the 

cylindrical part as cyln , so that sph cyln n n  . Let us assume that the bulk density of the number 

of head (polar) molecular groups inside the core of inverse micelle is uniform, i.e. the quantity  

  
sph cyl

sph cyl p

1n n n

V V V
  

v
   (1.7) 

has a fixed value, where pv  is the volume of the head group of the surfactant molecule. Then 

equalities (1.5) and (1.6) implies an expression for the relationship between the total aggregation 

number and the radius r  of the spherical part of the spherocylindrical core of the aggregate for 

given parameters   and   in the form: 

    
     

p1 3
3 2

3
, ,

2 2 1 3 2
r n n


  

     

v
,  0 1   , 0  . (1.8) 

In particular, for spherical aggregates at 1   and 0   we find from eq.(1.8)  

    1 3
3

p3 4r n n v ,   (1.9) 

and for globular aggregates at 0  , we obtain 

    
   

p1 3
3 2

3
,

2 2 1
r n n


 

 

v
, 0 1   .  (1.10) 

We see that      , , ,r n r n r n     . 

 

2. AGGREGATION WORK AND OPTIMAL VALUES OF FORM PARAMETERS  
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 Let us write the expression obtained in [7] for the minimal work of aggregation of inverse 

micelles. In thermal units Bk T , Bk  is the Boltzmann constant, Т  is the absolute temperature of 

the solution, taking into account eqs.(1.2) and (1.7) at 1n  , we have  

 
 

2 2

sph 0 sp 0 cyl 0 cyl 0

sp cyl sph sph cyl cyl

el p 1 2 2

B
sph 0 cyl 0

sph cyl

2 2
3 3

ln

1 1

h

h

n a n a n a n a

S S S S S S
W n B c

k T n a n a

S S

   
                 
   
       

   

v  

  
sph 0 cyl 02

sph cyl

sph cyl

1 2
3 ln 1 ln 1

2

n a n a
b n n n

b S S

    
                   

. (2.1) 

Here,   is the interfacial tension at the boundary between the aggregate core and the solution, 

elB  is a positive dimensionless quantity characterizing the electrostatic interactions of bound 

charges that make up the polar groups of surfactant molecules, 1c  is the bulk concentration of 

surfactant monomers in the solution, 0a  is the cross-sectional area of that part of the surfactant 

molecule that intersects the surface of the aggregate core, b  is the extension parameter related to 

the effective thickness of the aggregate crown [7]. Numerical estimates for the lattice model of a 

“dry” inverse micelle in [34] and molecular dynamics modeling of C12E4 inverse micelles in hep-

tane in [6] showed that the quantity el 1B  , elB  depends on temperature and tends to become 

constant at 1n  . Taking into account eqs.(1.3) - (1.8), expression (2.1) determines the dimen-

sionless work W  of aggregation as a function of the aggregation number n , parameters  ,   

and concentration of surfactant monomers 1c . Since the work on formation of an aggregate from 

a single surfactant monomer is equal to zero, then the work of aggregation W  must be addition-

ally defined as  11, , , 0W n c    . 

 It is easy to check that for spherical aggregates with 0   and 1   eq.(2.1) with the exten-

sion  11, , , 0W n c     transforms into  

    
 

 

1/3 2 2

0 02 2/3 4/3

1 p 1 el 2
1/3 2

0

3 2 44
, ln

1 4

a n a
W n c n c B n n

kT a n

  
     

 
v  

   2 1/3 2

0

1 2
3 ln 1 4

2
b n n a n

b

 
      

 
,   (2.2) 

   11, 0W n c  , (2.3) 

where    
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   
1 3

p3 4 v .  (2.4) 

 Let us choose the following values of the thermodynamic parameters of the problem (using 

the data for a solution of C12E4 surfactant molecules in heptane [7]): 

  293T  К,  300.0  N/m, 8

p

22.484 10v m3, 
103.9 10   m,  

   el 20B  ,    22

10 .31 5 10c  m-3,    20

0 21 10a   m2,   2b  .  (2.5) 

We took in (2.5) the value of the 

concentration of surfactant mono-

mers 1 10c c  in such a way that, the 

work  1,W n c , with the values 

from eq.(2.5) substituted in 

eq.(2.2), had a pronounced maxi-

mum at  8n   and a minimum at 

28n  . The corresponding curve of 

the aggregation work  10,W n c  as 

a function of the aggregation num-

ber n  is shown in Fig.2. 

       The optimal values of the form parameters   and   at minimizing the work W  of aggrega-

tion of an inverse micelle with a spherical, globular, or spherocylindrical form (corresponding to 

Fig. 1), given by eq.(2.1) together with eqs.(1.2)–(1.7), can be sought for each value of the ag-

gregation number n  from the conditions  

  
 

   

1

,

, , ,
0

opt optn n

W n c

 

  



,    (2.6a) 

  
 

   

1

,

, , ,
0

opt optn n

W n c

 

  



. (2.6b)  

 Let us consider the dependences of the optimal parameters opt  and opt  on the aggregation 

number n , which follow from eqs. (2.6). These dependencies are shown in Figs. 3 and 4. The 

first vertical line in these figures at 35n   marks the point at which the “optimal” micelle grows 

like a sphere. This is indicated by the values opt 1   and  opt 0   at 35n  .  

 
Fig.2. Work of aggregation of a spherical inverse micelle, 

constructed from eq.(2.2) by substitution eq.(2.5). 
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 As seen from Fig. 3, at the 

very point 35n   the micelle 

turns into a globule, and between 

the first and second vertical lines 

in Fig. 3 there is a decrease in the 

parameter opt  until it finally 

reaches a constant value, starting 

from the second vertical line at 

48n  .    

 As follows from Fig. 4, at the 

point 48n   marked by the sec-

ond vertical line, the micelle turns 

into a spherocylinder (begins to 

increase the cylindrical part in Fig. 

1) and further grows only due to 

elongation of cylindrical part, 

since opt  in Fig. 3 at 48n   re-

tains its value opt 0.32748  .  The 

above is confirmed by the depend-

ence on n  of the radius 

 opt opt, ,r n    of the spherical 

parts of the aggregate core, plotted 

in Fig. 5 according to eq. (1.8) 

with the optimal dependences of 

the parameters opt  and opt  cor-

responding to Figs. 3 and 4. Fig-

ure 5 shows that up to the first 

vertical line at 35n  , the radius 

r   of the aggregate increases as 

1 3n  in agreement with (1.9), then 

it falls slightly, and it reaches a 

constant value after the second 

vertical line at 48n  . 

 

Fig.3. Dependence of opt  on the aggregation number n . 

 

Fig.4. Dependence of  opt  on the aggregation number n .   

 
Fig.5. Dependence of the radius r  of the spherical part of 

the aggregate core on the aggregation number n  at opt    

and opt   .  
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 Let us pay attention to the fact that a decrease in r  at 35n   for globular aggregates can oc-

cur according to eq.(1.10) only with a sufficiently rapid decrease of opt  with increasing n , 

which is observed in Fig. 3. Constancy of r  at 48n   is ensured in accordance with eq.(1.8) by 

linear growth of opt  and fixation of opt as a function of n  in Figs. 4 and 3. In Fig. 5, a horizon-

tal line is drawn at 16r  nm, which corresponds to the maximal possible radius of the spherical 

micelle core, determined by the full length of elongated polar head group of the surfactant mole-

cule C12E4. Note that this limit is not reached in Fig. 5.  

      According to (1.1), the constant value of the optimal parameter opt 0.32748   in Fig. 3, 

achieved for spherocylindrical aggregates at 48n  , also corresponds to the constant value 

opt 0.74   of the parameter  . Note that other constant value 2 3   was predicted in [14], 

based on the additional assumption of a constant surface density of surfactants on spherical caps 

and cylindrical bridge (see Fig. 1). In fact, under this additional condition, we have 

sph sph cyl cyln S n S  and sph sph cyl cylV S V S . From here, taking into account eqs. (1.3)-(1.6), we 

obtain a closed equation for  : 

          2 1 3 (2 )     . (2.7) 

The exact root of eq.(2.7), which corresponds to the condition 1   formulated at the beginning 

of Section 1, is equal to 
3 3

1
0.32748

1 2 1 2
 

 
, which coincides with the found value of 

the optimal parameter opt  (see Fig. 3). Accordingly, the corresponding value of the parameter 

 2     coincides with opt 0.74   but not with 2 3  . We can conclude that the opti-

mal values of the parameters   and   are realized for spherocylindrical aggregates at a constant 

surface density. We emphasize that, calculating the found values 0.32748 and 0.74  , we 

did not use now the thermodynamic model of the aggregation work, but relied on purely geomet-

ric eqs. (1.3)-(1.6) and the additional assumption of a constant surface density of the surfactant 

molecular groups.  

 Let us now plot the dependence of the “optimal” work  
   opt opt

opt 10 ,
, , ,

n n
W W n c

 
    of 

aggregation of inverse micelles on the aggregation number n . The physical meaning of the "op-

timal" aggregation work optW  of micelles is that it shows the line of the lowest values of the work 

 10, , ,W n c   when the aggregation number changes, including the saddle point and the  



9 

 

minimum point of  10, , ,W n c  . This line is shown in Fig. 6 as a solid curve. It is obtained after 

substituting the optimal expressions 

for  opt n  and  opt n  (that satisfy 

conditions (2.6)) in eq.(2.1) and using 

the numerical values of the parame-

ters from eq.(2.5). 

 The dotted line in Fig. 6 shows 

the dependence of the aggregation 

work of spherical micelles from 

Fig.2. The vertical lines in Fig. 6 

have the same meaning as in Figs. 3-

5: the “optimal” micelle grows up to 

35n   like a sphere, then changes 

like a globule in the interval 

35 48n   and like a spherical cylinder at 48n  . 

 We see that the curve of the “optimal” aggregation work  of inverse micelles practically co-

incides with the work of aggregation of inverse spherical micelles at 35n  , moreover, the sad-

dle point of work  10, , ,W n c   coincides with the point of maximum of work optW  and maxi-

mum of work  10,W n c  at 8n  , and the minimum of   10, , ,W n c   coincides with the mini-

mum of  optW  and minimum of work  10,W n c  at 28n  . At 48n  , the curve of optW  already 

significantly differs from the aggregation work  10,W n c  of spherical micelles, which is associ-

ated with the transition of aggregates first into globules, and then into spherocylinders.  

 

3. EQUILIBRIUM DISTRIBUTION OF AGGREGATES AND FLUCTUATIONS OF THE 

FORM PARAMETERS  

 

 The fact that the “optimal” aggregation work optW  of inverse micelles coincides with the 

work of aggregation of spherical micelles in Fig. 6 at 35n   does not at all mean that there are 

no contributions to the equilibrium distribution of micelles from globular and cylindrical mi-

celles at 35n  . According to the Boltzmann principle, the expression for the equilibrium distri-

bution   of aggregates should have the form  

     1, , ,

1, , ,
W n c

n c Ae
  

    ,   (3.1) 

 
Fig.6. Dependence of the "optimal" aggregation work 

optW  of inverse micelles of arbitrary form on the aggre-

gation number n  in comparison with the aggregation 

work  10,W n c  of inverse spherical micelles. 
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where A  is the normalization coefficient, which, taking into account the appearance of form pa-

rameters, must be determined from additional considerations. For the distribution of spherical 

micelles in a theory in which the aggregation number is the only variable characterizing the ag-

gregate, one can set 1A c  [7]. It follows from eq.(3.1) that, for any aggregation number 1n  , 

aggregates can have different forms. Accordingly, we must take into account the fluctuations of 

the form parameters   and  . The value of the normalization coefficient A  changes in this 

case. 

 Let us study in more detail the ag-

gregation work  10, , ,W n c   in two 

regions: in the vicinity of the saddle 

point at 5 15n   and in the region 

significantly to the right of the mini-

mum of the work at 70 80n  . We 

begin with the first region. If it is im-

possible to construct a function of 

three independent variables in one fig-

ure, we will proceed as follows. The 

prediction of the optimal values of the form parameters gives us at 5 15n   the values opt 0   

and opt 1  , that is, the micelles in this region are predominantly spherical. Since the proportion 

of spherocylindrical micelles in this region is expectedly small, we can set 0   and plot the 

work surface  10, , 0,W n c    according to eqs.(2.1), (1.3), (1.4) and (1.7), (2.5). This surface 

is shown in Fig. 7. We see from Fig. 7 that the value 1   is indeed optimal, since it corresponds 

to the smallest values of the work  10, , 0,W n c   .    

      Taking into account eq.(3.1), we may define the average value of the parameter   in the vi-

cinity of the saddle point by the relation  

        

 

 

10

10

1
, , 0,

15
0

1
5 , , 0,

0

1

11

W n c

n W n c

e d

e d

  



   



 

 








.  (3.2) 

Using eqs.(2.1), (1.3), (1.4) and (1.7), (2.5), we find 0.828  . The corresponding standard 

deviation for   is  
2

0.129     . We see that the average value   is not very 

 

Fig.7. Surface  , , 0W W n     in the vicinity of the 

saddle point of the aggregation work  10, , ,W n c  .  



11 

 

close to 1, and the fluctuations of form parameter   are quite noticeable in the vicinity of the 

saddle point of the aggregation work. Similarly, considering the average value   of the param-

eter   in the same neighborhood of the saddle point at 

1opt  , we find 

   

 

 

opt 10

opt 10

, 1, ,

15
0

, 1, ,5

0

1
0.415

11

W n c

W n cn

e d

e d


   




   



 

  








.           (3.3) 

The corresponding standard deviation for   is 

 
2

0.441     . We see that the average value 

  deviates quite noticeably from zero, which would be in 

the complete absence of spherocylindrical micelles, and the 

fluctuations of the parameter   are comparable with its average value. The aggregate core corre-

sponding to the calculated   and   at 8n   is shown in Fig.7a.  

 Consider now the region 

70 80n   of aggregation numbers. 

Since spherical and globular micelles 

are expected to be virtually absent in 

this region, we set 0.32748   and, us-

ing eqs.(2.1), (1.3), (1.4) and (1.7), 

(2.5), plot the surface of work 

 100.32 8, ,74 ,W W n c    . This sur-

face is shown in Fig.8. It is seen that the 

value opt , which corresponds to the 

"gorge" in Fig. 8, slowly rises along the gorge with the growth of the aggregation number n . 

Since the average value of the parameter   will also grow with the growth of n , then we define 

this value for a certain specific aggregation number 75n   by the expression 

  

 

 

10

10

32748

327

75, 0. , ,

0

75, 0. , ,

0

48

W n c

W n c

e d

e d


   




   



 

 







.  (3.4) 

 

Fig.7a. The shape of the aggregate 

core at 8n  , 0.828   and 

0.415  . 

 

Fig.8. Surface  100.32 8, ,74 ,W W n c     at 

70 80n  . 
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Using eqs.(2.1), (1.3), (1.4) and (1.7), (2.5), we find 2.61  . This average value is close to 

the optimal value opt ( 75) 2.50n   . However, the corresponding standard deviation 

 
2

0.65      is not small. 

 Since the value opt  is constant in the interval 70 80n  , then we find the average value 

  of the parameter   at opt ( 75) 2.50n    with the help of formula 

  

  

  

opt 10

opt 10

1
, , ,

80
0

1
, , ,70

0

1
0.332

11

W n n c

W n n cn

e d

e d

  



  



 

  








.   (3.5) 

This value is close to the optimal value opt ( 75) 0.327n   . The corresponding standard devia-

tion  
2

0.049      is not large. 

 Let us define the integral aggregation work  int 1,W n c  as follows:  

  
 1

1
, , ,

int 1 0 0

ln , 1
,

0, 1.

W n c
А d d e n

W n c

n


  

  
     

   




   (3.6) 

As follows from eqs.(3.1) and (3.6), the value 
 int 1,W n c

e
  determines the concentration of surfac-

tant aggregates of any form with the given aggregation number n . This allows us to solve the 

problem of the normalization factor А  by requiring in the region of initial spherical aggregates 

(for example, in the range 1 5n  ) the equality 

 
   1 1

1
, , , ,

1

0 0

W n c W n c
А d d e c e


   

    . (3.7) 

 Figure 9 shows the dependences of the integral aggregation work  int 1,W n c  on the aggrega-

tion number n  in comparison with the work  1,W n c  of aggregation of spherical inverse mi-

celles, plotted according to eqs.(3.6), (2.2) with using eqs.(2.1), (1.3), (1.4) and (1.7), (2.5) at two 

concentrations of surfactant monomers. The normalization parameter in accordance with (3.7) 

was set to 8A  . 
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4. THE DEGREES OF MICELLIZATION IN THE PRESENCE OF MICELLES OF 

DIFFERENT FORM  

 

 Knowing the expression (3.1) for the equilibrium distribution   of aggregates as a function 

of n ,  ,   and the normalization coefficient A , we can describe the fractions of surfactants in 

micelles of different forms at different concentrations of surfactant monomers. Aggregates with 

small aggregation numbers n  and noticeably fluctuating parameters   and   (see Fig. 7a) are 

practically impossible to identify as spheres, globules, or spherocylinders; therefore, in what fol-

lows, it is reasonable to speak about short and long micelles. We will call aggregates long mi-

celles, in which 2   , that is, the total length of micelles is at least 4r , and short aggregates 

are all the rest. 

 For a given surfactant monomer concentration 1c , we introduce the following definitions: 

  

 

 

1

1

21
, , ,

0 0

21
, , ,

1

0 0

sm   c

c

W n c

n

W n c

n

A dn d d ne

c A dn d d ne


  


  

 

  

 

  

  

, (4.1) 

   

 

 

1

1

1
, , ,

0 2

1
, , ,

1

0 0

lm  s

c

W n c

n

W n c

n

A dn d d ne

c A dn d d ne

 
  



 
  





  



  

  

, (4.2) 

  

Fig.9. Dependence of the integral  aggregation work  int 1,W n c  on the aggregation number n  at 

8A   (solid line), as well as the  aggregation work  1,W n c of inverse spherical micelles 

(dashed line) at the monomer concentration 22

10 .31 5 10c   m-3 (left figure (a)) and concentra-

tion 01 1.31 5cc   (right figure (b)). 
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 

 

1

1

1
, , ,

0 0

1
, , ,

1

0

f

0

 s

c

W n c

n

W n c

n

A dn d d ne

c A dn d d ne

 
  

 
  

 

 

  

  

  

 , (4.3) 

where smα  is the degree of micellization in short micelles, lm  is the degree of micellization in 

long micelles, and f  is the degree of micellization in micelles of any form and length. Since 

 1

1
, , ,

1

0 0c

W n c

n

c A dn d d ne

 
  

      is a total 

concentration of surfactants in unit vol-

ume of the solution, sm  characterizes 

the fraction of surfactant molecules in 

short micelles at a given total surfactant 

concentration and lm  sets the corre-

sponding fraction of surfactant molecules 

in long micelles. Obviously,  

f sm lm    . 

 Figure 10 shows the curves of de-

pendence of the micellization degrees 

sm , lm  and the fraction sm lm1   of 

surfactant monomers per unit volume of the solution as a function of the equilibrium concentra-

tion 1c  of surfactant monomers. These curves are plotted with the help of eqs. (4.1) and (4.2) 

with using eqs.(3.1), (2.1), (1.3), (1.4) and (1.7), (2.5) at 8A  . The thin lines show the concen-

trations 1c  at which micellization degrees sm  and lm  reach the values sm 0.1   (at 

1 101.117c c ) and lm 0.1   (at 1 101.187c c  ). These values correspond to the total concentra-

tion of surfactants in the solution at the first and second CMC, respectively. Figure 10 shows that 

these total surfactant concentrations are spaced on the axis of monomer concentrations and are 

actually described in terms of the proposed molecular thermodynamic model. It is seen that be-

tween the first and second CMC, surfactant is accumulated in short micelles, but above the sec-

ond CMC, the relative fraction of the substance in short micelles passes through a maximum and 

then rapidly decreases compared to the fraction of surfactant in long micelles. 

 

Fig.10. The degree sm  of micellization in short 

micelles (red line), the degree lm  of micellization 

in long micelles (blue line) and the relative fraction 

of surfactants in the form of monomers (dotted line) 

as a function of 1 10c c .  
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     To illustrate the role of fluctuations of 

form parameters, Fig. 11 shows the de-

pendence on 1c  for the degree of micelli-

zation for spherical inverse micelles 

   1 1,

sph

1

,
 1

c c

W n c W n c

n n

dnne dnne


 

 


 
 

 





  , 

plotted with the one-dimensional distri-

bution    1,

1 1,
W n c

n c c e


  , and the de-

pendence on 1c  for f  plotted according 

to eq.(4.3). The fact that the curve f  

grows with 1c  at first more slowly than 

the curve sph , and then becomes ahead 

of it, is in agreement with the behavior of 

the curves of the integral aggregation work  int 1,W n c  in Fig.9. 

 

CONCLUSIONS 

 

 In this communication, a new statistical thermodynamic model of inverse non-ionic aggre-

gates of surfactant molecules in non-polar solvents is substantiated. The model allows fluctuation 

coexistence of spherical, globular, and spherocylindrical aggregates without activation barriers 

between them. It is shown that for any aggregation numbers in this model, the work of aggrega-

tion depends not only on the aggregation numbers and the concentration of surfactant monomers, 

but also on the parameters characterizing the deviation from the spherical form of the aggregate 

towards globular and spherocylindrical aggregates. A method for estimating the normalization 

factor for the distribution of aggregates by aggregation numbers and form parameters is pro-

posed, which makes it possible to find the degree of micellization of a surfactant solution in the 

presence of micelles of different forms. It is shown that the optimal values of the form parame-

ters, which minimize the work of aggregation, are in good agreement for spherocylindrical ag-

gregates with the predictions of a purely geometric model of such aggregates under the addition-

al assumption of a uniform surface density of molecular groups on the micelle core. The consid-

ered molecular thermodynamic model can be extended to direct micelles.  

 

 

Fig.11. Dependences on 1 10c c for the  micellization 

degree sph in spherical micelles (red line) in one-

dimensional theory, the total  micellization degree 

f  in micelles of any form (blue line) in three-

dimensional theory, the relative fraction of surfac-

tants in the form of monomers when there are only 

spherical micelles (red dotted line) and micelles of 

any form (blue dotted line). 
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