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Abstract—The nonequilibrium vibrational kinetics of carbon dioxide is modeled taking into account
complex mechanisms of relaxation and energy exchanges between modes. The possibilities of using
machine-learning methods to enhance the performance of the numerical simulation of nonequilib-
rium carbon-dioxide f lows are studied. Various strategies for increasing the efficiency of the hybrid
four-temperature model of CO2 kinetics are considered. The neural-network-based approach pro-
posed by us to calculate the rate of vibrational relaxation in each mode turns out to be the most prom-
ising. For the problem of spatially homogeneous relaxation, the error and computational costs of the
developed algorithm are estimated, and its high accuracy and efficiency are demonstrated. For the first
time, the carbon-dioxide f low behind a planar shock wave is simulated in a complete state-to-state
approximation. The results obtained are compared with those in the hybrid four-temperature
approach, and the equivalence of the approaches is shown. Based on this, the developed multi-tem-
perature approximations may be recommended as the main tool for solving problems of nonequilib-
rium kinetics and gas dynamics. The hybrid four-temperature approach that uses a neural network for
calculating relaxation terms reduces the numerical-simulation time by more than an order of magni-
tude while maintaining its accuracy. This technique can be recommended for solving complex multi-
dimensional problems of nonequilibrium gas dynamics, including state-to-state chemical reactions.
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1. INTRODUCTION
The study of the nonequilibrium kinetics of carbon dioxide is necessary for modeling the entry of

descent vehicles into the atmospheres of Mars and Venus, for developing methods for reducing the con-
centration of products of human activity in Earth’s atmosphere, in low-temperature plasma chemistry and
laser technologies. A feature of the CO2 molecule is that it has three vibrational modes (symmetric, bend-
ing, antisymmetric), which gives rise to several thousand bound vibrational states and leads to complex
mechanisms of vibrational energy exchanges. Detailed state-to-state modeling, based on solving stiff dif-
ferential equations for each state, is extremely demanding on computing resources. Consequently, there is
a need to develop reduced models and efficient numerical methods.

To reduce computational costs in modeling nonequilibrium CO2 flows, several state-of-the-art multi-
temperature models have been developed that take into account energy exchange between modes [1, 2].
The main problem in using multi-temperature models lies in correct simulation of the rate of vibrational
relaxation with consideration for various energy-exchange mechanisms. In the hybrid four-temperature
model developed in [2], it was proposed to calculate the relaxation terms using averaged state-to-state
rates of processes; due to this, the model retains its accuracy, but loses computational efficiency.

Along with conventional numerical methods, an approach has become popular in recent years, which
consists in training neural networks to solve systems of differential equations [3, 4]. In such methods, neu-
ral networks are trained on the basis of a number of numerical solutions to a system of differential equa-
tions and enable the efficient calculation of system solutions for various sets of input-parameter conditions
with a high degree of reliability. Although this approach is inapplicable in solving the problem of state-to-
434



NEURAL-NETWORK-BASED APPROACH TO THE DESCRIPTION 435
state kinetics due to the high dimensionality of the system, its use for multi-temperature models seems to
be promising.

In addition to the explicit use of neural networks for solving systems of differential equations, machine-
learning methods can be applied to find local f low parameters or to approximate various characteristics.
For example, neural networks have been used to find transport coefficients [5, 6]. In [7, 8], the application
of a number of machine-learning methods in state-to-state modeling of the rate of vibrational relaxation
in mixtures of air components was considered, but the results obtained cannot be used in multi-tempera-
ture approaches. Moreover, machine-learning methods have not been used before for modeling the kinet-
ics of carbon dioxide. The only attempt made in [9] was related to the spectral clustering of energy levels.

The purpose of this work is to optimize calculation of the vibrational-relaxation rate in hybrid multi-
temperature models based on machine-learning methods, to evaluate the accuracy and efficiency of neu-
ral-network approaches in solving problems of nonequilibrium gas dynamics, and to numerically simulate
the problems of spatially uniform relaxation and the nonequilibrium flow of carbon dioxide behind a pla-
nar shock wave.

2. THEORETICAL MODEL
The use of a complete state-to-state model [10, 11] in studying the kinetics of CO2 encounters signifi-

cant difficulties due to the need to numerically solve a large number of differential equations for the pop-
ulations of vibrational levels. Therefore, multi-temperature approaches are often used in practice, based
on the fact that vibrational-energy-exchange rates can differ by several orders of magnitude; due to this,
quasistationary vibrational distributions in different vibrational modes are established. To model the
kinetics of carbon dioxide, multi-temperature approaches [2, 12] with vibrational-relaxation rates
described by approximate Landau–Teller formulas are most often used. The limitations of these
approaches are discussed in [1, 2, 11]. In particular, it was shown in [1] that the Landau–Teller model is
only suitable for small deviations from equilibrium, while in [11] it was concluded that taking into account
different temperatures in the symmetric and deformation modes provides the best agreement with the
results of complete state-to-state simulation. In this paper, a four-temperature model is considered.

The four-temperature model is based on the assumption that intramode VVm (m = 1, 2, 3) exchanges
of vibrational energy are fast processes, while all intermode VVm – k exchanges and VTm transitions of
vibrational energy into translational energy are slow [2]. Under this condition, the set of macroparameters
for a closed description of the nonequilibrium flow includes the density ρ and the velocity v of the gas, the
total specific energy U, and the temperatures of all vibrational modes T1, T2, and T3. In this approach, the
populations of the vibrational levels are given by the quasistationary distributions of Treanor (for an anhar-
monic oscillator) or Boltzmann (for a harmonic oscillator). The Treanor distribution in CO2 has the form
[11]

(1)

where n is the numerical density of the gas;  = i2 + 1 is the vibrational statistical weight;  is the
vibrational energy of the level (i1, i2, i3); kB is the Boltzmann constant; and Zvibr is the vibrational partition
function. Under such a description of the system, the total specific energy is a function of the gas tempera-
ture and all vibrational temperatures. For a harmonic oscillator, the first terms under the exponent are
equal to zero, and distribution (1) transforms into the Boltzmann distribution.

The system of equations for an inviscid gas contains equations for the conservation of mass, momen-
tum, and total energy, supplemented by relaxation equations for the specific numbers of vibrational
quanta in various modes Wm:
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where p is the pressure and Rm is the relaxation rate in the mth mode. The specific numbers of vibrational
quanta Wm in the mth mode are introduced by the formulas:

(6)

im is the vibrational quantum number corresponding to the mth mode. The introduction of the total spe-
cific energy U and the specific number of vibrational quanta Wm in each vibration mode as macroscopic
variables is equivalent to the introduction of the gas temperature T and three vibrational temperatures of
the symmetric, bending, and asymmetric modes of CO2 molecules (T1, T2, T3).

An important feature of the presented multi-temperature (4T) model is that the approximate Landau–
Teller formulas are not used for calculating the relaxation terms Rm. In this model, they are found by aver-

aging the state-to-state relaxation terms  [2]:

(7)

For example, for VT exchange in the bending mode, the relaxation term has the form

(8)

where  are the rate coefficients of the corresponding transitions.
An advantage of such a hybrid approach is good agreement between the results of modeling nonequi-

librium carbon-dioxide f lows with those of a complete state-to-state calculation, along with a significant
reduction in the number of differential equations: from several thousand to six. Nevertheless, the disad-
vantage of the hybrid approach is the high computational cost in calculating the relaxation terms, which
is comparable to using the complete state-to-state approach.

To solve system (2)–(5), the rate coefficients of energy transitions in each of the vibrational states
should be calculated. In some situations, experimental data can be used, but these data are limited to lower
states and low temperatures (less than 2000 K) and do not describe all types of energy exchanges. In the
absence of experimental data, approximate theoretical models have to be used. In this study, the energy-
transition-rate coefficients are found from the formulas of Schwartz, Slawsky, and Herzfeld [13] general-
ized to the case of an anharmonic oscillator (the SSH model). To increase the efficiency of calculating the
coefficients, the data structure described in the previous work [14] is used.

3. NEURAL-NETWORK-BASED APPROACHES 
TO THE OPTIMIZATION OF CALCULATIONS

We now consider some approaches to optimizing the above problem. The first chosen strategy involved
the application of machine-learning methods to the direct solution of a system of differential equations.
The classic way to optimize the solution of a dynamic system is to replace the solver with a neural network
trained on a number of solutions. The efficiency of such an approach for systems of ordinary differential
equations and systems of partial differential equations has been shown in [4]. However, in the case of rigid
systems, too large a sample of values and training for a large number of epochs are needed, which leads to
the problem of overfitting, i.e., situations when the neural network yields accurate predictions on elements
from the test sample and significant deviations on the remaining values.

An alternative approach to speeding up kinetics simulations is to use artificial-intelligence algorithms
to quickly perform computationally complex steps of a numerical method, such as calculating relaxation
terms. It was shown in [8] that machine-learning methods are much less sensitive to an increase in the
dimension of a system of differential equations than standard numerical algorithms. Analysis of the pos-
sibilities of machine-learning methods to predict the values of relaxation terms in the system of equations
for the complete state-to-state kinetics of carbon dioxide showed that such an approach would not give a
positive effect, since the number of calculated relaxation terms is asymptotically equal to the number of
actions performed when they are explicitly calculated. Thus, a more realistic approach is to improve the
algorithm for modeling the kinetics of carbon dioxide in the hybrid 4-temperature approximation by
approximating the values of the relaxation terms.

The most common approaches for approximating functions using machine-learning algorithms are:
regression analysis; methods based on the k nearest neighbors (k-NN) algorithm; and the neural-network
approach. Finding a regression model that makes it possible to achieve a high accuracy of approximation
for the relaxation terms of each of the modes is an extremely difficult task due to strong nonlinearity of the
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Fig. 1. Neural-network topology graph.
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temperature dependence of these values. Simple linear and nonlinear methods are applicable in a narrow
temperature range (the interval does not exceed 50 K). Thousands of simple regression models for each
energy level would need to be trained to cover the entire 4D temperature range and using this approach
would not be more efficient than direct calculation.

Study [7] considered the applicability of approximations based on the k-NN and gradient boosting
methods for calculating relaxation terms in modeling the kinetics of a binary mixture in the state-to-state
approximation. Comparison showed that the k-NN-based approach proved to be the most effective in
calculations based on coefficients of the energy-transition rates according to the computationally expen-
sive model of a forced harmonic oscillator (FHO) [1, 15]. However, if the computationally simple SSH
theory is used, explicit calculation is much more efficient than the considered machine-learning methods.
Since this work uses the SSH model and approximations based on its regression, it was concluded that it
is inappropriate to use the k-NN methods and gradient boosting.

We now consider an alternative strategy based on the neural-network approach. According to the Tsy-
benko theorem (Universal approximation theorem), a feedforward artificial neural network with one hid-
den layer can approximate any continuous function of many variables with any accuracy. The conditions
for such an approximation are: a sufficient number of hidden-layer neurons, a good choice of weights
between input neurons and hidden-layer neurons, weights between connections from hidden-layer neu-
rons and an output neuron, and biases for input-layer neurons.

For numerical experiments, three neural networks were used with the following topology (Fig. 1):
(i) a single-layer network topology model with direct access was used due to the fact that the neural

network is used as a regression model;
(ii) the size of the input layer corresponds to the number of input variables: four temperature values;
(iii) the size of the output layer corresponds to the number of desired values: one relaxation term for

the corresponding vibrational mode;
(iv) the hidden layer consists of 100 neurons for the first and second modes and 200 for the third mode;

and
(v) a hyperbolic tangent was used as the activation function.
To train neural networks, samples were generated consisting of approximately 5000000 temperature

vectors (T, T1, T2, T3) and their corresponding relaxation terms (R1(T, T1, T2, T3), R2(T, T1, T2, T3), R3(T,
T1, T2, T3)). These vectors were chosen taking into account the distribution density of temperature values
arising at the steps of modeling spatially homogeneous carbon dioxide relaxation in the 4-temperature
approximation. The neural network was trained in Python using the scilearn library. The creation of the
training and testing set, which is a computationally extremely time-consuming operation, takes about two
weeks. Training of each neural network requires about 4 hours. However, neural networks are trained only
once, and the training results are used to solve various problems.

A trained neural network makes it possible to obtain predicted values of relaxation terms close to accu-
rate ones for temperatures far from the boundaries of the interval on which they were trained. At tempera-
tures from 2200 to 8000 K, the difference between the predicted and explicitly calculated values of the
relaxation terms does not exceed 1%. If the area is extended while maintaining such accuracy, the neural
network needs to be retrained. Therefore, if the range of temperature variation is assumed to be wider in
the hydrodynamic problem under consideration, it is necessary to build several neural networks corre-
sponding to different subsets of the complete temperature range. However, the use of several neural net-
works does not lead to a noticeable complication of the problem and a decrease in the calculation speed.
VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 55  No. 4  2022
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Fig. 2. Temperature distribution in the hybrid multi-temperature approximation for the explicit (4T) and neural network
(NN) methods for calculating relaxation terms under conditions TC1 (a) and TC2 (b). 

1000
1500
2000
2500
3000
3500
4000
4500
5000

T3:  4T
T2:  4T
T1:  4T
T:  4T

T3:  NN
T2:  NN
T1:  NN
T:  NN

T3:  4T
T2:  4T
T1:  4T
T:  4T

T3:  NN
T2:  NN
T1:  NN
T:  NN

1000

1500

2000

2500

3000
(a) (b)

10�1

t, s
10�210�310�410�510�610�710�8 10�1 100

t, s

T
, K

T
, K

10�210�310�410�510�610�710�8
The obtained neural networks were integrated into the code for modeling the spatially homogeneous
relaxation of carbon dioxide in the hybrid 4-temperature approximation. To this end, based on the
obtained weight coefficients, neural networks were implemented in C++. After testing the neural net-
works on test samples, spatially homogeneous carbon dioxide was modeled in the four-temperature
approximation based on the predicted values of the relaxation terms. The data were divided into training
and test sets in the proportion of 2 : 3. The relative error of the solution based on the approximation of
relaxation terms does not exceed 4%.

4. RESULTS AND DISCUSSION

In the numerical simulation of spatially homogeneous carbon dioxide in the state-to-state and four-
temperature approximations, a code based on the AT-EBDF-4 numerical scheme [10] was used. Several
test cases were considered with various initial conditions typical of different types of f lows. In all cases, the
initial pressure was assumed to be 100 Pa. The initial values of the temperature and vibrational tempera-
tures of each mode were:

TC1: T = 5000 K, T1 = T2 = T3 = 1000 K;
TC2: T = 3000 K, T1 = T2 = T3 = 1000 K;
TC3: T = 490 K, T1 = T2 = 490 K, T3 = 2000 K;
TC4: T = 400 K, T1 = T2 = 500 K, T3 = 1070 K;
TC5: T = 3000 K, T1 = 300 K, T2 = 700 K, T3 = 1200 K.
Figure 2 shows the time dependences of the temperatures T, T1, T2, and T3 for the cases TC1 and TC2

that correspond to the conditions in shock waves. The temperatures are calculated in the hybrid 4T
approximation with explicit calculation of the relaxation terms and using the neural-network approach.
The solutions obtained using neural networks are in good agreement with the accurate 4T solutions: the
maximum error for all temperatures does not exceed 1.5%, which is a very good result. In both cases, the
fastest relaxation is observed in the bending mode, while the antisymmetric mode reaches equilibrium
much more slowly than the other modes. If the initial temperature increases, the relaxation rates of the
first and second modes become close, and the time to reach complete equilibrium decreases.

We now consider two examples with initial conditions typical for discharges (Fig. 3). The case TC3 cor-
responds to capillary discharges in laser mixtures; in this case, the antisymmetric mode is significantly
excited, while the symmetric and deformation modes are in equilibrium with the translational-rotational
modes. The temperature distribution calculated in the 4T approximation for this case shows that in the
process of relaxation the balance between T, T1 and T2 is not violated, and relaxation occurs through the
antisymmetric mode (VT3 and intermode VV2–3, VV1–2–3 exchanges). Test case TC4 corresponds to glow-
discharge conditions with a slight excitation of the symmetric and bending modes and significant exci-
tation of the antisymmetric mode. In this case, the relaxation of the first and second modes occurs rapidly,
in less than a microsecond, while the relaxation of the antisymmetric mode lasts for several seconds. There
VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 55  No. 4  2022
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Fig. 3. Temperature distribution in the hybrid multi-temperature approximation for the explicit method for calculating
relaxation terms under conditions TC3 (a) and TC4 (b). 
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Fig. 4. Temperature distribution in the state-to-state (STS), hybrid multi-temperature approximation for explicit (4T) and
neural network (NN) methods for calculating relaxation terms under conditions TC5. 
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is a slight difference in the rate of T1 and T2 relaxation; the temperature of the bending mode comes close
to T somewhat earlier.

Test case TC5 with significantly different initial temperatures for all modes was chosen to demonstrate
the performance of the proposed approaches. It has no explicit physical analogue, but can be used as a test
for the correctness of the code. The use of all approaches (complete state-to-state, 4T with different ways
of calculating relaxation terms) yields similar results (Fig. 4), but the neural-network approach is much
more efficient from the computational perspective.

The effectiveness of the different approaches is compared in Table 1. If the neural-network approach
is used, the speed of calculating relaxation terms in the multi-temperature approximation increases by a
factor of more than 17. The general solution of the system is found an order of magnitude faster. It should
be noted that the maximum relative error in solving a spatially homogeneous problem using regression for-
mulas for finding the energy-transition-rate coefficients relative to the direct use of formulas of SSH the-
ory is 2%, a value which does not exceed the calculation error.

In a numerical study of the f low behind a shock wave, the following conditions in the free stream were
considered: T0 = 300 K, ρ = 1.18 × 10–4 kg/m3, p = 6.66 Pa; the Mach number varied from 5 to 10. The
populations of the vibrational levels were assumed to be equilibrium (Boltzmann distributions with the gas
temperature T0).

To validate the model, we compare the results obtained for M = 5 with those of [2], where calculations
were carried out in the 4-temperature model using the MATLAB package (Fig. 5). The curves in the figure
correspond to this study, and the symbols represent the results of [2]. It can be seen that the results are in
good agreement. In addition, the figure shows the results obtained for a rougher two-temperature model
VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 55  No. 4  2022
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Fig. 5. Temperature distribution behind the shock-wave front. M = 5. Comparison with the results of [2]. 

0

500

1000

1500

2000

2500

10�1 100

x, m

T
, K

10�210�310�410�510�610�7

T3:  4T
T:  2T [2]

T2:  4T
T1:  4T
T:  4T

T3:  4T [2]
TV:  2T [2]

T2:  4T [2]
T1:  4T [2]
T:  4T [2]

Fig. 6. Temperature distribution behind the shock-wave front at M = 8 (a) and M = 10 (b). 
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of vibrational relaxation in which the Landau–Teller formulas for relaxation terms are used [12]. The tem-
perature distribution obtained in the two-temperature model is significantly different; relaxation begins
noticeably later; and complete equilibrium is reached earlier. Since the two-temperature model does not
take into account intermode energy exchanges, a conclusion can be made that these processes make a sig-
nificant contribution to the character of relaxation behind shock waves.

Figure 6 shows the temperature distribution behind the shock-wave front at Mach numbers 8 and 10.
Solutions are compared, which were obtained in the complete state-to-state approximation (STS), the
hybrid multi-temperature approximation with the explicit calculation of relaxation terms (4T), and the
multi-temperature approximation using neural networks (NN). For the state-to-state approximation,
only the gas temperature T is given. It is worth mentioning that the f low behind the shock wave in the
complete state-to-state approximation has not been modeled in earlier studies. In all cases considered, the
slowest process is the vibrational relaxation of the antisymmetric mode, and the fastest process is the
relaxation of bending vibrations. As the temperature grows, the exchange rate increases, which leads to a
rapid energy exchange between the first and second modes. Therefore, as the Mach number increases, the
relaxation rates in these modes become close.

A comparison of the results showed that all considered approaches give close temperature distributions
behind the shock wave, the average deviation from the reference state-to-state (STS) solution being 2.5–
3%, and the maximum deviation being 4–6% for Mach numbers above 6. For smaller Mach numbers the
maximum relative error is slightly higher (9%), but the absolute values of the relative errors are close for
all test cases. The performance gain achieved in solving the problem turns out to be significant, which con-
firms that the use of multi-temperature models in combination with neural-network calculation of the
relaxation rate is a promising approach.
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Table 2. Efficiency in time of calculating relaxation terms (TIMER), the time spent on the numerical method (TIMEnum),
and the total time for solution of the system (TIMEsys) for complete state-to-state, hybrid 4T, and neural-network
predicted 4T approaches in the shock wave problem

Approaches TIMER, s TIMEnum, s TIMEsys, s

STS 1214 1090 2310
4T 1186 80 1270
NN 106 85 190

Table 1. Efficiency in time of calculating relaxation terms (TIMER), the time spent on the numerical method (TIMEnum),
and the total time for the solution of the system (TIMEsys) for complete state-to-state, hybrid 4T, and neural-network
predicted 4T approaches in the problem of spatially homogeneous relaxation

Approaches TIMER, s TIMEnum, s TIMEsys, s

STS 1130 370 1507
4T 890 80 982
NN 65 80 148
Table 2 compares the efficiency of solving the problem in the complete state-to-state approximation
and the hybrid multi-temperature approximation with the explicit and neural-network methods for cal-
culating relaxation terms. The time needed to calculate the relaxation terms is close to that in modeling
spatially homogeneous kinetics. Nevertheless, the time spent on using the numerical method in the state-
to-state approximation has increased by an order of magnitude, while for the hybrid model these figures
are close. This is due to the high dimensionality of the system of equations, which greatly increases the
computational complexity of solving systems of linear algebraic equations. The multi-temperature
approach avoids this problem and is almost twice as efficient if relaxation terms are explicitly calculated
and 12 times as efficient if neural networks are used. Therefore, with further complication of the problem,
for example, in modeling a 2D or 3D flow, the advantages of using a hybrid approach and neural networks
can additionally increase severalfold.

5. CONCLUSIONS

Various strategies for enhancing the efficiency of modeling CO2 kinetics using machine-learning
methods are considered. The application of neural networks to the direct solution of differential equations
is shown not to yield the desired result. The most promising is the neural-network-based approach to cal-
culating the rate of vibrational relaxation in a hybrid multi-temperature model: a spatially homogeneous
problem has been solved more than an order of magnitude faster.

For the first time, the CO2 f low behind a shock wave was simulated in the complete state-to-state
approximation. The accuracy and efficiency of the obtained results was evaluated. A comparison is made
with the results of other authors to show that the deviation of the obtained solutions does not exceed the
calculation error. The hybrid 4-temperature approach, which uses the neural-network method for calcu-
lating relaxation terms, showed the best results in terms of time while maintaining the simulation accuracy.
It is expected that in more complex two-dimensional and three-dimensional problems and in the case
chemical reactions are taken into account, the gain will be even more significant.
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