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Introduction 

Affective disorders are common, debilitating and chronic illnesses of the central nervous 

system (CNS) [1,2]. Although the cost of research and development of novel drugs is 

continuously rising globally [3], this growth is particularly high for CNS drugs, nearing 150% in 

the last decade [4]. At the same time, the 8% approval rate of CNS drugs after successful 

preclinical trials is one of the lowest (e.g., compared to 20% for cardiovascular drugs) [5]. The 

total clinical research plus the approval review time for CNS drugs is generally 32 months longer 

(than for non-CNS drugs), further contributing to their high direct/indirect research costs and low 

success rate [3]. As a result, large pharmaceutical companies continue to reduce their CNS 

pipelines and cut research personnel worldwide [3]. Thus, CNS drug research and development 

are presently facing tremendous obstacles in terms of both global health and market pressure. 

For affective and other common brain disorders, drug development is further complicated by 

their poorly understood pathogenesis [6], high clinical heterogeneity [7-9], overlapping genetics 

and frequent comorbidity [10-14].  

As modern translational biomedicine focuses on accelerated integration of fundamental 

research with clinical data [15,16], animal models are an indispensable tool for CNS drugs 

discovery [17-22], as will be discussed here in detail. However, its slow pace is caused by the 

apparent mismatch between the long-term goals of preclinical vs. clinical drug screening: while 

preclinical screens search for the most effective drugs (based on behavioral and molecular 

assays), human testing aims to ensure their high safety over therapeutic efficacy [23]. Although 

drug safety is critically important, this discrepancy is at least partially responsible for the low 

yields of the CNS drug discovery [5] that, combined with high costs of CNS drug discovery, 

impedes the innovation in the field [24], shifting focus and efforts from brain to more ‘stable’ 

and ‘predictable’ non-psychiatric diseases [3]. Thus, ‘clinicizing’ preclinical drug research by 

enhancing safety screens and using endpoints and biomarkers for drug assessment that are more 
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clinically valid and translationally relevant, may be beneficial to optimize preclinical drug 

screening, and, hence, reduce cost and improve yields of CNS drug discovery. 

Since stress is commonly associated with affective disorders, especially depression and 

anxiety [25], animal models are widely used to assess CNS stress effects across taxa [26]. For 

example, chronic mild unpredictable or variable stress models apply frequent and prolonged 

(e.g., for 1-8 weeks) stress to evoke affective phenotype both in rodents and fish [27,28]. Typical 

stressors in such models include disturbing circadian rhythms, food deprivation, electric shock, 

forced swimming, shaking, exposure to predators, crowding and immobilization [26,28] that 

induce robust affective-like phenotypes (e.g., anxiety and anhedonia) rescued by antidepressants 

[27]. Another popular stress paradigm, the chronic social defeat stress, uses prolonged daily 

aggressive social encounters to induce anxiety- and depression-like phenotypes in rodents 

[26,29,30] and fish [31]. Finally, multiple behavioral tests have also been developed, based on 

novelty exposure and/or place preference [26] in both taxa, as they similarly prefer ‘protective’ 

black/dark bottom over white/lit open environments when anxious [32].  

Among the most important paradigms for affective drugs screening are ‘behavioral 

despair’ paradigms that assess animal ‘learned helplessness’ in dangerous inescapable situations 

and are selective to conventional antidepressants, but not to anxiolytics like benzodiazepines 

[33,34]. Recently, this approach has been successfully applied to the zebrafish (Danio rerio, 

presently the second most used animal experimental model in biomedicine [35-37]). These 

findings show high evolutional conservation of the despair-like phenotype, and its high 

predictive validity due to its sensitivity to antidepressant (but not anxiolytic) drugs [38].  

However, despite the existence of valid and popular affective tests and models, their 

results often show poor reproducibility between and within laboratories [39,40], with overt 

individual, strain-, population-, sex- and age variability [39,40]. For example, there are clear sex 

differences in rodent anxiety [41], social [42], predator- [43] and other stress-related behaviors 

[44]. Likewise, zebrafish sexes differ in aggression [45], social [31], general activity and anxiety 
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phenotypes [46]. In addition to heterogeneity of targeted subject populations, other challenges in 

translational affective neuroscience include the role of environmental and epigenetic factors, 

inefficient experimental logistics, complex dose-effects of psychoactive compounds, ethical 

concerns, overall complexity of experimental designs and their multifactorial nature [47,48]. The 

lack of a sufficient number of clear-cut, translatable and reproducible behavioral and especially 

molecular biomarkers of individual brain disorders, and the unclear parallels between endpoints 

studied clinically and preclinically, are also recognized in the field [48].  

Expert opinion: New targets, more targets, and more models 

Trace amines 

Innovating the search for CNS drugs, several novel promising classes of drug targets are 

worth discussing as illustrative examples of recent successes and challenges. For instance, the 

trace amines (e.g., β-phenylethyalmine, p-tyramine, tryptamine and p-octopamine) and their 

Trace Amine Associated Receptors (TAARs) have been recently implicated in various CNS 

disorders, including schizophrenia, bipolar disorder, depression and drug abuse [49-52]. 

Although the trace amines have long been known to occur in the brain, their receptors in 

vertebrates were identified only recently [53,54]. Until recently, only the TAAR1 was thought 

to be expressed in various brain regions, while other TAARs have been viewed as ‘olfactory’ 

receptors, shifting focus of TAAR research to mainly TAAR1-mediated CNS mechanisms [55]. 

While the TAAR1 genetic variants are associated with clinical schizophrenia [56], its knockout 

in mice enhances amphetamine response and impairs prepulse inhibition [57], and the over-

expression reduces amphetamine sensitivity [58], implicating TAAR1 in modulating several 

brain neurotransmitters [55]. TAAR1 agonists also show anxiolytic, antidepressant and 

antipsychotic activity [55], further supporting this receptor as a putative novel promising 

therapeutic target. However, the CNS roles of other TAARs have recently become recognized. 

For example, mouse TAAR5 is expressed in multiple limbic regions and its knockout evokes 

lower anxiety- and depression-like behavior [59,60], linking TAAR5 to the regulation of 
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behavior, similarly to TAAR1. In humans, TAAR6 is also expressed in amygdala (with TAAR8), 

basal ganglia, frontal cortex, substantia nigra and hippocampus [52,53,61], suggesting these 

TAARs as novel putative targets for CNS drug discovery. 

Glutamatergic signalling  

 Central glutamatergic system is one of the most critical for the regulation of complex 

behavior. A promising CNS agent, glutamatergic antagonist ketamine, is already in Phase 3 of 

clinical trials for depression [62]. The fast rise of ketamine use may be partially attributed to its 

widespread need as an anesthetic clinically, making it a Schedule III drug approved by the US 

Food and Drug Administration (FDA) for this purpose, unlike psychedelics. Most studies note 

antidepressant activity of ketamine [62], shown efficacy in multiple reports on treatment-

resistance depression [62], with a rapid acute onset (vs. classical antidepressants that need weeks) 

of therapeutic effects. Ketamine is also beneficial for obsessive-compulsive disorder (OCD) [63-

65], post-traumatic stress disorder (PTSD) [66] and addiction [67,68], although its effects usually 

do not persist for a long time, and require regular administration [65]. In rodents, ketamine exerts 

similar antidepressant-like effect [69], acting as a glutamatergic N-methyl-D-aspartate (NMDA) 

receptor antagonist and, possibly, also indirectly modulating other (e.g., gamma-aminobutyric 

acid/GABA-ergic) systems in various brain circuits [70,71]. In adult zebrafish, acute exposure 

to ketamine evokes an anxiolytic-like behavior, reduces whole-body cortisol levels [72,73] and 

dose-dependently modulates (at low doses increasing, and at high does reducing) zebrafish 

aggression [74]. Collectively, these clinical and preclinical findings support the importance of 

glutamatergic agents to target evolutionarily conserved signaling pathways for treating various 

affective brain disorders. 

Serotonergic targets  

Mounting evidence also suggests classical psychedelic serotonergic hallucinogens and 

related drugs (e.g., 3,4-methylenedioxymethamphetamine, MDMA) as emerging novel 

pharmacotherapies for affective disorders, including depression and PTSD [75]. Although 
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classifying as Schedule 1 drugs for political reasons in the 1960-1980s severely impeded their 

clinical and preclinical studies, regulatory approval and market introduction [75], they can cause 

a stable improvement in wellbeing (e.g., by psilocybin treatment) [76], optimism [77], anxiety 

(e.g., by lysergic acid diethylamide, LSD or psilocybin) [78,79], depression (by ayahuasca, 

whose primary psychoactive agent is N,N-dimethyltryptamine, DMT) [79-81] and addiction 

(e.g., by psilocybin) [82,83] clinically. LSD and psilocybin successfully treat clinical anxiety 

induced by life-threatening diseases [78,84,85], ayahuasca alleviates major depression [80,81], 

and psilocybin mitigates anhedonia, depression and anxiety in treatment-resistant depressed 

patients, with effects sustained for months [86,87]. Such prolonged effects of acute psilocybin 

treatment strikingly differ from the short-term action of acute ketamine, thus making 5-HT2A 

agonists more promising targets for depression therapy. Likewise, MDMA inhibits monoamine 

(primarily, serotonin) reuptake and is used in PTSD [88-92] as a ‘breakthrough’ therapy 

recognized by the FDA [93]. Paralleling clinical data, 5-HT2A receptor agonists (e.g., 4-iodo-2,5-

dimethoxyphenylisopropylamine, DOI) evoke profound neuroplasticity [94], anxiolytic- [95] 

and antidepressant-like (e.g., repeated LSD) effects in rodent models as well [96] (Fig. 1).  

G protein-coupled receptors 

The adhesive G protein-coupled receptors (aGPCRs) are a the second largest GPCR 

family of relatively understudied cell adhesion and signaling proteins [97] whose 33 human 

orthologs are widely expressed in the brain [98]. The distinctive features of aGPCRs are the large 

multidomain N-termini and juxtamembrane GPCR Autoproteolysis INducing (GAIN) domain 

[99,100]. While exact functions and mechanisms of aGPCR remain unclear, some of them have 

been linked to human and animal CNS pathologies [98,99,101]. For example, Adhesion G 

Protein-Coupled Receptor B2 (Adgrb2) knockout mice display antidepressant-like behavior, 

enhanced hippocampal cell proliferation, but unaltered locomotor activity and learning [102]. A 

loss-of-function variant of Adhesion G Protein-Coupled Receptor L3 gene (ADGRL3) is 

associated with human attention deficit and hyperactivity disorder (ADHD) and autism spectrum 
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disorder [103-107], whereas mice and zebrafish lacking this gene exhibit altered dopaminergic 

signaling and ADHD-like hyperactivity and impulsivity [108,109]. Adhesion G Protein-Coupled 

Receptor C3 (3ADGRC3) variants are implicated in Tourette’s syndrome [110,111] and Adgrc3 

or Adhesion G Protein-Coupled Receptor C2 gene (Adgrc2) deletions in mice lead to 

hydrocephalus and impaired ciliogenesis [112]. Single nucleotide polymorphisms (SNPs) within 

ADGRB3 are enriched in schizophrenic patients [113-116], whereas chronically stressed 

zebrafish markedly increase the adgrg4b expression in whole brain samples (log2 fold change = 

8.4), rescued by a selective serotonin reuptake inhibitor (SSRI) fluoxetine (own unpublished 

data). Collectively, these clinical and preclinical findings implicate aGPCRs in 

neuropathogenesis and call for further research on their signaling mechanisms in vivo as potential 

targets for CNS drug discovery, especially related to affective disorders. 

Arrestins 

Arrestins (mainly β-arrestins expressed in the brain) and ubiquitin-related pathways also 

warrant attention (Fig. 2). Arrestins are highly homologous proteins that regulate GPCR by 

supporting their internalization and redirecting signaling to G-protein independent pathways 

[117-119]. The GPCRs activation by agonist leads to G-proteins activation, followed by second-

messenger (cAMP, Ca2+, inositol phosphate) cascades, activating kinases, other proteins and ion 

channels [120]. However, G protein-coupled-receptor kinases (GRKs) may phosphorylate 

intracellular domains of GPCRs resulting in the recruitment of β-arrestins to GPCRs followed 

by receptor desensitization [121]. The GRK/arrestin activity promotes further internalization of 

GPCRs followed by receptor recycling, degradation or endocytosis [121,122]. GRKs and β-

arrestins also bind additional cellular proteins supporting β-arrestins-related (but G-protein 

independent) pathways activation, including c-Src, ERK1/2, JNK3, p38 MAPK and AKT [123-

127].  

Recent studies have revealed biased GPCR ligands that activate G-protein and arrestin-

related pathways with differential efficiency and target different pathways, thus avoiding 
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potential undesirable side effects [128]. Importantly, arrestins have also been proposed as 

potential targets for treating affective pathologies [129]. For example, depressed patients display 

reduced levels of β-arrestin-1 in mononuclear leukocytes [130,131], whereas antidepressant 

treatment increases them [131], also similarly elevating their CNS expression in rats [130]. 

SSRIs, selective serotonin-norepinephrine (SNRIs) and nonselective reuptake inhibitors increase 

β-arrestin-1 levels in rat cortex and hippocampus following a 10-day treatment, reaching 

maximal effects on weeks 2 and 3, thus mimicking clinical ‘delayed’ antidepressants effect [130]. 

Furthermore, normalization of β-arrestin-1 levels in leukocytes predicted such clinical 

improvement [131]. In the mouse chronic stress model, both β-arrestin-1 and -2 are down-

regulated in the hypothalamus, and fluoxetine treatment recovers their levels [132], whereas β-

arrestin-2 knockout mice display reduced fluoxetine responsivity [132]. 

Importantly, the cellular functions of arrestins depend on ubiquitination that determines 

the fate of the arrestin-receptor complex, its signaling cascades and the GPCR internalization 

[121] (Fig. 2). Ubiquitin is a small, highly conserved protein binding to lysine of targeted proteins 

(ubiquitination) or another ubiquitin, forming polyubiquitin chains on a targeted protein 

(polyubiquitination) [121,133]. Ubiquitin chains, in turn, guide protein trafficking, endocytosis, 

degradation and activation of signaling cascades or kinases [121]. For arrestins, ubiquitination 

occurs after β-arrestin binding and promotes stabilization of receptor complex in the endosome, 

thus controlling its recycling, endocytosis and scaffolding [121]. Like arrestins, ubiquitin plays 

an important role in cellular action of antidepressant drugs [134]. For example, while citalopram, 

imipramine, desipramine and moclobemide all increase mRNA expression of β-arrestin-2 in rat 

glioma cells, independently on their traditional extracellular signaling effects [134], the β-

arrestin-2 protein levels are reduced by antidepressants, due to arrestin ubiquitinylation that 

promotes its proteasomal degradation [134]. 

Other putative drug targets  
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Recent studies suggest additional potential pharmacophores underlying therapeutic 

effects of CNS drugs in the brain. For example, rats exposed to acute high-dose or chronic mild-

dose β-phenylethylamine (PEA) show serotonergic syndrome with hallucination-like and 

hyperactivity behavior [136], whereas acute exposure to Δ9-tetrahydrocannabinol (THC) evokes 

anxiety-like effects and aberrant locomotor activity in both mice [137] and zebrafish [138]. The 

bis (7)-cognitin (B7C) is a dimer formed by two tacrine molecules [139], whose multi-target 

activity includes the inhibition of acetylcholinesterase (AChE), prevention of the aggregation of 

the β-amyloid (Aβ) protein, regulation of the downstream signaling of the glutamatergic NDMA 

receptor, inhibition of the nitric oxide synthase (NOS) pathway [140] and a competitive 

antagonism at the GABA-A receptor [141]. B7C is 150 times more potent and 250 times more 

selective to inhibit AChE than tacrine, due to the dual interaction with the AChE binding sites 

[142,143]. In rodents, some tacrine derivatives show positive effects against learning and 

memory deficits in scopolamine-induced model of amnesia [144], and therefore merit further 

scrutiny in regard to their other (e.g., affective) putative CNS properties. Neurosteroids are also 

highly relevant as a potential therapy of CNS disorders [145], modulating both GABA-A and 

NMDA receptors [146,147]. For example, pregnenolone alleviates depressive episodes in bipolar 

patients [148], whereas gaboxadol exerts sedative and hypnotic activity [145,149], collectively 

emphasizing a wide range of signaling pathways relevant to developing novel treatments of CNS 

disorders.  

Where next? 

Recognizing the emerging molecular complexity discussed above, and departing from 

traditional “1 drug – 1 target” approaches that have dominated CNS drug discovery for decades, 

a promising novel strategy of drug development may therefore be to act via several interacting 

targets simultaneously (“1 drug – several coupled targets”). For example, a ligand that 

simultaneously impacts both traditional monoaminergic signaling and the associated affiliated 

mechanism of their regulation (e.g., β-arrestins), may represent a promising ‘double-hit’ 
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candidate for such multi-target drug discovery. Furthermore, given high heterogeneity of brain 

disorders clinically, it is logical to expect that multiple distinct brain and/or molecular systems 

can be disrupted simultaneously during the disease. As such, polymodal multi-target drugs that 

simultaneously affect distinct (non-coupled) neurotransmitter signaling processes, are urgently 

needed, albeit their effectiveness and limitations in the treatment of affective disorders are still 

unclear [150-152].  

Overall, despite multiple known limitations of animal models and the mounting obstacles 

for innovative CNS drug research, the field must not be swayed by gloomy realities of the current 

markets. Rather, it should be further promoted, as brain remains the most complex human organ, 

and its disorders are among the most societally costly public health burdens. Because animal 

models represent an indispensable tool to assess drug efficiency and safety, further innovation 

of biological methodology and biomarkers will deepen our understanding of clinical findings, 

and may contribute to new theories of brain pathogenesis. Thus, the field of CNS drug discovery, 

especially related to affective disorders, should be reinvigorated, innovated and reintegrated, 

focusing on new approaches and targets. 

The latter strategy also includes embracing novel model organisms. For example, the 

zebrafish is an excellent model for studying molecular mechanisms of development, also 

possessing a fully sequenced genome with high (>70%) genetic homology to humans, and 

multiple practical advantages [153-156]. Zebrafish are particularly useful in CNS modeling since 

many behaviors correlate with their morphological and physiological features, amenable for the 

growing number of research technologies [157]. Notably, the cost of research on zebrafish is 

much lower than on rodents, complemented by the rapid reproduction and high survival rate of 

embryos, as well as by the simplicity of maintenance and breeding [158]. Zebrafish 

neuromorphology is well studied and fully described in numerous atlases [159,160]. Their 

neuroendocrine stress axis is highly homologous to humans [161], and zebrafish possess all 

major neurotransmitter systems and their signaling cascades as in rodents and humans [162]. 
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Thus, the physiological, anatomical, biochemical and genetic characteristics of zebrafish allow 

it to be used as successfully as rodent models to study the pathogenesis of affective disorders and 

their pharmacotherapy [163]. In addition, zebrafish possess transparent embryos and fast 

development, enabling studying changes in brain morphology and development caused by 

experimental (e.g., genetic or pharmacological) modulation [164]. The behavioral repertoire of 

the zebrafish is also thoroughly described and comprehensively catalogued [165], including 

anxiety-like behavior [166,167], sociability [168], aggressiveness [169,170], cognitive [171] and 

other phenotypes. While many of these behaviors are evolutionarily conserved across taxa, some 

behaviors differ from those in mammals. For example, zebrafish have no parental care and 

develop externally, which precludes monitoring the effect of parental changes on the offspring. 

Furthermore, maternally deposited cortisol is present during embryogenesis, which may affect 

larval zebrafish by programming their neuroendocrine development and function [172]. 

Complementing zebrafish models, other fishes may offer a valuable tool in studying various 

affective disorders. For instance, the goldfish (Carassius auratus) is another popular model 

species in translational neuroscience research, with well-defined behavioral repertoire [173] and 

high sensitivity to experimental and pharmacological modulation of CNS responses [174-176]. 

Finally, while there is no single animal model that can fully characterize all the range of 

psychiatric symptoms of a disease [177,178], various behavioral and physiological symptoms of 

affective disorders can be simulated in both rodents and zebrafish [27,178-181], sensitive to 

antidepressants that may reverse these symptoms [38,182]. Likewise, despair-like behavior was 

successfully translated recently from rodents to zebrafish, enabling fast antidepressant screening 

in this aquatic species [38]. Collectively, this indicates that zebrafish and other fish models may 

advance the field of affective disorders, also helping to target the evolutionarily conserved ‘core’ 

mechanisms of affective deficits in vertebrate taxa.  

Additional considerations: New methods, tests and screening batteries 
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Historically, the first examples of targeted development of antidepressant drugs include 

monoamine oxidase (MAO) inhibitors and SSRIs, currently the most clinically successful groups 

of antidepressants that also possess anxiolytic properties [183]. How can researchers discover 

new CNS drugs? Modern drug development concepts are usually based on Rational Drug Design 

(RDD) and involve identifying a specific target and selecting or modelling de novo the exact 

ligand structure that would best ensure their binding [184]. For affective disorders, as already 

mentioned, their therapy is complicated by clinical complexity and heterogeneity [185]. The lack 

of unequivocal knowledge about the causes of mood disorders, as well as the specific challenges 

of animal models of mental dysfunction, both reduce the likelihood of a positive outcome, 

making the chances of a drug being cost-effective to develop very thin for pharmaceutical 

companies [150,186,187]. Complementing rational drug design methodologies, for psychiatric 

diseases, phenotypic screening in animal models is also common as an adjunctive approach 

[161,188,189].  

However, the role of bioinformatics and molecular modelling in silico (Table 1) continues 

to grow in drug design [184,190], especially given cost reduction and shortened duration of drug 

discovery. Using these methods, the structure of target molecules is recreated by gradual 

construction of small fragments placed in the active receptor site with minimization of steric 

factor and maximization of binding energy [191], to build hypothetical structures with a 

predicted high affinity for the target. The disadvantages of this method are the relatively low 

reliability of estimating ligand binding affinity and the unclear rules for ligand design that are 

too generic to accommodate the biological profile of a particular target [192].  

For example, the Quantitative Structure-Activity Relationship (QSAR) strategy links the 

structure of a molecule to its activity [193], either based on the dimensions (e.g., 1-5D) of the 

descriptors involved in the model, or using the type of biological activity predicted as a 

dependent variable [193,194]. In addition, QSAR models can also be grouped based on analysis 

of correlation-linear and non-linear [195], or depending on binding nature of molecule and 



13 

  

receptor [196]. One of QSAR methods, Comparative Molecular Field Analysis (CoMFA) 

approximates the 3D structure of a ligand with a set of molecular fields separately characterizing 

its steric, electrostatic, donor-acceptor and other properties, complemented by multiple 

regression analyses of ligands with known activity [197,198]. The resulting set of fields 

characterizes the location and properties of substituents in the molecule, which can then be used 

in virtual screening of compound libraries, acting as analogs of pharmacophores whose activity 

is determined by the functional groups present [199,200]. Methods determining the similarity of 

molecules (‘fingerprinting’) examine certain ‘descriptor’ properties of a molecule (e.g., the 

number of H-bond donors or benzene rings) to compare the resulting fingerprint with that of a 

reference sample, to predict their similar molecular activity in vivo [201].  

Moreover, the libraries of established 3D structures are used in computer simulation of 

ligand-protein interaction (‘molecular docking’), conformations and mutual affinity [202]. For 

example, a receptor and its ligand can be modeled as rigid volume figures (hard docking), or 

afforded conformational flexibility of ligand (semi-flexible docking) and the receptor (flexible 

docking), with or without solvents [202,203]. Molecular docking has become a powerful 

approach for discovery and development of novel drugs [204-206]. For example, multiple 

ligands of adenosine A2A [207,208] and β2-adrenergic receptors [209] have recently been 

identified using molecular docking. Modern tools also enable complex design of novel molecules 

based on the key receptor residues, including ligands acting at several targets, as novel dual 

dopamine D2 dopamine/serotonin 5-HT2A receptor ligands have been designed as potential 

schizophrenia treatment [210].  

Finally, modern development of genomics and proteomics enables precise identification 

of targets responsible for pathogenesis of the disease in question [211,212]. Genome-wide 

association studies (GWAS) also help find associations between the disease, drug responses and 

their side effects [213]. As such, developing specific pharmacological therapies for individual 

patients, as part of ‘personalized medicine’ approach (Table 2), is expected to clarify how 
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‘personality’ (individual CNS traits) contributes to pharmacological efficacy in treating affective 

and other brain disorders. 

Conclusion 

Although multiple questions remain open in the field (Table 2), the growing prevalence 

of affective disorders and their major impact on public health necessitate novel psychoactive 

compounds for their treatment. Here, we call for intensifying preclinical research in the search 

for novel targets for CNS drugs. However, a balance is also necessary between the strategies to 

facilitate preclinical research and the importance of integrating such drug discovery with 

practical needs of clinical medicine. For example, despite differing goals of preclinical vs. 

clinical drug screening (i.e., the search for most effective vs. safer drugs, respectively) [23], 

safety considerations are crucial for developing novel therapies. Indeed, potential addictive, pro-

psychotic or other side effects of novel drugs (e.g., psychedelic hallucinogens and ketamine) 

must be carefully evaluated before a novel therapy can reach human patients. 

While being under severe market and societal pressure, the affective drug research has 

many ways for improvement and innovation, that may result in paradigm shifts and shed a light 

on affective pathogenesis. Several novel drug targets and novel compounds, emerging as 

promising for affective disorders, include trace amine receptors, neurotransmitter signaling (Fig. 

1) and aGPCRs, as well as their activity modulation by arrestins and ubiquitin, especially since 

the drugs selectively targeting G-protein dependent or independent pathways (Fig. 2) may reduce 

adverse effects, and since they mediate receptors internalization and sensitivity. Finally, the field 

rapidly develops new paradigms and methods, including computer modeling and the use of novel 

model organisms (e.g., zebrafish), to better target CNS phenotypes in question (Fig. 3 and 4) and 

more fully translate them into clinical data. Together, these innovative strategies will empower 

the development and improve efficiency of CNS drug research for affective disorders. 
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Figure 1. Common effects of serotonergic 5HT2A-active psychedelics, associated with 

affective disorders treatment, reducing anxiety and depression symptoms (based on [214,215]). 
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Figure 2. Schematic diagram showing the GPCRs G-protein dependent and independent 

signaling cascades and their modulation with the β-arrestin and ubiquitin (U) mechanisms. 

Briefly, agonist binding to extracellular or transmembrane sites triggers common G-protein 

signaling cascades. However, if this signaling is terminated with GPCRs intracellular 

phosphorylation by G-protein coupled kinases (GRK), the GPCRs bind β-arrestin, resulting in 

desensitization of G-dependent pathway by blocking the G-protein binding. Further events 

include internalization of receptor and/or G-independent signaling pathways activation. Future 

fate of receptor complex depends on specific ubiquitin sequence binding to β-arrestin. a – 

agonist, R – GPCR, p – phosphorylated sites. Adapted from [121,216]. 
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Figure 3. Complementing various stages of preclinical drug development with computer 

modeling methods 
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Figure 4. The use of preclinical models and different model organisms in translational CNS drug 

discovery research. As the global prevalence of affective disorders has increased in the last three 

decades[2], preclinical models using both rodents and zebrafish, become a valuable tool for 

screening novel pharmacological and genetic therapeutic targets 
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Table 1. Main strategies used in computer modeling of biological activity of substances, 

depending on the availability of information on the structure of ligands and receptors.  

 

Receptor 

structure 
Ligand structure 

Known Unknown 

Known Docking De novo design 

Unknown Quantitative Structure-Activity 
Relationship (QSAR) 

Similarity search, screening 
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Table 2. Selected open questions in the field of affective drug research and development 

Questions 

General 

• How to bring back (and eventually increase) the investments to CNS drugs research both in 

industry and academia? 

• What is the core (shared) pathobiological links between comorbid affective disorders that can 

be targeted by novel drugs? 

• How to maximize synergistic effects from computer-based, cellular, animal in-vivo models 
and clinical data? 

• What is the link between the effects of classical antidepressants, serotonergic psychedelics and 

ketamine in terms of affective disorder treatment, speed and duration of their effects?  

• What is the overlap between traditional and novel molecular drug targets involved in affective 

behavioral spectrum? 

• How can multi-target drugs be developed, to maximize their therapeutic effects and reduce 

costs and efforts? 

• How to optimize drug repurposing to promote innovative CNS drug discovery? 

Specific 

• What other novel model species may be used to study affective pathogenesis? How to best 

integrate (and translate) rodent research with studies using novel species? 

• How to properly assess and model affective phenotypes in other species? Can we assess 

affective phenotypes in rodents that have no clear behavioral correlates clinically? 

• How to develop specific pharmacological therapies for individual differences in affective 
disorders, as part of ‘personalized medicine’ approach? How does ‘personality’ (individual 

traits) contribute to pharmacological efficacy of drugs in affective disorders? 

• What is the best pharmacological class for the treatment of affective disorders for each sex? 

• What is the role of epigenetic modulation in pharmacological efficacy for affective disorders? 

How to develop novel CNS drugs to modulate epigenetic regulation? 

• Can non-pharmacological approaches (e.g., environmental enrichment) potentiate and 

synergistically interact with novel drugs developed for affective disorders?  

• Can early-life experience affect their pharmacotherapeutic efficacy?  
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