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A \ B — теоретико-множественная разность множеств A и B

A × B — декартово произведение множеств A и B

R m — евклидово пространство m-мерных векторов с вещественны-
ми компонентами

0m = (0, 0, ..., 0) ∈ Rm — начало координат (нуль) пространства Rm

��+  — неотрицательный ортант пространства R m (т. е. множе-
ство всех векторов с неотрицательными компонентами без
начала координат)

R+ — множество положительных вещественных чисел

N m — множество всех векторов пространства R m, у которых име-
ется по крайней мере одна положительная и хотя бы одна
отрицательная компоненты

| A | — число элементов конечного множества A

sup Z — точная верхняя грань числового множества Z

inf Z — точная нижняя грань числового множества Z

[z] — целая часть числа z

�

�
�

� �

�

� � � �
�

��  — скалярное произведение векторов a= (a1, a2, ..., am)

и b= (b1, b2, ..., bm)

� � �
� �� ��� �� � � � � �� � � � � � �

a > b ⇔ ai > bi, i = 1, 2, ..., m

a � b ⇔ ai � bi, i = 1, 2, ..., m

a ≥ b ⇔ a � b и a ≠ b

cone {a 1, a 2, ..., a k} — выпуклый конус, порожденный векторами
a 1, a 2, ..., a k (т. е. множество всех линейных неотрицатель-
ных комбинаций данных векторов)

m — число критериев
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I = {1, 2, ..., m} — множество номеров критериев

X — множество возможных решений

f = ( f1, f2, ..., fm) — векторный критерий

Y = f (X ) — множество возможных векторов (оценок)

�X — отношение предпочтения ЛПР, заданное на множестве X

�Y — отношение предпочтения ЛПР, индуцированное отноше-
нием �X и заданное на множестве Y

� — продолжение отношения �Y на все пространство R m

Sel X — множество выбираемых решений

Sel Y — множество выбираемых векторов (выбираемых оценок)

Ndom X — множество недоминируемых решений

Ndom Y — множество недоминируемых векторов (недоминируе-
мых оценок)

Pf (X ) — множество парето-оптимальных решений

P (Y ) — множество парето-оптимальных векторов (парето-опти-
мальных оценок)

Практически любой вид человеческой деятельности связан
с ситуациями, когда имеется несколько возможностей и человек во-
лен из этих возможностей выбрать любую, наиболее подходящую ему.

Задачи наилучшего выбора изучает теория принятия решений.
С ее помощью можно научиться осуществлять выбор более обо-
снованно, эффективно используя имеющуюся в наличии инфор-
мацию о предпочтениях. Эта теория помогает избежать принятия
заведомо негодных решений и учесть возможные отрицательные
последствия непродуманного выбора.

Чрезвычайно широкий и крайне важный с практической точки
зрения класс задач выбора составляют многокритериальные за-
дачи, в которых качество принимаемого решения оценивается
по нескольким критериям одновременно. Успешное решение
многокритериальных задач невозможно без использования раз-
личного рода сведений о предпочтениях лица, принимающего
решение. При этом одним из самых главных источников таких
сведений является информация об относительной важности кри-
териев. Но прежде чем учиться выявлять и использовать эту
информацию, необходимо выяснить, что она собой представляет.

Какой смысл содержит высказывание о том, что один крите-
рий (или одна группа критериев) важнее другого критерия (дру-
гой группы критериев)? Как имеющуюся в распоряжении ин-
формацию об относительной важности критериев можно исполь-
зовать в процессе принятия решений? Существуют ли и если
существуют, то каковы принципиальные границы использова-
ния произвольного набора подобного рода информации при ре-
шении вопросов выбора решений?

Обсуждению и решению этих и близких к ним вопросов
посвящена эта книга. По существу, она представляет собой систе-
матическое введение в теорию относительной важности критериев,
развиваемую автором на протяжении двух десятков лет. В книге
используется аксиоматический метод изложения, когда заранее
формулируется ряд требований (аксиом), предъявляемых к клас-
су рассматриваемых задач, строго определяются все ключевые

ПРЕДИСЛОВИЕ

Моей жене Наталии Волковой

И высочайший гений не прибавит
Единой мысли к тем, что мрамор сам
Таит в избытке, — и лишь это нам
Рука, послушная рассудку, явит…

Микеланджело Буонарроти
(пер. А. Эфроса)
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ВВЕДЕНИЕ

Важнейшим инструментом решения многокритериальных задач
является принцип Эджворта−Парето (принцип Парето), который
стали успешно применять еще в XIX веке. Однако до самого
недавнего времени этот принцип не был четко сформулирован,
и многие из тех специалистов и исследователей, которые его при-
меняли и применяют, были (и до сих пор остаются) абсолютно
уверены в том, что этот принцип можно использовать при решении
любых многокритериальных задач. Оказывается, что это не так!
Принцип Эджворта−Парето имеет вполне определенные границы
применимости и его использование при решении некоторых задач
рискованно или же вообще не допустимо.

В данной книге впервые принцип Эджворта−Парето полу-
чает определенную математическую формулировку, и что самое
главное — четко очерчивается класс задач многокритериального
выбора, в которых применение этого принципа является обосно-
ванным. За пределами указанного класса на его основе можно
получить далеко не лучшие результаты.

Для того чтобы сформулировать принцип Эджворта−Парето,
постановку обычной многокритериальной задачи, включающей
множество возможных решений и набор критериев (векторный
критерий), необходимо дополнить бинарным отношением пред-
почтения лица, принимающего решение (ЛПР). Расширенная
подобным образом многокритериальная задача названа задачей
многокритериального выбора. Ее решение заключается в отыскании
так называемого множества выбираемых решений, которое может
состоять из одного элемента, но, в общем случае, оно является
подмножеством множества возможных решений.

Итак, постановка всякой задачи многокритериального выбора
включает три объекта — множество возможных решений, век-
торный критерий и отношение предпочтения ЛПР. Решить эту
задачу — означает, на основе векторного критерия и имеющихся
сведений об отношении предпочтения ЛПР, найти множество
выбираемых решений.

понятия и результаты формулируются в виде теорем, доказываемых
с применением соответствующих математических средств.

Избрав строгую форму изложения, автор стремился не поте-
рять связи теории с практикой и использовал все доступные ему
средства для неформального обсуждения и наглядной иллюстрации
вводимых понятий и полученных результатов.

Предлагаемая книга, для чтения которой вполне достаточно
владения курсом математики обычного технического вуза, рассчи-
тана, прежде всего, на специалистов в области принятия реше-
ний, поскольку в ней впервые в мировой монографической лите-
ратуре изложен известный принцип Эджворта−Парето, а также
абсолютно новый подход к решению задач многокритериального
выбора, основанный на точном введении и строгом учете коли-
чественной информации об относительной важности критериев.
Несомненно, она будет полезна всем тем, кто по роду своей дея-
тельности сталкивается с необходимостью решения многокритери-
альных задач — инженерам-разработчикам, конструкторам, проек-
тировщикам, экономистам-аналитикам и т. п. Кроме того, данная
книга может быть успешно использована студентами старших
курсов и аспирантами математических, экономических, а также
технических специальностей вузов.

Предусмотрено несколько вариантов прочтения книги. Пер-
вый вариант — полный, с изучением доказательств и деталей.
Второй — когда можно пропускать все встречающиеся в тексте
математические доказательства. Наконец, согласно третьему ва-
рианту, читатель, не желающий вникать в математические тон-
кости, и которому нужно лишь получить общее представление
о предлагаемом подходе, достаточное для его применения, может
после поверхностного просмотра первой главы сразу переходить
к последней главе, где в доступной форме представлены основные
идеи и результаты предлагаемого подхода.

Для формул, рисунков и утверждений принята двойная ну-
мерация, причем первый номер означает номер главы.

Символом � отмечается начало доказательства утверждения,
тогда как знак � означает его конец.

Автор выражает благодарность Ирине Толстых, которая, про-
чтя рукопись, своими многочисленными замечаниями способ-
ствовала заметному улучшению качества изложения. Кроме того,
она внесла определенный вклад и в содержательную часть книги
(в частности, ею, например, была получена теорема 4.10).

Особая признательность — Российскому фонду фундаменталь-
ных исследований, который, начиная с 1998 года, осуществляет
финансовую поддержку исследований автора в данном направлении.
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В рамках рассматриваемой модели многокритериального
выбора принцип Эджворта−Парето может быть сформулирован
в виде утверждения о том, что множество выбираемых решений
содержится в множестве Парето. Иначе говоря, каждое выбираемое
решение является парето-оптимальным. Математический эквива-
лент этому высказыванию — включение одного множества в дру-
гое. Для того чтобы доказать это включение, следует определенным
образом ограничить весь класс задач многокритериального вы-
бора, наложив специальные требования на указанные выше три
объекта. Эти требования (аксиомы) относятся главным образом
к отношению предпочтения ЛПР и могут быть интерпретированы
как «рациональное» (или «разумное», «последовательное») пове-
дение в процессе выбора. Кроме того, среди этих требований
имеется условие согласованности отношения предпочтения ЛПР
и векторного критерия, поскольку каждый из этих двух объектов
выражает определенные устремления (цели) одного и того же
ЛПР, и потому они обязаны быть каким-то образом связаны друг
с другом.

Формулировка и доказательство принципа Эджворта−Парето
вместе со всеми необходимыми начальными понятиями и сведе-
ниями из теории принятия решений даны в первой главе книги.
Материал этой главы служит фундаментом для всего последую-
щего изложения.

Применение принципа Эджворта−Парето позволяет из мно-
жества всех возможных исключить заведомо неприемлемые реше-
ния, т. е. те, которые никогда не могут оказаться выбранными,
если выбор осуществляется достаточно «разумно». После такого
исключения остается множество, которое называют множеством
Парето или областью компромиссов. Оно, как правило, является
достаточно широким, и в процессе принятия решений неизбежно
встает вопрос о том, какое именно возможное решение выбрать
среди парето-оптимальных? Выражаясь иначе, какие из парето-
оптимальных решений следует удалить для того, чтобы произ-
вести дальнейшее сужение области компромиссов и, тем самым,
получить более точное представление об искомом множестве
выбираемых решений? Этот вопрос при решении практических
многокритериальных задач является наиболее трудным и наименее
проработанным к настоящему времени.

В общем случае, располагая лишь множеством возможных
решений и набором критериев (т. е. оставаясь в рамках модели
многокритериальной задачи), обоснованного ответа на постав-
ленный вопрос не сможет дать ни один специалист по принятию
решений, поскольку осуществление компромисса (выбора того

или иного парето-оптимального решения) возможно лишь при рас-
ширении модели выбора за счет привлечения дополнительной
информации об этом отношении предпочтения ЛПР. В зависимо-
сти от типа, характера и объема имеющейся в наличии дополни-
тельной информации используют тот или иной метод принятия
решений (или же их комбинацию). К настоящему времени таких
методов, схем и подходов поиска компромисса насчитывается
не один десяток. Следует, однако, отметить, что они, как правило,
имеют слабое теоретическое обоснование и носят, в основном,
эвристический характер. А самое главное — авторы предложен-
ных методов не могут четко описать класс тех задач выбора, для
решения которых применение данного метода гарантированно
приводит к действительно наилучшему решению.

Основной тип дополнительной информации, с которым
чаще всего приходится иметь дело при решении прикладных
многокритериальных задач, — это информация об относительной
важности критериев. Поэтому многие из существующих под-
ходов к решению многокритериальных задач используют именно
эту информацию, чаще всего в виде так называемых коэффици-
ентов относительной важности критериев. Формальные опреде-
ления этих коэффициентов у авторов таких подходов отсутствуют.
Обычно считается, что эти коэффициенты должны назначаться
экспертами. Но разве эксперт может оценить все возможные по-
следствия своего назначения, проследить и просчитать влияние
каждого из оцениваемых коэффициентов на механизм выбора,
соответствующий тому или иному методу? Как правило, экс-
перты вообще не имеют никакого представления о том методе,
в котором будут использоваться назначенные ими коэффициенты.
Таким образом, одни специалисты назначают коэффициенты от-
носительной важности, затем другие специалисты применяют тот
или иной метод, а ЛПР, несущее ответственность за принятое
решение, является некоей третьей стороной, не разбирающейся
ни в коэффициентах, ни в методах принятия решений. В итоге —
низкое качество принимаемых решений со всеми вытекающими
их этого последствиями.

Отсюда следует, что прежде чем строить и предлагать какой-
либо метод принятия решений, использующий понятие относи-
тельной важности критериев, необходимо договориться о том, ка-
кой именно смысл вкладывать в это понятие. Другими словами,
сначала нужно дать соответствующее определение, а затем строить
метод. Причем это определение должно быть доступно для по-
нимания не только специалистам, но и самому ЛПР, потому
что, не разобравшись в определении относительной важности

ВВЕДЕНИЕВВЕДЕНИЕ



�� ��

критериев, ЛПР не сможет назначить те коэффициенты отно-
сительной важности, которые наиболее точно выражают его
предпочтения.

В этой книге принято последовательное изложение и основы-
вается оно на формальном определении понятия количественной
информации об относительной важности критериев. В его осно-
ве — математическое определение высказывания «один критерий
важнее другого с определенным коэффициентом относительной
важности». Примечательно, что предлагаемое определение имеет
настолько простую логику, что вполне доступно для понимания
не только специалистам, но и лицам, ответственным за принятие
решений и не располагающим особыми знаниями в области мате-
матики. Последнее обстоятельство немаловажно, если учесть, что
сведения об относительной важности критериев поступают чаще
всего именно от этих лиц и чем лучше они понимают смысл отно-
сительной важности, тем более точную информацию о важности
критериев они представят специалистам.

Располагая определением относительной важности критериев
и изучив простейшие его свойства, можно приступить к реше-
нию главного вопроса, ради которого это понятие вводилось:
каким образом учитывать информацию об относительной важ-
ности критериев в форме сообщения о том, что один критерий
важнее другого? Оказывается (это демонстрируется во второй
главе книги), если несколько ограничить класс задач многокри-
териального выбора, для которых справедлив принцип Эджвор-
та−Парето, добавлением еще одного достаточно разумного тре-
бования (аксиомы) к отношению предпочтения ЛПР, то учет
этой информации можно производить очень просто — нужно
лишь в соответствии с выведенной несложной формулой пере-
считать менее важный критерий, оставив все остальные критерии
и множество возможных решений прежними. В результате полу-
чится новая многокритериальная задача, множество Парето кото-
рой будет ýже множества Парето исходной задачи, причем ни одно
выбираемое решение исходной задачи не окажется за предела-
ми нового множества Парето. Иначе говоря, при переходе от ста-
рого множества Парето к новому произойдет сужение области
компромиссов и при этом не будет потеряно ни одно выбираемое
(потенциально-оптимальное) решение. Область поиска выбира-
емых решений после указанного учета информации об относи-
тельной важности критериев станет более узкой и, тем самым,
задача выбора упростится.

В третьей главе вводится общее определение относительной
важности для двух групп критериев. Основной результат главы —

теорема, показывающая, каким образом для сужения области
компромиссов можно использовать информацию о том, что одна
группа критериев важнее другой группы. Здесь принцип учета
информации точно такой же, как и в случае, когда информация
о важности касается двух критериев, — т. е. строится новый век-
торный критерий, множество Парето относительно которого яв-
ляется более узким, чем множество Парето исходной задачи, при-
чем все выбираемые решения заведомо содержатся в новом мно-
жестве Парето. В новом векторном критерии по определенным
несложным формулам пересчитаны все критерии менее важной
группы. Любопытно, что этот новый векторный критерий кроме
замененных критериев менее важной группы может содержать
и некоторые дополнительные критерии. В таких случаях число
критериев в новой многокритериальной задаче оказывается боль-
ше, чем в исходной задаче.

В четвертой главе выясняется, каким образом производить
учет не одного сообщения об относительной важности критериев,
а целого набора такого рода сообщений. Сначала подробно раз-
бирается случай двух сообщений. В частности, выясняется, что
при определенных значениях числовых коэффициентов относи-
тельной важности вполне возможен случай, когда один критерий
важнее другого, а тот, в свою очередь, важнее первого. В этой же
главе изучается вопрос непротиворечивости произвольного на-
бора информации об относительной важности критериев. При-
ведены три утверждения, с помощью которых всегда можно про-
верить является ли определенный набор информации противо-
речивым или нет. Далее исследуется вопрос учета произвольного
набора количественной информации об относительной важности
критериев и предлагается отличный от упомянутого ранее так
называемый алгоритмический подход. Для случая конечного
множества возможных решений формулируется алгоритм этого
подхода, использующий симплекс-метод решения канонической
задачи линейного программирования.

Пятая глава содержит исследование вопроса полноты набора
количественной информации об относительной важности крите-
риев. Здесь выясняется, что, используя лишь конечный набор
информации об относительной важности критериев, можно по-
лучить в определенном смысле сколь угодно точное приближе-
ние к неизвестному множеству недоминируемых решений в виде
множества Парето некоторой новой многокритериальной задачи.
Полученные результаты свидетельствуют о важной роли, кото-
рую играет информация об относительной важности критериев
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в вопросах принятия решений в многокритериальной среде. Эта
информация полна в том смысле, что для достаточно широкого
класса задач многокритериального выбора с конечным множе-
ством возможных решений одной такой информации достаточно
для того, чтобы получить точное представление о неизвестном
множестве недоминируемых решений.

Результаты, полученные в предыдущих главах, аккумулиру-
ются в последней, шестой главе, где в доступной форме описы-
вается общий метод последовательного сужения множества Па-
рето на основе количественной информации об относительной
важности критериев. Изложение начинается с рассмотрения пси-
хологических аспектов принятия решений человеком. Далее фор-
мулируется и обсуждается сам метод. Принцип его работы на-
глядно можно пояснить при помощи сравнения с творческим
приемом Микеланджело. Как известно, когда великого скульп-
тора спросили, как ему удается из бесформенной каменной глыбы
создавать шедевры, он ответил: «Нужно отсечь от камня все лиш-
нее». Та же самая идея лежит в основе метода последовательного
сужения области компромиссов — из исходного множества воз-
можных решений на основе информации об относительной важ-
ности критериев последовательно удаляются все парето-оптималь-
ные решения, которые не могут быть выбранными согласно име-
ющейся информации об отношении предпочтения. Удаление
осуществляется до тех пор, пока не будет получено множество
решений, удовлетворяющее ЛПР.

Одно их главных достоинств метода последовательного су-
жения области компромиссов заключается в том, что удается ак-
сиоматически очертить класс задач многокритериального выбора,
для которых в результате применение данного метода на каждом
шаге сужения заведомо не будет удалено ни одно потенциально-
оптимальное решение. Тем самым, набор аксиом четко указывает
возможные границы его применимости.

Кроме того, следует отметить, что данный метод можно ис-
пользовать в комбинации с некоторыми другими известными при-
емами решения многокритериальных задач. Так например, в конце
шестой главы обсуждается возможность комбинирования метода
последовательного сужения области компромиссов вместе с ме-
тодом целевого программирования и методом достижимых целей.

В заключение дается краткая справка о двух выдающихся
экономистах — Френсисе Эджворте и Вильфредо Парето, без
блестящих идей которых эта книга никогда бы не появилась.

В этой главе вводятся и обсуждаются базисные понятия, свя-
занные с принятием решений в многокритериальной среде: мно-
жество возможных решений, векторный критерий и отношение
предпочтения лица, принимающего решение. Дается постановка
задачи многокритериального выбора. Кроме того, здесь определя-
ются такие принципиально важные для дальнейшего изложения
понятия, как множество недоминируемых решений и множество
Парето, без которых невозможна формулировка и строгое обо-
снование принципа Эджворта−Парето.

Именно формулировка и обоснование этого принципа состав-
ляет центральный результат первой главы. Устанавливается, что
принцип Эджворта−Парето следует применять лишь для решения
задач многокритериального выбора из некоторого, хотя и доста-
точно широкого класса. Этот класс составляют такие задачи, ко-
торые удовлетворяют определенным трем требованиям (аксиомам),
выражающим «рациональность» поведения лица, принимающего
решение. За пределами указанного класса использование принци-
па Парето сопряжено с риском и может привести к далеко не луч-
шим результатам.

1.1. Задача многокритериального выбора

1. Множество возможных и множество выбираемых решений.
Человек в своей деятельности постоянно сталкивается с ситуаци-
ями, в которых ему приходится осуществлять выбор. Например,
зайдя в магазин, мы выбираем тот или иной товар; чтобы добрать-
ся до нужного места в городе или стране, мы выбираем маршрут
и соответствующий вид транспорта. Выпускник школы выбирает
вуз, в котором он собирается учиться, или же место работы, если
он намерен работать. Как правило, каждый мужчина и каждая
женщина в определенные моменты своей жизни выбирают пред-
ставителя противоположного пола для образования семьи. Ру-
ководители различных уровней и рангов постоянно вынуждены

Глава 1

НАЧАЛЬНЫЕ ПОНЯТИЯ
МНОГОКРИТЕРИАЛЬНОГО ВЫБОРА
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заниматься формированием персонала возглавляемых ими под-
разделений, выбирать ту или иную стратегическую линию пове-
дения, принимать конкретные хозяйственные и экономические
решения. Специалисты в самых различных областях науки и тех-
ники, занимающиеся разработкой всевозможных устройств и при-
способлений, проектированием тех или иных сооружений, кон-
струированием новых моделей и типов автомобилей, самолетов
и т. п., так же всякий раз стремятся выбрать наилучшее инженер-
ное, конструкторское или проектное решение. Работники банков
выбирают объекты для инвестирования, экономисты предприя-
тий и фирм планируют оптимальную экономическую программу
и т. д. и т. п.

Приведенный список практических задач выбора можно было
бы продолжать и дальше. Ограничимся сказанным и выявим общие
элементы, присущие всякой задаче выбора.

Прежде всего, должен быть задан набор решений (вариантов),
из которого следует осуществлять выбор. Обозначим его X и будем
называть множеством возможных решений. Минимальное число
элементов этого множества — два (для того, чтобы действительно
был выбор). Ограничений сверху на количество возможных ре-
шений нет, оно может быть как конечным, так и бесконечным.
При этом природа самих решений не играет никакой роли; это
могут быть проектные решения, варианты поведения, полити-
ческие или экономические стратегии, сценарии поведения, крат-
косрочные или долгосрочные планы и т. п.

Собственно выбор решения состоит в указании среди всех
возможных такого решения, которое объявляется выбранным.
Следует заметить, что нередко происходит выбор не одного, а це-
лого набора решений, являющегося определенным подмножеством
множества возможных решений X. Простейший тому пример:
требуется выбрать несколько человек, претендующих на замещение
определенного числа вакантных должностей.

Обозначим множество выбираемых решений  Sel X. Оно и пред-
ставляет собой решение задачи выбора. Таким образом, решить
задачу выбора, значит, найти множество Sel X, Sel X ⊂ X. Когда
множество выбираемых решений не содержит ни одного элемен-
та (т. е. пусто), собственно выбора не происходит, так как ни
одно решение не оказывается выбранным. Подобная ситуация
не представляет практического интереса, поэтому множество Sel X
должно содержать, по крайней мере, один элемент. В некоторых
задачах оно может быть бесконечным.

2. Лицо, принимающее решение. Процесс выбора невозможен
без наличия того, кто осуществляет этот выбор, преследуя свои
цели. Человека (или целый коллектив, подчиненный достиже-
нию определенной цели), который производит выбор и несет
полную ответственность за его последствия, называют лицом,
принимающим решение (сокращенно: ЛПР).

Сама природа ЛПР при решении задачи выбора, как правило,
не имеет особого значения. Например, если в качестве ЛПР
выступает некоторый человек, то, как всякий человек, он пред-
ставляет собой сложное биологическое и социальное существо.
Это существо имеет тело определенного строения, и в этом теле
протекают различные, возможно, до конца не изученные, биохи-
мические, психофизические, физиологические и психические про-
цессы. Однако для принятия, например, решения о выборе той
или иной экономической стратегии фирмы совсем не обязательно
учитывать строение черепа или состояние позвоночника этого
человека. В процессе выбора важно, насколько богатым опытом
в области экономики обладает этот человек, каким он представля-
ет будущее своей фирмы, какие интересы, связанные с фирмой,
он старается удовлетворить и т. п. Таким образом, говоря о ЛПР
в контексте задачи выбора, мы будем иметь в виду не его целиком,
а лишь ту его «часть», те его характеристики, которые так или
иначе связаны с процессом выбора.

Если различные индивиды в одних и тех же ситуациях выбора
ведут себя одинаковым образом, то с точки зрения теории при-
нятия решений они ничем не отличаются друг от друга, т. е. пред-
ставляют собой одно и то же ЛПР.

3. Векторный критерий. Обычно считается, что выбранным
(наилучшим) является такое возможное решение, которое наи-
более полно удовлетворяет желаниям, интересам или целям дан-
ного ЛПР. Стремление ЛПР достичь определенной цели нередко
в математических терминах удается выразить в виде максимиза-
ции (или минимизации) некоторой числовой функции, заданной
на множестве X. Однако в более сложных ситуациях приходится
иметь дело не с одной, а сразу с несколькими функциями. Так
будет, например, когда исследуемое явление, объект или процесс
рассматриваются с различных точек зрения и для формализации
каждой точки зрения используется соответствующая функция. Если
явление изучается в динамике, поэтапно и для оценки каждого
этапа приходится вводить отдельную функцию, — в этом случае
также приходится учитывать несколько функциональных пока-
зателей.
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Данная книга посвящена рассмотрению ситуации, когда име-
ется сразу несколько числовых функций f1, f2, ..., fm, m � 2, опре-
деленных на множестве возможных решений X. В зависимости
от содержания задачи выбора эти функции называют критериями
оптимальности, критериями эффективности, целевыми функция-
ми, показателями или критериями качества.

Проиллюстрируем введенные термины, рассмотрев задачу
выбора наилучшего проектного решения. В этой задаче множество
X состоит из нескольких конкурсных проектов (например, стро-
ительства нового предприятия), а критериями оптимальности
могут служить стоимость реализации проекта f1 и величина при-
были f2, которую обеспечит данное проектное решение (т. е. по-
строенное предприятие). Если ограничить рассмотрение данной
задачи лишь одним критерием оптимальности, практическая зна-
чимость решения такой задачи будет незначительной. В самом деле,
при использовании только первого критерия будет выбран самый
дешевый проект, но его реализация может привести к недопусти-
мо малой прибыли. С другой стороны, на строительство самого
прибыльного проекта, выбранного на основе второго критерия
оптимальности, может просто не хватить имеющихся средств. По-
этому в данной задаче необходимо учитывать оба указанных кри-
терия одновременно. Если же дополнительно стараться миними-
зировать нежелательные экологические последствия строительства
и функционирования предприятия, то к двум указанным следует
добавить еще один — третий критерий, учитывающий экологи-
ческий ущерб от строительства предприятия, и т. д. Что касается
ЛПР, то в данной задаче таковым является глава администрации
района, на территории которого будет построено предприятие,
при условии, что это предприятие является государственным. Если
же предприятие — частное, то в качестве ЛПР выступает глава
соответствующей фирмы.

Указанные выше числовые функции f1, f2, ..., fm  образуют век-
торный критерий

f = (f1, f2, ..., fm), (1.1)

который принимает значения в пространстве m-мерных векто-
ров R m. Это пространство называют критериальным простран-
ством или пространством оценок, а всякое значение f (x) = (f1(x),
f2(x), ..., fm (x)) ∈ R m векторного критерия f при определенном x ∈ X
именуют векторной оценкой возможного решения x. Все возмож-
ные векторные оценки образуют множество возможных оценок
(возможных векторов)

Y = f (X ) = {y ∈ R m | y = f (x) при некотором x ∈ X }.

Наряду с множеством выбираемых решений удобно ввести
в рассмотрение множество выбираемых векторов (выбираемых
оценок)

Sel Y = f (Sel X ) = {y ∈ Y | y = f (x) при некотором x ∈ Sel X },

представляющее собой некоторое подмножество критериального
пространства R m.

4. Многокритериальная задача. Задачу выбора, содержащую мно-
жество возможных решений X и векторный критерий f, обычно на-
зывают многокритериальной задачей. Изучению свойств таких задач
посвящена многочисленная литература (см., например, [3, 5, 17, 26]).

Как было указано выше, в рамках рассматриваемой модели
выбора решений множество возможных решений X может иметь
произвольную природу. В частности, если решениями являются
n-мерные векторы, то X ⊂ R n. Например, в задачах математи-
ческого программирования X представляет собой множество реше-
ний определенной системы неравенств:

X = {x ∈ R n | g s (x) � 0, s = 1, 2, ..., k },

где g 1, g 2, ..., g k — некоторые числовые функции, определенные
на пространстве R n.

Необходимо отметить, что формирование математической
модели принятия решений (т. е. построение множества X и век-
торного критерия f ) нередко представляет собой сложный про-
цесс, в котором тесно взаимодействуют специалисты двух сторон.
А именно, представители конкретной области знаний, к которой
относится исследуемая проблема, и специалисты по принятию
решений (математики). С одной стороны, следует учесть все важ-
нейшие черты и детали реальной задачи, а с другой — построен-
ная модель не должна оказаться чрезмерно сложной для того,
чтобы для ее исследования и решения можно было успешно при-
менить разработанный к настоящему времени математический
аппарат. Именно поэтому этап построения математической модели
в значительной степени зависит от опыта, интуиции и искусства
исследователей обеих сторон. Его невозможно отождествить с про-
стым формальным применением уже известных, хорошо описан-
ных алгоритмов.

Здесь следует еще добавить, что любая задача выбора (в том чис-
ле и многокритериальная) тесно связана с конкретным ЛПР. Уже на
стадии формирования математической модели при построении
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множества возможных решений и векторного критерия дело не об-
ходится без советов, рекомендаций и указаний ЛПР, тем более что
векторный критерий как раз и служит для выражения целей ЛПР.
При этом ясно, что построить модель в точности соответствующую
всем реальным обстоятельствам невозможно. Модель всегда яв-
ляется упрощением действительности. Важно добиться, чтобы она
содержала те черты и детали, которые в наибольшей степени вли-
яют на окончательный выбор наилучшего решения.

Предположим, что указанные две компоненты задачи выбора
сформированы, четко описаны и зафиксированы. Опыт показы-
вает, что в терминах критерия f чаще всего не удается выразить
всю гамму «пристрастий», «вкусов» и предпочтений данного ЛПР.
С помощью векторного критерия лишь намечаются определенные
локальные цели, которые нередко оказываются взаимно проти-
воречивыми. Эти цели одновременно, как правило, достигнуты
быть не могут, и поэтому требуется определенная дополнительная
информация для осуществления компромисса. Иначе говоря, если
ограничиться лишь указанными выше двумя компонентами —
множеством возможных решений и векторным критерием — то
задача выбора оказывается в некотором смысле «недоопределен-
ной». Эта «недоопределенность» сказывается затем в слабой ло-
гической обоснованности выбора наилучшего решения на основе
векторного критерия. Многочисленные процедуры выбора (методы
построения множества Sel X ), предлагаемые в литературе по при-
нятию решений (см., например, [5, 10, 29, 35, 42, 43]) и основанные
лишь на знании векторного критерия обычно содержат элементы
эвристики и не имеют четкого логического обоснования.

Для того чтобы осуществить более обоснованный выбор,
следует помимо векторного критерия располагать какими-то до-
полнительными сведениями о предпочтениях ЛПР. С этой целью
необходимо включить в многокритериальную задачу еще один эле-
мент, который позволил бы выразить и описать эти предпочтения.

5. Отношение предпочтения. Рассмотрим два возможных ре-
шения x ′ и x ″. Предположим, что после предъявления ЛПР
этой пары решений, оно выбирает (отдает предпочтение) пер-
вому из них. В этом случае пишут

x ′ �X x ″.

Знак �X служит для обозначений предпочтений данного ЛПР
и называется отношением строгого предпочтения или, короче, от-
ношением предпочтения.

Следует отметить, что не всякие два возможных решения x ′
и x ″ связаны соотношением x ′ �X x ″, либо соотношением x ″ �X x ′.
Иначе говоря, не из любой пары решений ЛПР может сделать
окончательный выбор. Вполне могут существовать такие пары,
что ЛПР не в состоянии отдать предпочтение какому-то одному
решению этой пары, даже если это пара различных решений.
Описанная ситуация вполне соответствует реальному положению
вещей. Более того, если бы от ЛПР требовалась способность в про-
извольной паре возможных решений уметь определять решение,
более предпочтительное по сравнению с другим, то в таком случае
теория, построенная на указанном «жестком» требовании к ЛПР,
не представляла бы практического интереса. Подобные «всемо-
гущие» ЛПР в жизни встречаются крайне редко!

Отношение предпочтения �X, заданное на множестве возмож-
ных решений, естественным образом

f (x ′ ) �Y f (x ″ ) ⇔ x ′ �X x ″ для x ′, x ″ ∈ X

индуцирует (порождает) отношение предпочтения �Y на множе-
стве возможных векторов Y. Тем самым, вектор y ′ = f (x ′ ) явля-
ется предпочтительнее вектора y″ = f (x ″ ) (т. е. y ′ �Y y″ ) тогда и
только тогда, когда решение x ′ предпочтительнее решения x ″ (т. е.
x ′ �X x ″ ).

6. Задача многокритериального выбора. Теперь можно сфор-
мулировать все основные элементы задачи многокритериального
выбора. Итак, постановка всякой задачи многокритериального
выбора включает
− множество возможных решений X,
− векторный критерий f вида (1.1),
− отношение предпочтения �X, заданное на множестве воз-

можных решений.
Само ЛПР в постановку задачи многокритериального выбора

не включено. В этом нет необходимости. Подразумевается, что
все его устремления, вкусы, пристрастия и предпочтения, оказы-
вающие влияние на процесс выбора, «материализованы» в тер-
минах векторного критерия и отношения предпочтения.

Следует, однако, заметить, что приведенный список основных
компонентов задачи многокритериального выбора в дальнейшем
при необходимости может быть расширен за счет добавления
каких-то новых объектов, с помощью которых дополнительно
удастся учесть интересы, мотивацию и пристрастия ЛПР.

Приведенная выше задача многокритериального выбора
сформулирована в терминах решений. Нередко данную задачу
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формулируют в терминах векторов. В таком случае она содержит
два объекта:
− множество возможных векторов Y, Y ⊂ R m,
− отношение предпочтения �Y, заданное на множестве воз-

можных векторов.

1.2. Бинарные отношения

1. Определение бинарного отношения. Для описания и изучения
введенного выше отношения предпочтения существует специ-
альное математическое понятие — бинарное отношение. Настоя-
щий раздел содержит вспомогательный математический аппарат,
связанный с бинарными отношениями. Читатель, знакомый с би-
нарными отношениями, может бегло просмотреть его и пере-
ходить к следующему разделу.

Прежде всего, напомним понятие декартова произведения двух
множеств. Пусть имеются два произвольных множества A и B.
Декартовым произведением этих множеств называется множество,
обозначаемое A × B и определяемое равенством

A × B = {(a, b) | при некоторых a ∈ A, b ∈ B }.

Иными словами, декартово произведение образуется из всех воз-
можных пар элементов данных двух множеств, причем первым
элементом пары является элемент первого множества, а вторым —
элемент второго множества.

Например, декартово произведение двух конечных число-
вых множеств A = {1, 2} и B = {2, 3, 4} содержит шесть эле-
ментов и имеет вид

A × B = {((1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}.

Перейдем к определению бинарного отношения. Бинарным
отношением ℜ, заданным на множестве A, называется подмноже-
ство декартова произведения A × A, т. е. ℜ ⊂ A × A. Другими
словами, всякое множество пар, составленных из элементов мно-
жества A, образует некоторое бинарное отношение. В частности,
самым «широким» бинарным отношением является множество
ℜ = A × A, совпадающее с данным декартовым произведением.

Если имеет место включение (a, b) ∈ ℜ, то обычно пишут
a ℜ b и говорят, что элемент a находится в отношении ℜ с элемен-
том b.

Заметим, что в общем случае из a ℜ b не следует выполнение
соотношения b ℜ a.

Приведем примеры некоторых бинарных отношений. Из кур-
са арифметики известен целый ряд бинарных отношений, оп-
ределенных на множестве вещественных чисел: =, �, �, > и <.
В теории множеств рассматривается бинарное отношение вклю-
чения ⊂, заданное на множестве всех подмножеств некоторого
фиксированного множества.

Введем следующие активно используемые в дальнейшем из-
ложении бинарные отношения для произвольных векторов a =
= (a 1, a 2, ..., am) и b = (b 1, b 2, ..., bm) пространства R m:

a > b ⇔ a i > b i, i = 1, 2, ..., m;

a � b ⇔ a i � b i, i = 1, 2, ..., m;

a ≥ b ⇔ a � b и a ≠ b.

Выполнение последнего соотношения a ≥ b означает, что каждая
компонента вектора a больше либо равна соответствующей компо-
ненты вектора b, причем хотя бы одна компонента первого вектора
строго больше соответствующей компоненты второго вектора.

2. Типы бинарных отношений. В зависимости от свойств, ко-
торыми обладают бинарные отношения, производят их типиза-
цию. Приведем определения некоторых распространенных ти-
пов бинарных отношений.

Бинарное отношение ℜ, заданное на множестве A, называют
− рефлексивным, если соотношение a ℜ a имеет место для всех

a ∈ A;
− иррефлексивным, если соотношение a ℜ a не выполняется

ни для одного a ∈ A;
− симметричным, если всякий раз из выполнения соотно-

шения a ℜ b для элементов a, b ∈ A следует выполнение соот-
ношения b ℜ a;
− асимметричным, если из выполнения соотношения a ℜ b

для элементов a, b ∈ A всегда следует, что соотношение b ℜ a места
не имеет;
− антисимметричным, если всякий раз из выполнения соот-

ношений a ℜ b, b ℜ a для элементов a, b ∈ A вытекает равенство
a = b;
− транзитивным, если для любой тройки элементов a, b, c ∈ A

из выполнения соотношений a ℜ b, b ℜ c всегда следует справед-
ливость соотношения a ℜ c;
− инвариантным относительно линейного положительного пре-

образования, если для любых трех элементов a, b, c ∈ A и произ-
вольного положительного числа α из выполнения соотношения
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a ℜ b всегда вытекает соотношение (α ⋅ a + c) ℜ (α ⋅ b + c) (здесь
считается, что A = R m );
− полным, если для любой пары элементов a, b ∈ A выпол-

няется соотношение a ℜ b, или соотношение b ℜ a, или оба эти
соотношения одновременно;
− частичным, если это отношение не является полным.
Отношения равенства = и нестрогого неравенства � дают

примеры рефлексивных, а отношение строгого неравенства >
и отношение ≥ — иррефлексивных отношений на Rm. Отношения
равенства и нестрогого неравенства являются симметричным
и антисимметричными, а отношения > и ≥ — асимметричны.
Все отношения =, ≥, >, � транзитивны и инвариантны относи-
тельно линейного положительного преобразования. Отношения
равенства и отношение строгого неравенства, очевидно, являются
частичными. Отношение нестрогого неравенства �, рассматри-
ваемое на множестве чисел, является полным, потому, что для
любых двух чисел a и b выполнено a � b, либо b � a, либо оба
эти неравенства одновременно. Если же отношения нестрогого
неравенства рассмотреть на множестве векторов R m при m > 1, то
оно окажется лишь частичным.

Нетрудно проверить, что всякое асимметричное отношение
иррефлексивно.

� Действительно, если, напротив, некоторое асимметричное
отношение ℜ не является иррефлексивным, то для некоторого
a ∈ A выполнено соотношение a ℜ a. Но благодаря асимметрич-
ности данного отношения последнее соотношение не должно
иметь места. Полученное противоречие устанавливает иррефлек-
сивность ℜ.�

3. Отношения порядка. Комбинации некоторых типов бинар-
ных отношений играют важную роль в последующем изложении.
Введем соответствующие определения.

Бинарное отношение ℜ, заданное на множестве A, называют
− порядком (отношением порядка), если оно рефлексивно,

антисимметрично и транзитивно;
− строгим порядком (отношением строгого порядка), если оно

является иррефлексивным и транзитивным;
− линейным порядком, если оно является полным порядком.
Из определений следует, что строгий порядок и линейный

порядок являются представителями отношений порядка.
Отношение нестрогого неравенства � на множестве веще-

ственных чисел представляет собой линейный порядок, тогда как
на множестве векторов это отношение будет лишь частичным.

Отношение ≥, рассматриваемое на множестве векторов, является
строгим частичным порядком.

Лемма 1.1. Всякое отношение строгого порядка является асим-
метричным.

� Предположим противное: некоторое отношение ℜ ирреф-
лексивно и транзитивно, но не является асимметричным. Это
означает, что найдется пара элементов a, b ∈ A, для которой вы-
полнены соотношения a ℜ b и b ℜ a одновременно. На основании
транзитивности отсюда следует a ℜ a, что несовместимо с усло-
вием иррефлексивности отношения ℜ.�

Еще один пример строгого порядка, заданного на простран-
стве R m, дает лексикографическое отношение порядка, задавае-
мое следующим образом. Вектор � �� � ���� �� � � �� � � ��� � лексикогра-
фически больше вектора � �� � ���� �� � � ��� �� �� ���� � тогда и только тогда,
когда выполнено какое-либо одно из следующих условий

1) � �� �� ��	 ;

2) � � � ��� � � �� �� � ��� 	 ;

3) � � � � � �� �� � � � � �� �� � �� � ��� � 	 ;
...............................................

m) � �� �� ���� �
� � � �� � � � � �� �� � ��� � 
 	 .

Нетрудно понять, что любые два вектора пространства R m

либо равны друг другу, либо один из них лексикографически
больше другого вектора.

1.3. Множество недоминируемых решений

1. Требование, предъявляемое к отношению предпочтения. Рас-
смотрим задачу многокритериального выбора, включающую мно-
жество возможных решений X, векторный критерий f и отноше-
ние предпочтения �X. Поскольку отношение предпочтения зада-
ется на парах возможных решений, то, как нетрудно понять, оно
представляет собой некоторое бинарное отношение.

Предположим, что ЛПР в процессе выбора ведет себя доста-
точно «разумно» и обсудим требования, которым в таком случае
должно удовлетворять его бинарное отношение предпочтения.

Прежде всего, следует напомнить, что отношение предпочте-
ния �X  по своей сути является отношением строгого предпочтения
в том смысле, что выполнение соотношения x �X x невозможно ни
для какого решения x ∈ X, поскольку ни одно решение не может
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быть строго предпочтительнее самого себя. В терминах бинарных
отношений, рассмотренных в предыдущем разделе, это означает,
что отношение предпочтения должно быть иррефлексивным. Тем
самым, далее при изучении задач выбора будут рассматриваться
только такие отношения предпочтения, на которые наложено
требование иррефлексивности.

Рассмотрим ситуацию, когда одно решение предпочтитель-
нее второго, а оно, в свою очередь, предпочтительнее некоторого
третьего решения. В таком положении здравомыслящий человек
при сравнении первого и третьего решения всегда выберет первое.
Здесь происходит примерно то же самое, что и при сравнении
чисел с помощью отношения строгого неравенства. Например, если
5 > 3 и 3 > 1, то непременно выполнено 5 > 1. В терминах воз-
можных решений это свойство может быть сформулировано следу-
ющим образом: для любой тройки возможных решений x ′, x ″, x ′″
из выполнения соотношений x ′ �X x ″ и x ″ �X x ″′ обязательно
следует справедливость соотношения x ′ �X x ″′. На языке бинар-
ных отношений это означает, что отношение предпочтения, ис-
пользуемое в задачах многокритериального выбора, должно быть
подчинено требованию транзитивности.

В соответствии с приведенными рассуждениями сформулиру-
ем условие (требование), которому должны удовлетворять все рас-
сматриваемые в данной книге бинарные отношения предпочтения.

Отношение предпочтения �X, которым ЛПР руководствуется
в процессе выбора, представляет собой строгий порядок, т. е. явля-
ется иррефлексивным и транзитивным.

На основании леммы 1.1 отношение предпочтения, удовлетво-
ряющее данному требованию, обязательно будет асимметричным.

Забегая вперед, отметим, что последующее принятие аксио-
мы 2 (см. разд. 1.4) автоматически влечет выполнение сформули-
рованного выше требования.

2. Множество недоминируемых решений. Как указано в разд. 1.1,
решение задачи многокритериального выбора заключается в отыс-
кании множества выбираемых решений Sel X. Выясним, каким
образом сведения об отношении предпочтения могут быть исполь-
зованы в процессе решения задачи многокритериального выбора.

Рассмотрим два произвольных возможных решения x ′ и x ″. Для
них имеет место один и только один случай из следующих трех:
− справедливо соотношение x ′ �X x ″, а соотношение x ″ �X x ′

не выполняется;
− справедливо соотношение x ″ �X x ′, а соотношение x ′ �X x ″

не выполняется;

− не выполняется ни соотношение x ′ �X x ″, ни соотношение
x ″ �X x ′.

Заметим, что четвертый случай, когда оба участвующих здесь
соотношения x ′ �X x ″ и x ″ �X x ′ выполняются, невозможен бла-
годаря асимметричности отношения предпочтения �X.

В первом указанном выше случае, т. е. при выполнении со-
отношения x ′ �X x ″, говорят, что решение x ′ доминирует реше-
ние x ″ (по отношению �X ). Во втором случае x ″ доминирует x ′.
Если же реализуется третий случай, то говорят, что решения x ′
и x ″ не сравнимы по отношению предпочтения.

Вернемся к задаче выбора. Пусть для некоторого возможного
решения x ″ найдется такое возможное решение x ′, что выполнено
соотношение x ′ �X x ″. По определению отношения предпочтения
это означает, что из данной пары решений ЛПР выберет первое
решение. Тогда второе решение x ″ не может быть выбранным из
данной пары x ″ и x ′, так как это означало бы выполнение соотно-
шения x ″ �X x ′, противоречащее вместе с x ′ �X x ″ условию асим-
метричности отношения �X. Сказанное в терминах множества
выбираемых решений можно выразить в виде следующей экви-
валентности

x ′ � x ″ ⇔ Sel {x ′, x ″ } = {x ′ }

для x ′, x ″ ∈ X.
Если второе решение x ″ не выбирается из пары в силу того,

что для него в этой паре есть лучшее решение, то, рассматривая
x ″ в пределах всего множества возможных решений X, разумно
предположить, что решение x ″ в таком случае не может быть
выбранным и из всего множества возможных решений, так как
для него в X существует, по крайней мере, одно заведомо более
предпочтительное решение x ′.

Приведенные рассуждения показывают, что при выборе пер-
вого решения из пары x ′, x ″ естественно считать, что второе ре-
шение не может оказаться выбранным и из всего множества воз-
можных решений X. Тем самым, всюду далее будет предполагаться
выполненным следующее требование, которое выразим в виде
следующей аксиомы.

Аксиома 1 (исключение доминируемых решений). Если для
некоторой пары решений x ′, x ″ ∈ X имеет место соотношение 1)
x ′ �X x ″, то x ″ ∉ Sel X.

1) Можно показать (см.[22]), что обратное условие Кондорсе [1] влечет вы-
полнение аксиомы 1, но не наоборот.
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В аксиоме 1 участвует не только отношение предпочтения
�X, которым руководствуется ЛПР в процессе принятия реше-
ний, но и множество Sel X. Это означает, что данное требование
следует рассматривать как определенное ограничение на множе-
ство выбираемых решений. А именно, любое множество выбира-
емых решений не должно содержать ни одного такого решения,
для которого может найтись более предпочтительное решение.
Более точно и полно этот факт будет выражен далее в лемме 1.2.

Нетрудно привести простой содержательный пример, в ко-
тором аксиома исключения не выполняется. Рассмотрим задачу
выбора из трех возможных претендентов на два вакантных места.
При этом считается, что оба вакантных места обязательно должны
быть заполнены. Предположим, что при сравнении претендентов
выяснилось, что первый является предпочтительнее второго и тре-
тьего, а второй предпочтительнее третьего. Поскольку согласно
условию из трех кандидатов обязательно следует выбрать двоих,
то, очевидно, ими окажутся первый и второй. Таким образом,
второй претендент из пары первых двух не выбирается, тем не ме-
нее из всего множества трех возможных претендентов он оказы-
вается выбранным. Следовательно, аксиома исключения доми-
нируемых решений в этом примере нарушается.

В соответствии с аксиомой 1 любое доминируемое решение
следует исключать из списка решений, претендующих на роль
выбираемых. Исключение всех доминируемых решений приво-
дит к множеству, которое играет важную роль в дальнейшем из-
ложении.

Множество недоминируемых решений 1) обозначается Ndom X
и определяется равенством

Ndom X = {x* ∈ X | не существует такого x ∈ X, что x �X x*}.

Таким образом, Ndom X представляет собой определенное
подмножество множества возможных решений X. В зависимости
от вида множества X и конкретного типа отношения предпочте-
ния �X  множество недоминируемых решений может
− быть пустым, т. е. не содержать ни одного решения;
− состоять в точности из одного решения;
− содержать некоторое конечное число решений;
− состоять из бесконечного числа решений.

Лемма 1.2. Для любого непустого множества выбираемых ре-
шений Sel X, удовлетворяющего аксиоме 1, справедливо включение

Sel X ⊂ Ndom X. (1.2)

� Если предположить, что включение (1.2) для некоторого
непустого множества Sel X не имеет места, то среди элементов
этого множества найдется решение x ″ ∈ Sel X, для которого вы-
полнено соотношение x ″ ∉ Ndom X. Тогда, по определению мно-
жества недоминируемых решений, существует такое решение
x ′ ∈ X, что x ′ �X x ″. Отсюда, используя аксиому 1, получаем
x ″ ∉ X. Это противоречит начальному предположению о том, что
x ″ — выбранное решение.�

Замечание. В формулировке леммы 1.2 утверждается, что
включение 1.2 выполняется для произвольного непустого мно-
жества выбираемых решений. Если Sel X = ∅, то включение (1.2)
также имеет место, поскольку, как принято в теории множеств,
пустое множество содержится в качестве подмножества в любом
множестве. Поэтому условие непустоты множества выбираемых
решений в формулировке леммы 1.2 можно было бы опустить;
при этом справедливость рассматриваемой леммы не нарушает-
ся. Но тогда при доказательстве следовало бы специально огова-
ривать этот «вырожденный» случай, который с практической точки
зрения интереса не представляет (если нет выбора, то и нет смысла
изучать законы такого выбора). По этой причине здесь и всюду
далее в подобных ситуациях, когда речь пойдет о включениях,
содержащих множество выбираемых решений (или множество
выбираемых векторов), мы будем подчеркивать непустоту этих
множеств, чтобы сразу исключить из рассмотрения бессодержа-
тельные с практической точки зрения случаи.

Включение (1.2) устанавливает, что для достаточно широко-
го класса задач (а именно, для тех задач, для которых выполнена
аксиома 1): выбор решений следует производить только среди не-
доминируемых решений. Кроме того, поскольку все последующие
требования (аксиомы), предъявляемые к рассматриваемому здесь
классу задач многокритериального выбора, как мы увидим далее,
не содержат множества выбираемых решений (и выбираемых век-
торов), включение (1.2) показывает, что выбранным может ока-
заться любое подмножество множества недоминируемых решений.

Когда Sel X ≠ ∅ и множество недоминируемых решений со-
стоит из единственного элемента, задача выбора в принципе ре-
шена, поскольку это единственное недоминируемое решение в силу
включения (1.2) является выбираемым решением и остается только

1) Напоминаем, что здесь отношение предпочтения �X предполагается ир-
рефлексивным и транзитивным. При этом заметим, что на самом деле для вве-
дения множества недоминируемых решений достаточно требовать от отношения
предпочтения лишь свойства асимметричности.
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найти его. Следует, однако, заметить, что подобного рода ситуа-
ции в практике встречаются крайне редко. Чаще всего, тех све-
дений, которые имеются об отношении предпочтения, оказыва-
ется недостаточно не только для нахождения множества выбира-
емых решений, но и для построения множества недоминируемых
решений.

Тем не менее, даже неполные, фрагментарные сведения об
отношении предпочтения ЛПР позволяют из всего множества
возможных решений исключить доминируемые решения (как
заведомо непригодные для выбора) и, тем самым, упростить по-
следующий выбор.

Наряду с множеством недоминируемых решений удобно вве-
сти в рассмотрение множество недоминируемых векторов (недо-
минируемых оценок)

Ndom Y = f (Ndom X ) =

= {f (x*) ∈ Y | не существует такого x ∈ X, что x �X x*} =

= {y* ∈ Y | не существует такого y ∈ Y, что y �Y y*}.

Для введенного множества недоминируемых векторов аксио-
му 1 и лемму 1.2 можно переформулировать следующим образом.

Аксиома 1 (исключение доминируемых векторов). Если для
некоторой пары векторов y ′, y″ ∈ Y выполнено соотношение y ′ �Y y″,
то y ″ ∉ Sel Y.

Лемма 1.2. (в терминах оценок). Для любого непустого множе-
ства выбираемых векторов Sel Y, удовлетворяющего аксиоме 1, спра-
ведливо включение

Sel Y ⊂ Ndom Y.

3. Алгоритм построения множества недоминируемых решений.
В предыдущем пункте была отмечена важная роль множества
недоминируемых решений (и векторов) в теории принятия ре-
шений. Последующее изложение книги позволит еще не раз убе-
диться в справедливости этого высказывания. По этой причине
следует иметь в распоряжении какой-нибудь метод или алгоритм
построения множества недоминируемых решений (и векторов).

В общем случае вопрос построения множества недоминируе-
мых решений и/или векторов представляется чрезвычайно слож-
ным, однако для конечного множества возможных решений X (мно-
жества возможных векторов Y ) он решается достаточно просто.

Итак, пусть множество возможных решений X состоит из
конечного числа элементов, а отношение предпочтения является

иррефлексивным и транзитивным. Для построения множества
недоминируемых решений Ndom X прежде всего следует перену-
меровать все возможные решения. Пусть, например,

X = X1 = {x 1, x 2, ..., x n}.

Первый шаг алгоритма нахождения множества недоминируе-
мых решений заключается в последовательном сравнении перво-
го решения x1 со всеми остальными x 2, ..., xn. Это сравнение зак-
лючается в проверке справедливости соотношения x 1 �X x i и со-
отношения x i �X x 1 при каждом i = 2, ..., n.

В случае истинности для некоторого i первого соотношения
x1 �X xi , доминируемое решение x i следует удалить из множества X1

и продолжить указанную проверку для следующего за xi решения.
При выполнении второго соотношения x i �X x 1 удалению

подлежит первое решение x1, после чего сразу же следует пе-
рейти ко второму шагу. Если же ни одно из двух приведенных
соотношений x 1 �X x i и x i �X x 1 не является истинным, ничего
удалять не нужно. В том случае, когда сравнения решения x 1

были проведены со всеми остальными решениями x 2, ..., xn , и ни
для какого i = 2, ..., n не оказалось выполненным соотношение
x i �X x 1, первое решение следует запомнить как недоминируе-
мое и удалить его из (оставшегося) множества возможных реше-
ний. Указанные действия описывают первый шаг алгоритма.

Если после выполнения первого шага во множестве возмож-
ных решений не осталось ни одного решения (т. е. все оказались
удаленными), то алгоритм заканчивает работу. При этом в памя-
ти будет храниться одно недоминируемое решение x 1. Оно и пред-
ставляет собой множество недоминируемых решений. В против-
ном случае (т. е. когда не все решения оказались удаленными),
необходимо перейти ко второму шагу.

Обозначим множество, оставшееся после выполнения пер-
вого шага X 2.

Второй шаг полностью аналогичен первому. А именно, сна-
чала нужно перенумеровать элементы множества X 2. После этого
следует провести последовательное сравнение первого решения
этого множества со всеми остальными его элементами. При этом
сравнение осуществляется совершенно аналогично тому, как это
было описано на первом шаге. Выполнение сравнений на вто-
ром шаге либо закончится удалением первого решения множе-
ства X 2, как доминируемого, либо такого удаления не произой-
дет. Во втором случае это решение следует запомнить как недо-
минируемое, а затем удалить его из множества X 2. Если после
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этого во множестве возможных решений не останется ни одного
решения, то вычисления заканчиваются; в памяти будет храниться
множество недоминируемых решений. В противном случае к ос-
тавшемуся непустому множеству возможных решений нужно
применить аналогичный третий шаг алгоритма и т. д. В результате,
после окончания работы алгоритма в памяти будет храниться
множество всех недоминируемых решений 1) Ndom X.

На каждом шаге алгоритма происходит удаление, по крайней
мере, одного возможного решения. Следовательно, после выпол-
нения некоторого конечного числа шагов будут удалены все воз-
можные решения кроме некоторого одного и алгоритм закончит
свою работу, так как оставшееся решение не с чем будет сравнивать
и потому оно также будет недоминируемым. Это рассуждение
доказывает конечность приведенного алгоритма.

Применение описанного алгоритма к произвольному конеч-
ному множеству возможных решений за конечное число шагов
приведет к отысканию, по крайней мере, одного недоминируе-
мого решения. Действительно, недоминируемым запоминается
лишь первое решение из множества, которое участвует в выпол-
нении очередного шага алгоритма. Если на всех предыдущих шагах
(кроме последнего) не было выявлено ни одного недоминируе-
мого решения, то таковым должно быть последнее решение, по-
скольку его не может доминировать ни одно из всех остальных
возможных решений. Тем самым, получен следующий результат.

Теорема 1.1. Пусть множество возможных решений X (множе-
ство возможных векторов Y ) состоит из конечного числа элементов.
Если отношение предпочтения �X является иррефлексивным и тран-
зитивным, то множество возможных решений (векторов) содер-
жит хотя бы одно недоминируемое решение (один недоминируемый
вектор), т. е. Ndom X ≠ ∅ (Ndom Y ≠ ∅).

Чаще всего в практических задачах выбора отношение пред-
почтения задано лишь частично, либо вообще не задано и его сле-
дует построить прежде, чем приступать к решению задачи. В таких
случаях схему приведенного выше алгоритма можно использовать
для опроса ЛПР с целью выявления его отношения предпочте-
ния и одновременного построения множества недоминируемых
решений. Для этого ЛПР сначала предлагают выбрать предпоч-
тительное решение из каждой пары, содержащей первое решение.
При этом доминируемые решения, по мере их выявления, сразу

же удаляются. Далее, для сравнения предлагаются все пары, со-
держащие первое решение из множества, оставшегося после
первого шага, и т. д.

Кроме того, необходимо отметить, что схема приведенного
выше алгоритма может быть использована для построения мно-
жества Парето (см. следующий разд.).

1.4. Множество Парето

1. Дальнейшие требования, предъявляемые к отношению пред-
почтения. В постановке задачи многокритериального выбора име-
ется векторный критерий f = (f 1, f 2, ..., f m). Каждая компонента f i

векторного критерия, как правило, характеризует определенную
цель ЛПР, а стремление достичь этой цели в математических тер-
минах нередко выражается в условии максимизации (или мини-
мизации) функции fi на множестве X.

Необходимо отметить, что в некоторых задачах могут встре-
титься критерии, которые не обязательно следует максимизиро-
вать или минимизировать. Например, иногда требуется получить
некоторое среднее значение критерия или «удержать» его значе-
ния в определенных заданных пределах и т. п. В таких случаях
более гибким инструментом являются не критерии f i, а («част-
ные») отношения предпочтения �i (см. [32, 33]). Однако, как ус-
тановлено, например, в [32], во многих важных с практической
точки зрения случаях (т. е. при некоторых «разумных» требова-
ниях к �i и X ) существует функция полезности ui, адекватно опи-
сывающая данное «частное» отношение предпочтения: для всех
x ′, x ″ ∈ X верна эквивалентность x ′ �i x ″ ⇔ u i (x ′ ) > u i (x ″ ).
Эти результаты показывают, что многие задачи, в которых изна-
чально не требуется максимизация (или минимизация) критериев,
могут быть, по крайней мере теоретически, сведены к подобного
рода экстремальным задачам 1).

В соответствии со сказанным будем считать, что ЛПР заин-
тересовано в получении по возможности бóльших значений каждой
компоненты fi векторного критерия f. В рамках многокритериаль-
ной задачи приходится ограничиваться уровнем строгости сфор-
мулированного допущения в том виде, в котором оно приведено
выше. Однако внимательный анализ показывает его некоторую
неопределенность, расплывчатость. Придадим обсуждаемому до-
пущению строгую форму.

1) Следует отметить, что это высказывание имеет место не только благода-
ря конечности множества возможных решений, но и вследствие транзитивности
отношения предпочтения.

1) Следует заметить, что последующее изложение можно обобщить на слу-
чай «частных» отношений предпочтения.
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Для этого перейдем к оценкам и напомним, каким образом
определяется бинарное отношение �Y, заданное на множестве
возможных векторов Y = f (X ), Y ⊂ R m:

f (x ′ ) �Y f (x ″ ) ⇔ x ′ �X x ″ для x ′, x ″ ∈ X.

Всюду далее будем считать выполненным следующее допу-
щение, формулируемое в терминах векторов критериального про-
странства.

Аксиома 2 (продолжение отношения предпочтения 1)). Су-
ществует продолжение � на все критериальное пространство R m

отношения �Y , причем это продолжение � является иррефлексив-
ным и транзитивным отношением.

Суть этого требования (не считая обязательную иррефлек-
сивность и транзитивность) заключается в постулировании «рас-
ширенных» возможностей ЛПР сравнивать оценки по предпоч-
тительности. В соответствии с ним для любых двух векторов
y ′, y ″ ∈ R m выполняется одно и только одно из следующих трех
соотношений
− y ′ � y ″;
− y ″ � y ′;
− не имеет места ни y ′ � y ″, ни y ″ � y ′.
При этом отношение предпочтения � на множестве возмож-

ных векторов Y совпадает с отношением �Y , которое самым
непосредственным образом связано с отношением �X .

Поскольку иррефлексивность и транзитивность отношения �
означает наличие аналогичных свойств у отношения �Y , что, в свою
очередь, влечет иррефлексивность и транзитивность отношения �X ,
необходимость требования иррефлексивности и транзитивности
отношения �X (см. п. 1 разд. 1.3) с данного момента отпадает. Это
требование автоматически выполняется в условиях справедливости
аксиомы 2.

2. Согласование отношения предпочтения с критериями. Со-
вершенно очевидно, что в задаче многокритериального выбора
отношение предпочтения, равно как и критерии оптимальности,
выражают интересы одного и того же ЛПР. Поэтому они должны
быть каким-то образом взаимосвязаны (сопряжены) друг с другом.
Настало время обсудить эту взаимосвязь.

Будем говорить, что i-й критерий f i согласован с отношением
предпочтения �, если для любых двух векторов y ′, y ″ ∈ R m, та-
ких, что

� �� � �� ���� � � � ���� � � �� � � � � �
 �� � � � � �� ,

� �� � �� ���� � � � ���� �� � � � � �� � � � � � � �
 ��� � � �� � � � ��� 	 ,

следует y ′ � y ″.
Содержательно согласованность данного критерия с отно-

шением предпочтения как раз и означает, что ЛПР при прочих
равных условиях заинтересовано в получении по возможности
бoльших значений этого критерия.

Взаимосвязь отношения предпочтения данного ЛПР с кри-
териями оптимальности выразим в виде следующего требования.

Аксиома 3 (согласование критериев с отношением предпоч-
тения). Каждый из критериев f 1, f 2, ..., f m согласован с отношением
предпочтения �.

3. Аксиома Парето. Заинтересованность ЛПР в получении по
возможности бoльших значений всех компонент векторного кри-
терия f можно также выразить в терминах так называемой акси-
омы Парето [17, 26].

Аксиома Парето (в терминах решений). Для всех пар решений
x ′, x ″ ∈ X, для которых имеет место неравенство f (x ′ ) ≥ f (x ″ ),
выполняется соотношение x ′ �X x ″.

Напомним (см. разд. 1.3), что запись f (x ′ ) ≥ f (x ″ ) означает
выполнение покомпонентных неравенств fi (x ′ ) � fi (x ″ ) для всех
i = 1, 2, ..., m, причем f (x ′ ) ≠ f (x ″ ).

Лемма 1.3. Принятие аксиом 2 и 3 гарантирует выполнение
аксиомы Парето.

� Пусть неравенство f (x ′ ) ≥ f (x ″ ) справедливо для двух про-
извольных возможных решений x ′, x ″ ∈ X. Не уменьшая общно-
сти рассуждений, можно считать, что здесь строгие неравенства
f k (x ′ ) > f k (x ″ ) имеют место для всех индексов k = 1, ..., l при
некотором l ∈ {1, 2, ..., m}. Для всех последующих индексов k,
k > l (при условии, что такие найдутся, т. е. при l < m), будем
предполагать выполненными соответствующие равенства.

Используя согласованность первых l критериев и указанные
выше строгие неравенства, получаем

(f1 (x ′ ), f2 (x ′ ), ..., fl (x ′ ), ..., fm (x ′ )) �

� (f1 (x ″ ), f2 (x ′ ), ..., fl (x ′ ), ..., fm (x ′ )),

1) В этом требовании для обеспечения справедливости формулируемого ниже
принципа Эджворта−Парето можно предполагать существование продолжения
отношения � не на все пространство R m, а лишь на декартово произведение
множеств, являющихся значениями имеющихся критериев (см. [20]).
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(f1 (x ″ ), f2 (x ′ ), ..., fl (x ′ ), ..., fm(x ′ )) �
� (f1 (x ″ ), f2 (x ″ ), ..., fl (x ′ ), ..., fm (x ′ )),

.........................................................................................
(f1 (x ″ ), f2 (x ″ ), ..., fl−1 (x ″ ), fl (x ′ ), ..., fm(x ′ )) �

� (f1 (x ″ ), f2 (x ″ ), ..., fl (x ″ ), fl+1 (x ′ ), ..., fm (x ′ )).

Отсюда на основании транзитивности отношения � следует

(f1 (x ′ ), f2 (x ′ ), ..., fl (x ′ ), ..., fm(x ′ )) �
� (f1 (x ″ ), f2 (x ″ ), ..., fl (x ″ ), fl+1 (x ′ ), ..., fm (x ′ )) (1.3)

Благодаря сделанному в начале доказательства предположению
имеют место равенства fk (x ′ ) = fk (x ″ ), k = l + 1, ..., m. Поэто-
му соотношение (1.3) влечет

f (x ′ ) = (f1 (x ′ ), f2 (x ′ ), ..., fl (x ′ ), ..., fm(x ′ )) �
� (f1 (x ″ ), f2 (x ″ ), ..., fl (x ″ ), ..., fm (x ″ )) = f (x ″ ),

откуда, в свою очередь, по определению отношения � вытекает
требуемое соотношение x ′ �X x ″. �

4. Множество Парето. Если для некоторой пары возможных
решений имеет место неравенство f (x ′ ) ≥ f (x ″ ), то благодаря
аксиоме Парето первое решение будет предпочтительнее второ-
го, т. е. x ′ �X x ″. Тогда в соответствии с аксиомой 1 второе реше-
ние ни при каких обстоятельствах не может оказаться выбран-
ным и его можно исключить из последующего учета в процессе
принятия решений. Исключение всех подобного рода решений
приводит к множеству Парето.

Множество парето-оптимальных решений обозначается Pf (X )
и определяется равенством

Pf (X ) = {x* ∈ X | не существует такого x ∈ X, что f (x) ≥ f (x*)}.

Лемма 1.4. При выполнении аксиом 2 и 3 множество недомини-
руемых решений Ndom X удовлетворяет включению

Ndom X ⊂ Pf (X ). (1.4)

� Пусть, напротив, для некоторого недоминируемого реше-
ния x ∈ Ndom X выполнено соотношение x ∉ Pf (X ). Тогда, по
определению множества парето-оптимальных решений, существу-
ет такое возможное решение x ′ ∈ X, что f (x ′ ) ≥ f (x). На осно-
вании леммы 1.3 в условиях доказываемого утверждения спра-
ведлива аксиома Парето. Поэтому полученное неравенство, в силу
аксиомы Парето, влечет соотношение x ′ �X x, которое не совме-
стимо с начальным предположением x ∈ Ndom X.� 1) Примеры подобного рода можно найти в [20].

Непосредственно из лемм 1.2 и 1.4 вытекает следующий прин-
ципиально важный для теории принятия решений результат.

Теорема 1.2. В условиях выполнения аксиом 1−3 для любого непу-
стого множества выбираемых решений Sel X справедливо включение

Sel X ⊂ Pf (X ). (1.5)

Включение (1.5) выражает собой так называемый принцип
Эджворта−Парето (принцип Парето), согласно которому

если ЛПР ведет себя достаточно «разумно» (т. е. в со-
ответствии с аксиомами 1–3), то выбираемые им реше-
ния обязательно являются парето-оптимальными.

Этот принцип демонстрирует особую, исключительно важ-
ную роль множества парето-оптимальных решений в теории при-
нятия решений.

Внимательный анализ доказательств приведенных утвержде-
ний, в совокупности приводящих к теореме 1.2, показывает, что
если хотя бы одна из аксиом 1, 2 или 3 нарушается, то выбирае-
мое решение не обязано быть парето-оптимальным 1). Отсюда
следует, что принцип Эджворта−Парето не является универсаль-
ным, т. е. применимым во всех без исключения задачах много-
критериального выбора. Более того, на основе аксиом 1, 2 и 3
(точнее говоря, на основе отрицаний этих аксиом) при желании
можно сделать определенный вывод и о том, в каких именно
задачах этот принцип может «не работать».

Итак, применение этого принципа рискованно или же вооб-
ще недопустимо, если:
− отношение предпочтения, которым ЛПР руководствуется

в процессе выбора, не является транзитивным;
− отношение предпочтения ЛПР не согласовано хотя бы с од-

ним из критериев;
− не выбираемое из некоторой пары решение оказывается

выбранным из всего множества возможных решений.
5. Множество парето-оптимальных векторов. Вектор f (x*) при

парето-оптимальном решении x* называют парето-оптимальным
вектором (парето-оптимальной оценкой) решения x* или просто
парето-оптимальным вектором, а множество всех таких векто-
ров — множеством парето-оптимальных векторов (парето-опти-
мальных оценок). Для этого множества используют обозначение
P (Y ). Таким образом,

P (Y ) = f (Pf (X )) = { f (x*) ∈ Y | при некотором x* ∈ Pf (X )},
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где Y так же, как и раньше, означает множество возможных век-
торов, т. е. Y = f (X ).

Равенство P (Y ) = f (Pf (X )) естественным образом связыва-
ет множество парето-оптимальных решений и парето-оптималь-
ных векторов. В соответствии с ним, зная множество парето-оп-
тимальных решений, можно найти соответствующее множество
парето-оптимальных векторов. Справедливо и, в определенном
смысле обратное, утверждение. А именно, располагая множеством
парето-оптимальных векторов P (Y ) по формуле Pf = f −1(P (Y )),
где в правой части равенства записан прообраз множества P (Y ),
можно пытаться строить соответствующее множество парето-оп-
тимальных решений. Таким образом, в идейном отношении эти
два множества полностью определяют друг друга, хотя попытка
построение одного из них на основе второго может натолкнуться
на определенные вычислительные трудности (в большей степени
это относится к построению множества парето-оптимальных ре-
шений).

Нетрудно понять, что множество парето-оптимальных век-
торов можно определить следующим эквивалентным образом:

P (Y ) = {y* ∈ Y | не существует такого y ∈ Y, что y ≥ y*}. (1.6)

Сравнивая равенство (1.6) с аналогичным равенством из оп-
ределения множества недоминируемых векторов, приведенным
в разд. 1.3, нетрудно обнаружить их полное совпадение (не считая
отношений �X и ≥). На основании этого совпадения множество
парето-оптимальных векторов можно рассматривать как множе-
ство недоминируемых по отношению ≥ элементов множества Y.

Теорема 1.2 была сформулирована для решений. Ее можно
переформулировать в терминах оценок. Тогда она примет следу-
ющий вид.

Теорема 1.2 (в терминах векторов). Пусть выполняются акси-
омы 1−3. Тогда для любого непустого множества выбираемых век-
торов Sel Y имеет место включение

Sel Y ⊂ P (Y ). (1.7)

Ранее уже говорилось о том, что результаты, связанные с недо-
минируемыми решениями и векторами и рассмотренные в пре-
дыдущем разделе, могут быть переформулированы применитель-
но к множествам Парето. В частности, теорема 1.1 после такой
переформулировки принимает следующий вид.

Теорема 1.3. В случае конечного множества возможных векто-
ров Y (в частности, если конечно множество возможных решений X )
существует хотя бы одно парето-оптимальное решение и, соот-
ветственно, хотя бы один парето-оптимальный вектор, т. е.
Pf (X ) ≠ ∅, P (Y ) ≠ ∅.

Взаимосвязь между введенными выше различными подмно-
жествами множества возможных решений при выполнении ак-
сиом 1−3 в условиях справедливости лемм 1.2 и 1.4 имеет вид
следующих включений

Sel X ⊂ Ndom X ⊂ Pf (X ) ⊂ X. (1.8)

Из четырех участвующих в соотношении (1.8) множеств самым
широким является множество возможных решений, а самым уз-
ким — множество выбираемых решений. Наглядно эта взаимо-
связь изображена на рис. 1.1.

Рис. 1.1.

В терминах векторов включения (1.8) принимают вид

Sel Y ⊂ Ndom Y ⊂ P (Y ) ⊂ Y. (1.9)

6. Алгоритм нахождения множества Парето. Благодаря нали-
чию указанной выше прямой связи между множествами недоми-
нируемых и парето-оптимальных векторов все результаты, полу-
ченные ранее для первого множества, нетрудно переформулиро-
вать в терминах второго множества. В частности, для построения
множества Pf (X ) (и P (Y )) в случае конечного множества воз-
можных векторов Y можно применять сформулированный в пре-
дыдущем разделе алгоритм нахождения множества недоминиру-
емых решений, заменив в нем сравнение по отношению пред-
почтения �X сравнением по отношению ≥, которое является
иррефлексивным и транзитивным.
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Не станем заниматься изложением указанного алгоритма.
Вместо этого приведем простой иллюстративный пример пост-

роения множества парето-опти-
мальных векторов в задаче с тремя
критериями.

Пример 1.1. Пусть m = 4 и Y =
= {y 1, y 2, ... , y 5}, где возможные
векторы, записанные в виде строк,
представлены в табл. 1.1.

Сначала для отыскания мно-
жества парето-оптимальных век-

торов полагаем P (Y ) = Y  и сравниваем первую оценку с ос-
тальными. При этом, как легко видеть, все пары

y 1, y 2; y 1, y 3; y 1, y 4; y 1, y 5

оказываются несравнимыми по отношению ≥. Поэтому вектор y 1

запоминаем как парето-оптимальный и после этого удаляем его
из множества Y1.

Получаем множество Y2 = {y 2, y 3, y 4, y 5}. На втором шаге
сравниваем вектор y2 с остальными элементами множества Y 2.
Пара y 2, y 3 не сравнима по отношению ≥. Поскольку y 2 ≥ y 4,
вектор y 4 удаляем из множества Y2. Оставшаяся пара векторов
y 2, y 5 не сравнима по отношению ≥. Так как вектор y 2 оказался
недоминируемым, то его следует запомнить как парето-оптималь-
ный, а затем удалить из множества Y 2.

Приходим к множеству Y3 = {y 3, y 5}. Поскольку y 5 ≥ y 3, уда-
ляется вектор y 3 и в результате остается один вектор y 5, который
также является парето-оптимальным.

В итоге получено следующее множество парето-оптималь-
ных векторов P (Y ) = {y 1, y 2, y 5}.

Несколько иначе в удобном для программной реализации виде
указанный алгоритм можно сформулировать следующим обра-
зом. Пусть множество возможных векторов Y состоит из конеч-
ного числа N элементов и имеет вид

Y = {y 1, y 2, ..., y N}.
Алгоритм построения множества парето-оптимальных векто-

ров P (Y ) состоит из следующих семи шагов.
Шаг 1. Положить P (Y ) = Y, i = 1, j = 2. Тем самым обра-

зуется так называемое текущее множество парето-оптимальных
векторов, которое в начале работы алгоритма совпадает с множе-
ством Y, а в конце — составит искомое множество парето-опти-

мальных векторов. Алгоритм устроен таким образом, что иско-
мое множество парето-оптимальных векторов получается из Y
последовательным удалением заведомо неоптимальных векторов.

Шаг 2. Проверить выполнение неравенства y i ≥ y j. Если оно
оказалось истинным, то перейти к Шагу 3. В противном случае
перейти к Шагу 5.

Шаг 3. Удалить из текущего множества векторов P (Y ) век-
тор y j, так как он не является парето-оптимальным. Затем пе-
рейти к Шагу 4.

Шаг 4. Проверить выполнение неравенства j < N. Если оно
имеет место, то положить j = j + 1 и вернуться к Шагу 2. В про-
тивном случае — перейти к Шагу 7.

Шаг 5. Проверить справедливость неравенства y j ≥ y i. В том
случае, когда оно является истинным, перейти к Шагу 6. В про-
тивном случае — вернуться к Шагу 4.

Шаг 6. Удалить из текущего множества векторов P (Y ) век-
тор y i и перейти к Шагу 6.

Шаг 7. Проверить выполнение неравенства i < N − 1. В слу-
чае истинности этого неравенства следует последовательно по-
ложить i = i + 1, а затем j = i + 1. После этого необходимо
вернуться к Шагу 2. В противном случае (т. е. когда i � N − 1)
вычисления закончить. Множество парето-оптимальных векто-
ров построено полностью.

7. Геометрия множества Парето в случае двух критериев. Рас-
смотрим простейший случай, когда число критериев равно двум,
т. е. m = 2. В этом случае множество Y представляет собой неко-
торое множество точек на плоскости.

Все точки y, для которых выполняется неравенство y ≥ y*,
составляют угол с вершиной в точке y* и сторонами, параллель-
ными координатным осям. При этом сама вершина y* этому углу
не принадлежит, так как y ≠ y* (см. рис. 1.2).

Рассмотрим пример, в котором множество возможных то-
чек Y имеет вид замкнутой ограниченной фигуры, изображен-
ной на рис. 1.3.

Таблица 1.1
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Рис. 1.2. Рис. 1.3.
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Для того чтобы построить множество парето-оптимальных
точек P (Y ), можно воспользоваться геометрическим соображе-
нием, заимствованным из рис. 1.2. А именно, по определению
парето-оптимального вектора y* для него не должно существовать
такой точки y, что выполняется неравенство y ≥ y*. Геометричес-
ки все такие точки �  представляют собой угол с вершиной в y*.
Следовательно, точка y* ∈ Y парето-оптимальна тогда и только
тогда, когда соответствующий угол, имеющий вершину в точке y*

и стороны, параллельные координатным осям, не содержит ни
одной точки множества возможных векторов Y. Отсюда ясно, что
ни одна внутренняя точка множества Y не может быть парето-
оптимальной. А из граничных точек множества возможных точек Y
на роль парето-оптимальных могут претендовать лишь те, кото-
рые располагаются в ее «северо-восточной» части (т. е. линия
ABCD). При этом та часть границы, которая находится в «прова-
ле» (имеется в виду дуга BC ) также не может принадлежать мно-
жеству Парето. Наконец, из частей северо-восточной границы,
которые параллельны координатным осям, парето-оптимальны-
ми могут быть лишь крайние точки — среди точек отрезка CD
таковой будет точка D. В итоге приходим к следующему мно-
жеству парето-оптимальных точек — это дуга AB (без точки B )
и отдельная точка D.

В случае, когда число критериев три и более, указанным гео-
метрическим путем множество парето-оптимальных точек постро-
ить не удастся. Тем не менее, к настоящему времени разработаны
современные методы визуализации (графического представления
данных на экране компьютера), позволяющие для относительно
небольших m получить наглядное представление о множестве воз-
можных и множестве парето-оптимальных векторов [12].



В этой главе закладываются основы теории относительной
важности критериев. Прежде всего, дается определение понятия
относительной важности для двух критериев и изучаются его про-
стейшие свойства. Центральный результат главы — теорема 2.5,
которая показывает, каким образом информацию о том, что один
критерий важнее другого критерия с заданным коэффициентом
относительной важности, можно использовать для сужения мно-
жества Парето.

Здесь также обсуждаются различные типы шкал и обосновы-
вается применимость упомянутой теоремы 2.5 к любым задачам
многокритериального выбора с критериями, значения которых
измеряются в произвольных количественных шкалах.

2.1. Определение и свойства относительной важности

1. Исходная задача многокритериального выбора. Последую-
щее рассмотрение будет посвящено задаче многокритериального
выбора, включающей
− множество возможных решений X;
− векторный критерий f = � �� �� � ���� �� � � ;
− отношение предпочтения �X.
Следует отметить, что многие вопросы приобретают более

простой вид, если их формулировать и решать в терминах векто-
ров. Как было отмечено в предыдущей главе, практически все
результаты, полученные в терминах решений, можно легко пере-
формулировать в терминах векторов и обратно. Поэтому в даль-
нейшем изложении часто будет рассматриваться задача много-
критериального выбора в терминах векторов, содержащая
− множество возможных векторов Y, Y ⊂ R m,
− отношение предпочтения �, заданное на пространстве R m.
Напомним, что множество возможных векторов определяет-

ся равенством

Y = f (X ) = {y ∈ R m | y = f (x) при некотором x ∈ X },

Глава 2

ОТНОСИТЕЛЬНАЯ ВАЖНОСТЬ
ДЛЯ ДВУХ КРИТЕРИЕВ
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Таким образом, в данном простейшем случае выбор из двух
векторов однозначно определяется аксиомой 3.

Теперь предположим, что векторы y ′ и y ″ имеют не одну, а две
различные компоненты:

� �� � � � � �� � � � � �� �� � �� � ��� � �  для всех s ∈ I \ {i, j },

причем одновременное выполнение равенств �� � � �� � � �� � �� ��� �

невозможно. Тогда реализуется один и только один из следую-
щих четырех случаев:

1) �� � � �� � � �� �� � ��� � ; 2) �� � � �� � � ��� � �� �� � ;

3) �� � � �� � � �� �� �� �� � ; 4) �� � � �� � � ��� � � ��� � .

Предположим, что ЛПР из двух данных векторов сделало свой
выбор, т. е. имеет место одно и только одно их следующих двух
соотношений: y ′ � y ″ или y ″ � y ′. Без ограничения общности
в силу симметричности можно считать, что верно первое соотно-
шение y ′ � y ″. Спрашивается, каким образом можно объяснить
сделанный ЛПР выбор?

Если реализовался первый из указанных выше четырех слу-
чаев, то истинность соотношения y ′ � y ″ вытекает из аксиомы
Парето. Второй вариант невозможен, так как в этом случае бла-
годаря аксиоме Парето выполнено соотношение y ″ � y ′, несов-
местимое в силу асимметричности � с соотношением y ′ � y ″.

Рассмотрим оставшиеся две возможности. В силу симмет-
ричности двух последних вариантов ограничимся рассмотрением
третьего. Выполнение неравенства � �� �� ���  означает, что с точки
зрения i-го критерия вектор y ′ для ЛПР более предпочтителен,
чем y ″. С другой стороны, с точки зрения j-го критерия в силу

� �� ��� ��  вектор y ′ предпочтительнее вектора y ″. В итоге имеется
два взаимопротиворечивых условия и возникает вопрос: почему
в указанной ситуации наличия противоречащих друг другу выска-
зываний все-таки был сделан выбор в пользу вектора y ′ против y ″ ?
Что послужило причиной такого выбора?

По-видимому, одним из наиболее разумных объяснений это-
му факту может служить следующее: в рассматриваемом проти-
воречивом случае i-й критерий для ЛПР был важнее j-го крите-
рия и поэтому, несмотря на «проигрыш» по менее важному j-му
критерию при выборе y ′, этот вектор был признан более пред-
почтительным, чем y ″, так как он приводит к «выигрышу» по

а отношение предпочтения � представляет собой продолжение
на все пространство Rm отношения предпочтения �Y , естественным
образом

f (x ′ ) �Y f (x ″ ) ⇔ x ′ �X x ″ для x ′, x ″ ∈ X

связанного с отношением предпочтения �X , заданном на множе-
стве возможных решений X.

Всюду далее будем предполагать выполненными аксиомы 1−3,
сформулированные в предыдущей главе. В этих условиях
− отношение �, заданное на всем критериальном простран-

стве Rm, иррефлексивно и транзитивно (а значит, асимметрично);
− выполняется аксиома Парето (в терминах векторов), со-

гласно которой для любой пары векторов y ′, y ″ ∈ R m, таких что 1)
y ′ ≥ y ″, имеет место соотношение y ′ � y ″, т. е.

y ′ ≥ y ″ ⇒ y ′ � y ″. (2.1)

ЛПР имеет возможность сравнивать любые два вектора y ′, y ″
критериального пространства R m с помощью иррефлексивного
и транзитивного отношения �. При этом может реализоваться
один и только один из следующих трех случаев
− y ′ � y ″, т. е. y ′ предпочтительнее y ″;
− y ″ � y ′, т. е. y ″ предпочтительнее y ′;
− не выполняется ни соотношение y ′ � y ″, ни соотношение

y ″ � y ′.
Иначе говоря, ЛПР из произвольной пары векторов может

выбрать первый вектор, либо второй. Реализация третьего случая
(несравнимость по отношению �) означает либо отказ от выбора
(когда из двух данных векторов ни один не выбирается), либо пол-
ный выбор (в этом случае оба вектора оказываются выбранными).

2. Мотивация основного определения. Введем множество но-
меров критериев

I = {1, 2, ..., m}

и рассмотрим наиболее простую задачу выбора из двух векторов
y ′, y ″ ∈ R m с минимальным числом различных компонент.

Если векторы y ′ и y ″ имеют лишь одну различную компо-
ненту, например, � �� �� ���  и � �� �� ���  для всех s ∈ I \ {i }, то спра-
ведливо соотношение y ′ ≥ y ″, либо y ″ ≥ y ′. Отсюда, на осно-
вании аксиомы 3, соответственно следует y ′ � y ″ либо y ″ � y ′.
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1) Напомним, что справедливость неравенства y ′ ≥ y ″ означает одновре-
менное выполнение неравенств y ′ � y ″, y ′ ≠ y ″.
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критерию. Если коэффициент θi j близок к единице, то это озна-
чает, что ЛПР за относительно небольшую прибавку по более
важному i-му критерию готово платить довольно большой поте-
рей по менее важному j-му критерию. Такое положение соответ-
ствует ситуации, когда i-й критерий имеет сравнительно высо-
кую степень важности по сравнению с j-м критерием. В случае,
когда этот коэффициент вблизи нуля, ЛПР согласно пойти на
потери по менее важному критерию лишь при условии получе-
ния существенной прибавки по более важному критерию. Это
означает, что степень важности i-го критерия сравнительно невы-
сока; данное положение и находит свое выражение в малом зна-
чении коэффициента относительной важности. Если � �� �θ � ,
то ЛПР готово согласиться на определенную прибавку по более
важному критерию за счет потери по менее важному критерию
при условии, что величина потери в точности совпадает с вели-
чиной прибавки.

Необходимо добавить, что отмеченная выше степень относи-
тельной важности критериев, а значит и величина коэффициента
относительной важности θi j , находится в прямой зависимости
от типа шкалы, в которой измеряется тот или иной критерий.
Подробнее об этом пойдет речь в разд. 2.4.

4. Свойства относительной важности. Изучим свойства вве-
денного выше определения относительной важности критериев.

Теорема 2. 1. Пусть отношение предпочтения � удовлетворяет
аксиомам 2 и 3. Если i-й критерий важнее j-го критерия с положи-
тельными параметрами 


�� , 

�� , то i-й критерий будет важнее j-го

критерия с любой парой положительных параметров �� �� �� �, удов-
летворяющих неравенствам 
 
�� � � �� � � �� �� � . Иначе говоря, если i-й
критерий важнее j-го критерия с коэффициентом относительной
важности θi j, то i-й критерий будет важнее j-го критерия с любым
меньшим, чем θi j, коэффициентом относительной важности.

� Выберем произвольно два положительных числа �� �� �� �
и два вектора y ′, y ″ ∈ R m, для которых выполнены соотношения


 
� �
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����� � � � �

� � � � � � � �

� �

� � � � � � � �

� � � � � �

� �� � �� � �� � � � � �
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и докажем, что y ′ � y ″.
Введем положительные числа zi и zj следующим образом:


 
�� � � � � �� � � ��� ��� � � �z z .

более важному i-му критерию при условии равенства всех ос-
тальных компонент.

Рассуждая аналогичным образом, можно прийти к выводу,
что при выборе первого из данной пары векторов (т. е. при вы-
полнении y ′ � y ″ ) в случае реализации четвертой из указанных
выше ситуаций �� � � �� � � ��� � � ��� �  для ЛПР j-й критерий оказался
важнее i-го критерия.

3. Определение относительной важности. Приведенные выше
рассуждения, относящиеся к простейшей задаче выбора из про-
извольной пары векторов, логически обосновывают введение
следующего определения, которое будет играть основополагаю-
щую роль в дальнейшем изложении.

Определение 2.1. Пусть i, j ∈ I, i ≠ j. Будем говорить, что i-й
критерий важнее j-го критерия с заданными положительными па-
раметрами 


�� , 

�� , если для всех векторов y ′, y ″ ∈ R m, для кото-

рых выполняется

� �

 


� � ��
 ���� � � �

� �

� � � � � �

� � � � � �

� � � � � � � � � �

� � � � � �

� �� �� � � ��� � � �

� �� �� �� � � �

имеет место соотношение y ′ � y ″.
Иначе говоря, для ЛПР i-й критерий важнее j-го, если вся-

кий раз при выборе из пары векторов ЛПР готово пожертвовать
определенным количеством 


��  по менее важному j-му критерию
ради получения дополнительного количества 


��  по более важно-
му i-му критерию при условии сохранения всех остальных значе-
ний критериев.

При этом соотношение между числами 

��  и 


��  позволяет
количественно оценить указанную степень важности. Введем со-
ответствующее определение.

Определение 2.2. Пусть i, j ∈ I, i ≠ j, и i-й критерий важнее
j-го критерия с положительными параметрами 


��  и 

�� . В этом

случае положительное число





 


�

� �
� �

�

� �
θ

�
�

будем называть коэффициентом относительной важности для ука-
занной пары критериев.

Очевидно, 0 < θi j < 1. Этот коэффициент показывает долю
потери по менее важному критерию, на которую согласно пойти
ЛПР, в сравнении с суммой потери и прибавки по более важному

2.1. ОПРЕДЕЛЕНИЕ И СВОЙСТВА ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ
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по сравнению с j-м критерием. В этом случае будем говорить,
что i-й критерий ни в коей мере не является более важным, чем j-й
критерий;

3) любое положительное число из интервала (0, 1) является
коэффициентом относительной важности i-го критерия по сравне-
нию с j-м критерием. В этом случае будем говорить, что i-й кри-
терий несравнимо важнее (несравнимо более важен) j-го критерия.

Разберем первый случай более подробно. Если хотя бы одно
число θi j ∈ (0, 1) является коэффициентом относительной важ-
ности i-го критерия по сравнению с j-м критерием, то в соответ-
ствии с теоремой 2.1 любое меньшее число в пределах указанно-
го интервала также является коэффициентом относительной важ-
ности для рассматриваемой пары критериев. Образуем два
непересекающихся множества A и B. К первому множеству при-
числим все числа интервала (0, 1), которые являются коэффици-
ентами относительной важности для данной пары критериев.
Очевидно, A ≠ ∅. Второе множество B составим из всех тех чи-
сел указанного интервала, которые не являются коэффициента-
ми относительной важности. При этом по условию B ≠ ∅. Ясно,
что A ∪ B = (0, 1), причем неравенство a < b выполняется для
всех a ∈ A, b ∈ B. Это означает, что множества A и B образуют
сечение интервала (0, 1). В таком случае в соответствии с прин-
ципом Дедекинда существует единственное число ��� ��� �θ � , про-
изводящее указанное сечение. Это число можно назвать предель-
ным коэффициентом относительной важности i-го критерия по
сравнению с j-м критерием.

Следует отметить, что само число � �θ  может как оказаться
коэффициентом относительной важности, так и не быть тако-
вым. Иначе говоря, может реализоваться любой из двух возмож-
ных случаев � � 	θ �  или � � 	θ 	 .

5. Связь с лексикографическим отношением. Между отноше-
нием � и лексикографическим 1) отношением имеется опреде-
ленная связь, которая в терминах упорядоченного набора несрав-
нимо более важных критериев раскрывается в следующем утвер-
ждении.

Теорема 2.2. Заданное на пространстве Rm бинарное отношение �,
удовлетворяющее аксиомам 2 и 3, является лексикографическим тогда
и только тогда, когда первый критерий несравнимо важнее второго,

1) Напомним, что определение лексикографического отношения можно
найти в разд. 1.2.

В силу 
 
�� � � �� � � �� �� �  имеем � �� � � z  и � ��� � z . Кроме того, оче-

видно, � �� �� � z .
Рассмотрим вектор z′ ∈ R m вида

� �� � � � � �� �� � �� � �z z z z z  для всех s ∈ I \ {i, j }.

Для этого вектора выполнено

� �� � � � � �� � �� � �� � �� � �z z z  для всех s ∈ I \ {i, j }.

Отсюда согласно аксиоме Парето получаем y ′ � z′.
Далее, из соотношений


 
� �� � � � � � � �� � � � ��� �� ��� � � � �� � �z z z  для всех s ∈ I \ {i, j }

на основании того, что критерий i-й критерий важнее j-го крите-
рия с параметрами 


�� , 

�� , приходим к соотношению z ′ � y ″. Это

соотношение вместе с полученным ранее y ′ � z ′ благодаря тран-
зитивности отношения � ведет к требуемому результату y ′ � y ″.

Вторая часть теоремы, выраженная в терминах коэффициен-
тов относительной важности, непосредственно вытекает из до-
казанного выше.�

Содержание теоремы 2.1 вполне согласуется с интуитивными
представлениями об относительной важности критериев. А имен-
но, если ЛПР готово пойти на потерю в размере 


��  по менее
важному j-му критерию ради получения выигрыша в размере 


��

по более важному i-му критерию, то это ЛПР, очевидно, должно
согласиться как на меньшие потери 


� � �� � �� � �
 �, так и на боль-
ший выигрыш 


� � �� � �� � �
 �.
Опираясь на определение относительной важности критери-

ев и теорему 2.1, проанализируем возникающие возможности
соотношений важности для произвольной пары различных кри-
териев fi , fj .

Может иметь место один и только один из следующих трех
случаев:

1) хотя бы одно положительное число из интервала (0, 1)
является коэффициентом относительной важности i-го критерия
по сравнению с j-м критерием и хотя бы одно — не является
таковым;

2) ни одно положительное число из интервала (0, 1) не яв-
ляется коэффициентом относительной важности i-го критерия

2.1. ОПРЕДЕЛЕНИЕ И СВОЙСТВА ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ
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большей важности второго критерия по сравнению с третьим
имеет место соотношение y ′ � y 2, которое вместе с соотноше-
нием y 2 � y ″ приводит к требуемому соотношению y 1 � y ″.

Если же � �� �� ��� , � �� �� ��� , � �� �� ��� , то для вектора y 3 =
= � �� � �� �� � ��� � �  благодаря несравнимо большей важности второго
критерия по сравнению с третьим выполнено соотношение y 3 � y ″.
С другой стороны, верно неравенство y ′ ≥ y 3, а значит согласно
аксиоме Парето и соотношение y ′ � y 3, что вместе с y 3 � y ″ влечет
соотношение y ′ � y ″.

Рассмотрим последний возможный случай � �� �� ��� , �� � � y ″,
� �� �� ��� . Для вектора � ��

� � �� ��� � � �� � ��� �  из-за несравнимо боль-
шей важности первого критерия по сравнению со вторым верно
соотношение y 4 � y ″. Используя несравнимо бoльшую важность
второго критерия по сравнению с третьим и аксиому Парето,
получим соотношение y ′ � y 4, которое вместе с y 4 � y ″ вновь
повлечет за собой выполнение соотношения y ′ � y ″.

Тем самым, истинность высказывания 1) установлена. При
помощи аналогичных рассуждений устанавливается справедли-
вость высказывания 2). Последнее высказывание 3) имеет место
в силу аксиомы 3.�

2.2. Требование инвариантности отношения предпочтения

1. Отношения, инвариантные относительно линейного положитель-
ного преобразования. Напомним определение инвариантного отно-
шения, данное в разд. 1.2. Бинарное отношение ℜ, заданное на
пространстве Rm называют инвариантным относительно линейного
положительного преобразования, если для произвольных векторов
y ′, y ″ ∈ R m из выполнения соотношения y ′ ℜ y ″ следует соотно-
шение (αy ′ + c) ℜ (αy ″ + c) для любого вектора c ∈ Rm и всякого
положительного числа α. Иначе говоря, отношение ℜ является ин-
вариантным относительно положительного линейного преобразо-
вания, если оно обладает следующими двумя свойствами:

1) аддитивность: y ′ ℜ y ″, c ∈ R m ⇒ (y ′ + c) ℜ (y ″ + c);
2) однородность: y ′ ℜ y ″, α > 0 ⇒ (αy ′ ) ℜ (αy ″ ).

Отношения неравенств >, �, >, заданные на пространстве Rm, дают
простейшие примеры инвариантных бинарных отношений. Нетруд-
но понять, что лексикографическое отношение (см. разд. 1.2) так-
же относится к классу инвариантных бинарных отношений.

Во многих практически важных задачах многокритериального
выбора отношение предпочтения � можно считать инвариантным

второй — несравнимо важнее третьего, ..., (m − 1)-й критерий
несравнимо важнее m-го критерия.

� Необходимость. Пусть отношение �  является лексиког-
рафическим. В этом случае для произвольных векторов y ′, y ″ ∈ R m

истинны высказывания

1) � �� � � �� �� � ��� � � ;

2) � � � ��� � � � � �� �� � �� � ��� � � � ;

3) � � � � � �� �� � � � � � � �� �� � �� � �� � ��� � � � � ;

........................................................

m) � �� �� ���� ��� � � �� � � � � � � �� �� � �� � ��� � � � � � .

Из первого высказывания следует, что для двух произвольных
векторов y ′, y ″ ∈ R m, для которых выполнено � �� �� ��� , � �� �� ��� ,

� �� ���� � �� � � �� �� � ��� � , имеет место соотношение y ′ � y ″. Это озна-
чает, что первый критерий несравнимо важнее второго критерия.

Аналогично из второго высказывания можно прийти к выво-
ду, что второй критерий несравнимо важнее третьего критерия, ...,
из предпоследнего высказывания вытекает несравнимо бoльшая
важность (m − 1)-го критерия по сравнению с m-м критерием.

Достаточность. Чтобы избегнуть громоздких рассмотрений,
эту часть доказательства проведем лишь для случая трех крите-
риев, т. е. при m = 3.

Выберем два произвольных вектора y ′, y ″ ∈ R 3, для которых
верно неравенство � �� �� ��� . Для доказательства справедливости
высказывания 1) следует убедиться в том, что y ′ � y ″.

Если дополнительно с неравенством � �� �� ���  выполнено

� �� �� ���  и � �� �� ��� , то благодаря аксиоме Парето имеем y ′ � y ″.
Пусть вместе с неравенством � �� �� ���  имеют место неравен-

ства � �� �� ��� , � �� �� ��� . Рассмотрим вектор � ��
� � �� �� � � �� � ��� . Для

него в силу несравнимо большей важности первого критерия по
сравнению со вторым получаем соотношение y 1 � y ″. Но y ′ � y 1,
а значит либо y ′ = y 1 и тогда верно y ′ � y ″, либо y ′ ≥ y 1. Во
втором случае благодаря аксиоме Парето имеем y′ � y 1, что вме-
сте с полученным ранее соотношением y 1 � y ″ на основании
транзитивности отношения � влечет соотношение y 1 � y ″.

Перейдем к рассмотрению случая � � � � � �� �� � � � � �� �� � �� � ��� � � .

Введем вектор � ��
� � �� ��� � � �� �� ��� � . В силу несравнимо бóльшей

важности первого критерия по сравнению со вторым для него
выполняется y 2 � y ″. Но для вектора y ′ благодаря несравнимо
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ставляет собой некоторый выпуклый конус (его называют замк-
нутым полупространством).

� Действительно, из 〈c, x 〉 � 0 следует справедливость нера-
венства 〈αc, x 〉 = 〈c, αx 〉 � 0 для любого положительного мно-
жителя α. Значит, L — конус. Убедимся, что это выпуклый конус.
С этой целью возьмем две произвольные точки x ′ и x ″ конуса L.
Для них выполнены неравенства 〈c, x ′ 〉 � 0 и 〈c, x ″ 〉 � 0. Умно-
жим первое неравенство на произвольное число λ ∈ [0, 1], а вто-
рое — на 1 − λ. Складывая почленно полученные неравенства, при-
дем к неравенству λ〈c, x ′ 〉 + (1 − λ)〈c, x ″ 〉 = 〈c, λx ′ + (1 −
− λ) x ″ 〉 � 0, устанавливающему выпуклость конуса L.�

Следует отметить, что замкнутое полупространство не явля-
ется острым конусом, поскольку вместе с ненулевым вектором 
,
удовлетворяющим равенству � �� 

 � � , содержит и вектор 
� , так
как умножение указанного равенства на −1 не нарушает его вы-
полнение.

Если же вместо одного неравенства рассматривать некото-
рую систему, содержащую определенное конечное число подоб-
ного рода неравенств, то множеством решений этой системы
однородных линейных неравенств также будет выпуклый конус,
представляющий собой пересечение конечного числа замкнутых
полупространств. Его называют многогранным (полиэдральным)
конусом. В общем случае этот конус не является острым.

Пусть задан некоторый набор векторов a1, a2, ..., a p ∈ R m.
Нетрудно проверить, что совокупность всех неотрицательных
линейных комбинаций данных векторов (т. е. все векторы вида
λ 1 a1 + λ 2 a2 + ... + λ p a

p, где коэффициенты λ 1, λ 2, ..., λ p неотри-
цательны), образует некоторый выпуклый (конечнопорожденный)
конус K в пространстве R m. В этом случае говорят, что набор
векторов a 1, a 2, ..., a p порождает выпуклый конус K и пишут
K = cone {a 1, a 2, ..., a p}. На основании теории двойственности
выпуклого анализа (см. [28], [31]) любой конечнопорожденный
конус представляет собой пересечение конечного числа замкну-
тых полупространств, т. е. является многогранным конусом. Пос-
ледний результат принципиально важен для доказательств фор-
мулируемых далее теорем, посвященных учету информации об
относительной важности критериев.

Одномерные грани (т. е. лучи, а также векторы, порождаю-
щие эти лучи) называют ребрами выпуклого конуса. Известно [28],
что любой острый выпуклый замкнутый конус, не совпадающий
с началом координат, порождается своими ребрами.

относительно линейного положительного преобразования. В со-
ответствии с этим в дополнение к сформулированным выше ак-
сиомам 1−3 добавим еще одну, которая далее понадобится для
построения содержательной теории относительной важности
критериев.

Аксиома 4 (инвариантность отношения предпочтения). От-
ношение предпочтения � является инвариантным относительно ли-
нейного положительного преобразования.

Признаком инвариантности отношения � является наличие
у него свойств аддитивности и однородности. Иными словами,
для любой пары векторов y ′, y ″ R m, связанных соотношением
y ′ � y ″, должно выполняться как соотношение (y ′ + c) � (y ″ + c)
для любого вектора c ∈ R m, так и соотношение α y ′ � α y ″ для
любого положительного числа α.

2. Конусные отношения. Важный с точки зрения последую-
щего изложения пример инвариантных бинарных отношений дает
класс конусных отношений. Однако прежде чем формулировать
определение конусного отношения необходимо ввести некото-
рые вспомогательные понятия из выпуклого анализа.

Множество A, A ⊂ R m, называют выпуклым, если оно вместе
с каждой парой своих точек содержит и весь отрезок, соединяю-
щий эти точки. Иными словами, подмножество A пространства R m

выпукло, если для всех пар точек y ′, y ″ ∈ A и любого числа
λ ∈ [0, 1] выполнено соотношение λy ′ + (1 − λ) y ″ ∈ A. Мно-
жество K, K ⊂ R m, называется конусом, если для каждой точки
y ∈ K и любого положительного числа α выполняется включе-
ние α y ∈ K. Конус, являющийся выпуклым, именуют выпуклым
конусом. Иначе говоря, выпуклое множество является выпуклым
конусом, если оно вместе с каждой своей точкой содержит и весь
луч, исходящий их начала координат (в общем случае без самого
начала) и проходящий через данную точку. При этом начало ко-
ординат (вершина конуса) может как принадлежать, так и не при-
надлежать данному конусу. Можно проверить, что сумма любых
двух (и более) элементов выпуклого конуса всегда принадлежит
данному конусу. Конус K называют острым, если не существует
такого ненулевого вектора y ∈ K, для которого выполняется вклю-
чение −y ∈ K. Не являющийся острым конус обязательно содер-
жит, по крайней мере, одну прямую, проходящую через начало
координат (вместе с самим началом или же без него).

Множество L всех решений (векторов x ∈ R m) однородного
линейного неравенства 〈c, x 〉 = c1 x1 + c2 x2 + ... + cm xm � 0, где
c — фиксированный ненулевой вектор пространства R m, пред-
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Определение 2.3. Бинарное отношение ℜ, заданное на про-
странстве R m (т. е. ℜ ⊂ R m × R m), называют конусным отноше-
нием, если существует такой ко-
нус K, K ⊂ R m, что для произ-
вольных векторов y ′, y ″ ∈ R m

справедлива эквивалентность

y ′ ℜ y ″ ⇔ y ′ − y ″ ∈ K.

Нередко правую часть эквива-
лентности записывают в виде
y ′ ∈ y ″ + K (см. рис. 2.3).

Отношения неравенств >
и ≥, рассматриваемые на пространстве Rm, представляют собой не-
которые конусные отношения с конусами ��� = {y ∈ Rm | y > 0m }
и ��� соответственно.

Оказывается, всякое бинарное отношение, удовлетворяющее
аксиомам 2 и 4, будет конусным отношением. Этот факт уста-
навливает следующая теорема.

Теорема 2.3. Любое иррефлексивное, транзитивное и инвариант-
ное относительно линейного положительного преобразования бинарное
отношение ℜ, заданное на пространстве R m, является конусным
отношением с острым выпуклым конусом, не содержащим начало
координат. Обратно, всякое конусное отношение с конусом указанно-
го типа является иррефлексивным, транзитивным и инвариантным
относительно линейного положительного преобразования отноше-
нием, заданным на R m.

� Пусть ℜ является иррефлексивным, транзитивным и ин-
вариантным относительно линейного положительного преобра-
зования бинарным отношением, заданным на R m. Докажем, что
ℜ — конусное отношение. Для этого введем множество

K = {y ∈ R m | y ℜ 0m}.

Благодаря свойству однородности отношения ℜ множество K
является конусом. Кроме того, для произвольной пары векторов
y ′, y ″ ∈ R m на основании свойства аддитивности имеем

y ′ ℜ y ″ ⇔ (y ′ − y ″ ) ℜ 0m ⇔ (y ′ − y ″ ) ∈ K.

Таким образом, отношение ℜ действительно является конусным
с конусом K. Необходимо проверить, что конус K — выпуклый,
острый и не содержит начало координат.

Если 0m ∈ K, то по определению конуса K выполнено 0m ℜ 0m,
что не совместимо с требованием иррефлексивности отношения ℜ.
Значит, конус K не содержит начало координат.

Рис. 2.3.

Если выпуклый конус задан в виде решений некоторой од-
нородной системы линейных неравенств, то все его ребра в прин-
ципе можно найти, например, методом перебора, рассматривая
все возможные подсистемы определенного числа линейных урав-
нений, получающиеся из исходной системы неравенств заменой
всех знаков неравенств равенствами (по этому поводу см. [4]).

Неотрицательный ортант ��+  пространства R m, определяе-
мый равенствами

� � � � � �� � � � � �� � �
� � �� � � � � � �� � � � � � � ,

представляет собой выпуклый острый конус (без вершины),
который порождается единичными ортами этого пространства.
На плоскости (т. е. при m = 2) этот ортант имеет вид прямого

угла, совпадающего с первой
четвертью (рис. 2.1). Он по-
рождается единичными орта-
ми e 1 = (1, 0), e 2 = (0, 1) и
является результатом пересе-
чения правой и верхней зам-
кнутых полуплоскостей (без
начала координат).

Еще некоторые два острых
плоских конуса K1 и K2 изоб-
ражены на рис 2.2.

Верхняя полуплоскость представляет собой замкнутое полу-
пространство, т. е. выпуклый конус, не являющийся острым. Более
подробно с выпуклыми множествами и конусами можно ознако-
миться в [4, 28, 31].
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Рис. 2.1.

Рис. 2.2.
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Следствие 2.1. Любое бинарное отношение �, удовлетворяющее
аксиомам 2, 3 и 4, является конусным с острым выпуклым конусом,
содержащим неотрицательный ортант ��� и не содержащим нача-
ло координат. Обратно, всякое конусное отношение с конусом ука-
занного типа удовлетворяет аксиомам 2, 3 и 4.

� Бинарное отношение �, удовлетворяющее аксиомам 2−4,
является иррефлексивным, транзитивным и инвариантным от-
носительно линейного положительного преобразования.

Необходимость. На основании теоремы 2.3 остается убедить-
ся, что конус K данного бинарного отношения � включает нео-
трицательный ортант. В силу леммы 1.3 предыдущей главы вы-
полняется аксиома Парето (в терминах векторов)

� � � �� �� � ��� � � ,

которая может быть переписана в виде

�� � � � � 
�� �� � ��� � � � � .

Поскольку разность y ′ − y ″ может быть любым вектором нео-

трицательного ортанта ���, то последняя импликация означает

выполнение включения �� 
� � .
Достаточность. Если конусное отношение порождается ос-

трым выпуклым конусом (без нуля), то в силу теоремы 2.3 соот-
ветствующее ему конусное отношение является иррефлексив-
ным, транзитивным и инвариантным относительно линейного
положительного преобразования (т. е. аксиомы 2 и 4 выполнены).
А так как этот конус содержит неотрицательный ортант ���, то
соответствующее конусное отношение, кроме того, удовлетво-
ряет аксиоме Парето. Нетрудно понять, что из справедливости
аксиомы Парето вытекает выполнение аксиомы 3. Следователь-
но, рассматриваемое конусное отношение удовлетворяет всем
аксиомам 2−4.�

В соответствии со следствием 2.1, бинарные отношения, удов-
летворяющие аксиомам 2−4 (напоминаем, что эти аксиомы пред-
полагаются выполненными), допускают простую геометрическую
интерпретацию — они являются конусными отношениями с ос-
трыми, выпуклыми конусами без начала координат, причем эти
конусы разве что шире неотрицательного ортанта ��� .

Для доказательства выпуклости конуса K выберем произвольно
два вектора y ′, y ″ ∈ K и число α ∈ (0, 1) (заметим, что значения
α = 1 и α = 0 можно исключить из последующей проверки).
Благодаря свойству однородности отношения ℜ из соотношений
y ′ ℜ 0m и y ″ ℜ 0m получаем α y ′ ℜ 0m и (1 − α) y ″ ℜ 0m соответствен-
но. Из первого соотношения в силу аддитивности имеем
(αy ′ + (1 − α) y ″ ) ℜ (1 − α) y ″. Теперь на основании транзитив-
ности ℜ из второго и последнего соотношений получаем
(αy ′ + (1 − α) y ″ ) ℜ 0m, или (αy ′ + (1 − α) y ″ ) ∈ K, что уста-
навливает выпуклость конуса K.

Для того чтобы убедиться, что конус K является острым,
предположим противное: существует ненулевой вектор y ∈ K,
для которого выполняется соотношение −y ∈ K. Для этого векто-
ра имеем y ℜ 0m и −y ℜ 0m. Отсюда в силу аддитивности ℜ следует
(y − y) ℜ (−y) ℜ 0m, что благодаря транзитивности отношения ℜ
приводит к соотношению 0m ℜ 0m, несовместимому с иррефлек-
сивностью ℜ.

Докажем обратное утверждение. Пусть ℜ — произвольное
конусное отношение с острым выпуклым конусом K, не содер-
жащим начало координат. Убедимся в том, что оно является ир-
рефлексивным, транзитивным и инвариантным относительно
линейного положительного преобразования.

Это отношение действительно иррефлексивно, так как в про-
тивном случае конус K содержал бы начало координат.

Проверим транзитивность отношения предпочтения. Для этой
цели выберем произвольную тройку векторов y ′, y ″, y ′″ ∈ R m, удов-
летворяющих соотношениям y ′ ℜ y ″ и y ″ ℜ y ′″. Последние два
соотношения можно переписать в виде y ′ − y ″ ∈ K и y ′ −
− y ′″ ∈ K, откуда следует, что имеются два определенных эле-
мента конуса K. Поскольку сумма любых двух элементов выпук-
лого конуса принадлежит данному конусу, из двух последних со-
отношений получаем y ′ − y ″ ∈ K, или, что то же самое, y ′ ℜ y ″.
Полученное доказывает транзитивность отношения ℜ.

Инвариантность отношения ℜ вытекает из справедливости
соотношений

y ′ ℜ y ″ ⇔ y ′ − y ″ ∈ K ⇔ (y ′ + c) − (y ″ + c) ∈ K ⇔
⇔ (y ′ + c) ℜ (y ″ + c),

y ′ ℜ y ″ ⇔ y ′ − y ″ ∈ K ⇔ α(y ′ - y ″ ) ∈ K ⇔
⇔ αy ′ − αy ″ ∈ K ⇔ αy ′ ℜ αy ″

для всех векторов c ∈ R m и любых положительных чисел α.�

2.2. ТРЕБОВАНИЕ ИНВАРИАНТНОСТИ ОТНОШЕНИЯ ПРЕДПОЧТЕНИЯ
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� Рассмотрим два произвольных вектора y ′ и y ″, для кото-
рых выполнены соотношения (2.2). Очевидно,
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��
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Обозначим 

� � � �� � � �� ��� � � , 


� � � �� � � �� ��� � � � . В силу аддитив-
ности отношения предпочтения �, справедливо

� � � �� �� � � � �� �� � ��� � �� � � ,

где вектор �  имеет только две отличные от нуля компоненты —
i-ю и j-ю, которые равны ��  и ��  соответственно. Полученное
означает, что общее определение 2.1 эквивалентно «частному»
определению 2.1, в котором � �� �  и y ″ = 0m.

Из полученного сразу следует, что в определении 2.1 векто-
ры y ′, y ″ можно считать не произвольными, а фиксированными.

Докажем оставшуюся часть теоремы. Соотношение ��� �  для
указанного выше вектора �  благодаря свойству однородности

отношения предпочтения � эквивалентно соотношению ���α �

для любого положительного числа α. В частности, если взять
� �

��

θ
α ��  и обозначить �� �= α , то получим
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� � ���� �α α� � �  для всех s ∈ I \ {i, j }.

Поэтому соотношение ��� �  эквивалентно соотношению �� � 0m,
где

� � �� � � �� � � �� � �� � �θ θ� � � � �  для всех s ∈ I \ {i, j }.� (2.4)

Как указано выше, отношение предпочтения � предполага-
ется инвариантным относительно линейного положительного пре-
образования. Опираясь на теорему 2.4, сформулируем новое,

2.3. Использование информации об относительной важности
критериев для сужения множества Парето

1. Упрощение основного определения. Определение 2.1, дан-
ное в разд. 2.1, придает точный смысл выражению «i-й критерий
важнее j-го критерия». В этом определении присутствуют два
числовых параметра, с помощью которых вводится коэффици-
ент относительной важности критериев, измеряющий степень
относительной важности.

Для того чтобы проверить, действительно ли i-й критерий
важнее j-го, в соответствии с определением 2.1 необходимо пред-
ложить ЛПР для сравнения бесконечное число пар векторов
y ′, y ″ ∈ R m, удовлетворяющих соотношениям
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� �� �� �� � � � (2.2)

при некоторых положительных параметрах 
 
�� �� � . Если для лю-
бой пары указанных векторов первый вектор y ′ всякий раз ока-
зывается предпочтительнее второго y ″, то по определению 2.1 это
будет означать, что i-й критерий важнее j-го с числовым коэф-
фициентом относительной важности
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θ

�
� , (2.3)

принадлежащим интервалу (0, 1).
Совершенно очевидно, что на практике подобную проверку

осуществить невозможно из-за бесконечного числа сравниваемых
пар векторов. На самом деле такая проверка в условиях инвариан-
тности отношения предпочтения и не требуется. Все может быть
сведено к сравнению лишь одной пары векторов y ′, y ″, для которой
выполнено (2.2). Об этом свидетельствует следующий результат.

Теорема 2.4. Благодаря инвариантности отношения предпоч-
тения � можно считать, что в определении 2.1 векторы y ′, y ″
фиксированы. В частности, в этом определении можно положить


 
� �� � � � �� � � � � �� � �� � � �  для всех s ∈ I \ {i, j }, y ″ = 0m,

или

� �� � �� � � � � � �� � � �θ θ� � �� � � �   для всех s ∈ I \ {i, j }, y ″ = 0m,

где θi j — коэффициент относительной важности критериев.
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Введем в рассмотрение набор единичных ортов e 1, e 2, ..., e m

пространства R m; s-я компонента вектора e s равна единице, а все
остальные — нулю, s = 1, 2, ..., m. Обозначим через M выпуклый
конус (без нуля), порожденный набором линейно независимых 1)
векторов

�� � �� ���� � � � ����� � �� � � � �� � . (2.7)

Конус M совпадает с множеством всех векторов, представимых
в виде линейных комбинаций

�� � �
� � ���� ���� � �

� � � �� � � � �λ λ λ λ λ� �
� �� � � � � �

векторов набора (2.7) с неотрицательными, одновременно не рав-
ными нулю числовыми коэффициентами λ1, λ2, ..., λm.

Проверим, что конус M — острый. Если это не так, то
должен найтись ненулевой вектор y ∈ M, для которого −y ∈ M.
В соответствии со сказанным выше имеем
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� � � �� � � � � �λ λ λ λ λ� �
� �� � � � �� � � � � � � ,
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� � � �� � � � � �λ λ λ λ λ� �
� ��� �� �� �� ��� � � � � � � � ,

причем все коэффициенты линейных комбинаций неотрицательны
и каждый из наборов чисел � �� � ���� �λ λ λ� � �  и � �� � ���� �λ λ λ�� �� ��  одновре-
менно в нуль не обращается. Поскольку сумма двух элементов
конуса принадлежит данному конусу, то, складывая два последних
равенства, получим
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где среди коэффициентов линейной комбинации, записанных
в скобках, по крайней мере один обязательно отличен от нуля.
Однако, благодаря линейной независимости векторов (2.7) из
последнего равенства следует, что все коэффициенты указанной
линейной комбинации равны нулю. Полученное противоречие
свидетельствует о том, что конус M — действительно острый.

Теперь докажем, что конус M совпадает с множеством нену-
левых решений следующей системы линейных неравенств

1) Набор векторов (2.7) действительно образует линейно независимую сис-
тему, так как ранг матрицы, составленной из этих векторов, равен m.

более простое определение относительной важности, которое эк-
вивалентно определению 2.1.

Определение 2.4. Пусть i, j ∈ I, i ≠ j. Говорят, что i-й критерий
важнее j-го критерия с коэффициентом относительной важности
θi j ∈ (0, 1), если для вектора � �� ��  вида (2.4) выполнено соотно-
шение �� � 0m.

В соответствии с определением 2.4 для того чтобы проверить,
действительно ли i-й критерий является важнее j-го критерия
с коэффициентом относительной важности θi j ∈ (0, 1), достаточно
убедиться, что вектор ��  вида (2.4) предпочтительнее нулевого
вектора, т. е. достаточно проверить справедливость одного соотно-
шения �� � 0m. Например, если вектор (0.7, −0.3, 0) оказывается для
ЛПР более предпочтительным, чем (0, 0, 0), то первый критерий
для этого ЛПР важнее второго с коэффициентом относительной
важности θ12 = 0.3.

2. Сужение множества Парето на основе информации о том,
что один критерий важнее другого. Следующая теорема показывает,
каким образом информация об относительной важности одного
критерия в сравнении с другим позволяет сузить область поиска
выбираемых векторов.

Теорема 2.5 (в терминах векторов). Предположим, что отно-
шение предпочтения � удовлетворяет аксиомам 1−4 и i-й критерий
важнее j-го с коэффициентом относительной важности θi j ∈ (0, 1).
Тогда для любого непустого множества выбираемых оценок Sel Y
имеют место включения

��� � � � � �� � 
 �
 � , (2.5)

где �� �
 � — множество парето-оптимальных оценок в многокрите-
риальной задаче с исходным множеством возможных решений X и «но-

вым» векторным критерием � � � �� �� �� � ���� �� � � ��  (т. е. � �� �� � �� ),

компоненты которого вычисляются по формулам

� � � �� �� � � � � � �� �� � � � �θ θ� � � �   для всех s ∈ I \ { j }. (2.6)

� Обозначим через K острый выпуклый конус (без нуля)
конусного отношения предпочтения �. По условию доказываемой
теоремы и в соответствии с определением 2.4 для вектора �� , опре-
деляемого равенствами (2.4), выполнено соотношение �� � 0m. Это
соотношение равносильно включению �� ∈ K. Таком образом,
вектор ��  принадлежит конусу K, определяющему конусное от-
ношение предпочтения �.
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то, как нетрудно проверить, получающаяся «укороченная» сис-
тема имеет ненулевое решение �� . В итоге приходим к фундамен-

тальной совокупности решений �� �� ���� ��� � �� , �� ����� �� ��  системы
линейных неравенств (2.8). Эта фундаментальная совокупность
совпадает с набором векторов (2.7), порождающих конус M ко-
нусного отношения предпочтения �. Следовательно, конус M
совпадает с множеством ненулевых решений системы линейных
неравенств (2.8).

Как было указано в начале доказательства теоремы, имеет
место включение �� ∈ K. В силу следствия 2.1 справедливо соот-
ношение �� 
� � . Конус ��� порождается набором единичных
векторов e 1, e 2, ..., e m. Так как K — выпуклый конус, то он вме-
сте с векторами (2.7) заведомо содержит и все ненулевые нео-
трицательные линейные комбинации векторов (2.7), т. е. M ⊂ K.
В итоге приходим к включениям

�� � 
� � � ,

из которых следует

�!"#$� � � � �� � 
 �
 � , (2.11)
где

�� �
 �= {y* ∈ Y | не существует такого y ∈ Y, что y − y* ∈ M }

— множество недоминируемых элементов множества Y относи-
тельно конусного отношения с конусом M.

Пусть x, x* ∈ X, y = f (x), y* = f (x*) и f (x) ≠ f (x*). На осно-
вании доказанного выше совпадения конуса M с множеством не-
нулевых решений системы линейных неравенств (2.8) включение
f (x) − f (x*) ∈ M имеет место тогда и только тогда, когда вектор
y = f (x) − f (x*) является ненулевым решением системы (2.8), т. е.
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ys � 0 для всех s ∈ I \ { j },

θi j yi + (1 − θi j) yj � 0. (2.8)

С этой целью найдем фундаментальную совокупность решений 1)
системы неравенств (2.8) и убедимся, что она совпадает с набо-
ром векторов (2.7).

Для отыскания фундаментальной совокупности решений
системы неравенств (2.8) рассмотрим соответствующую систему
линейных уравнений

ys = 0 для всех s ∈ I \ { j },

θi j yi + (1 − θi j) yj = 0, (2.9)

которая может быть переписана в виде 2)

〈e s, y〉 = 0 для всех s ∈ I \ { j },

� �� �
 � �� , (2.10)

где � �� �� � ���� �� � � ��� � � � , причем

� � � �� � � � � � �� � �θ θ� � � �� � � для всех s ∈ I \ {i, j }.

Число уравнений системы (2.10) равно m. Вследствие линейной
независимости произвольного набора из m − 1 векторов, полу-
ченного из � � �� ���� � � � ����� � �� � � � �� �

�  удалением какого-то одного
вектора, для отыскания фундаментальной совокупности решений
системы неравенств (2.8) достаточно просмотреть ненулевые ре-
шения каждой подсистемы из m − 1 уравнений системы (2.10).
При этом среди них следует отобрать векторы, удовлетворяющие
системе линейных неравенств (2.8).

Станем удалять из системы (2.10) по одному уравнению и ис-
кать ненулевые решения получающейся в результате такого уда-
ления «укороченной» системы. Если из (2.10) удалить последнее
уравнение, то, например, вектор e j будет ненулевым решением
полученной «укороченной» системы. Удаляя уравнение 〈e s, y〉 = 0
(при s ≠ i), в качестве ненулевого решения «укороченной» сис-
темы можно взять вектор e s. Если же удалить уравнение 〈e i, y〉 = 0,

2.3. ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИИ ОБ ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ

1) Общее (т. е. произвольное) решение системы линейных неравенств имеет
вид линейной комбинации определенной конечной совокупности решений этой
системы с неотрицательными коэффициентами (см. [4], с. 243). При этом фун-
даментальная совокупность решений системы линейных неравенств — это мини-
мальная (по количеству) подобная совокупность решений.

2) Напомним, что символ 〈a, b〉 для m-мерных векторов a и b означает их

скалярное произведение, т. е. 
�

�
�

�

�

� � � �
�


 � � � .
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� � � � ��� ��
� � � � �� � , (2.12)

где �� �
�

� �  — множество парето-оптимальных решений в много-
критериальной задаче с множеством возможных решений X и «но-

вым» векторным критерием � � � �� �� �� � ���� �� � � �� , компоненты ко-
торого вычисляются по формулам (2.6).

Рис. 2.4 иллюстрирует доказанную теорему.

Рис. 2.4.

Комментируя последнюю теорему, прежде всего, следует об-
ратить внимание на ее универсальность, проявляющуюся в том,
что в ней отсутствуют какие бы то ни было требования к множе-
ству возможных решений X векторному критерию f. Это говорит
о том, что она применима к любой задаче многокритериального
выбора, в которой выполнены аксиомы 1−4. При этом множество
возможных решений (и векторов) может состоять как из конечно-
го, так и бесконечного числа элементов, а функции f1, f2, ..., fm
могут быть какими угодно — нелинейными, невыпуклыми,
невогнутыми и даже не обладать свойством непрерывности. Ог-
раничения в условиях теоремы 2.5 накладываются лишь на пове-
дение ЛПР — оно должно в процессе выбора вести себя «доста-
точно разумно» в том смысле, что его отношение предпочтения
обязано удовлетворять аксиомам 1−4.

Далее, формула (2.6) для пересчета «нового» критерия ��
на основе «старого» f чрезвычайно проста. В соответствии с ней
«новый» векторный критерий из «старого» получается заменой
менее важного критерия fj на выпуклую комбинацию критериев
fi и fj с коэффициентом относительной важности θi j. Все осталь-
ные «старые» критерии сохраняются. Нетрудно видеть, что при
подобном «пересчете» j-го критерия многие полезные с точки

Последнее неравенство можно переписать в виде � � 
� � � � �� 
 � 
 ��� �

или � � 
� � � �� 
 � 
� . Следовательно, соотношение y − y* ∈ M для век-

торов y = f (x), y* = f (x*) равносильно неравенству � � 
� � � �� 
 � 
� .

Отсюда следует, что множество �� �
 �, участвующее в (2.11), совпа-
дает с множеством парето-оптимальных векторов многокритери-
альной задачи, в которой множество возможных решений есть X,
а векторный критерий — ��  вида (2.6).

Для завершения доказательства остается заметить, что в ус-
ловиях доказываемой теоремы на основании леммы 1.2 верно
включение Sel Y ⊂ Ndom Y. С учетом этого из включений (2.11)
вытекают включения (2.5), которые требовалось установить.�

В соответствии с принципом Эджворта−Парето (см. раздел 1.4)
все выбираемые векторы должны содержаться во множестве
Парето или, что то же самое, любой парето-оптимальный вектор
может оказаться выбранным. Если в задаче многокритериального
выбора имеется дополнительная информация о том, что какой-то
один из критериев важнее другого, то, в соответствии с теоре-
мой 2.5, на основе этой информации множество Парето может
быть сужено без потери выбираемых векторов. Иначе говоря,
некоторые векторы из множества Парето можно удалить, так
как они заведомо не должны быть выбранными. Осуществленное
таким образом сужение множества Парето на основе информа-
ции об относительной важности критериев в некоторых задачах
может существенно облегчить последующий поиск выбираемых
векторов.

Справедливости ради следует отметить, что в определенных
случаях (в особенности, когда коэффициент относительной важ-
ности близок к нулю, а значит, критерии fj и �� j почти равны друг
другу) указанного выше сужения может и не произойти из-за со-
впадения множеств Парето относительно «старого» и «нового»
векторных критериев, т. е. �� �
 � = P (Y ). Можно сказать, что в та-
ких случаях имеющаяся информация об относительной важности
критериев не является содержательной.

В терминах решений доказанная теорема принимает следую-
щий вид.

Теорема 2.5 (в терминах решений). Предположим, что отно-
шение предпочтения � удовлетворяет аксиомам 1−4 и i-й критерий
важнее j-го с коэффициентом относительной важности θi j ∈ (0, 1).
Тогда для любого непустого множества выбираемых решений Sel X
имеют место включения

2.3. ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИИ ОБ ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ
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зрения оптимизации свойства критериев fi и fj сохраняются. На-
пример, если указанные критерии являются непрерывными, вог-
нутыми, выпуклыми или линейными, то новый критерий �� j так
же будет обладать соответствующими свойствами.

Наиболее простой вид формула (2.6) принимает в случае ли-
нейных критериев. Сформулируем соответствующий результат.

Следствие 2.2. Если дополнительно к предположениям теоремы
2.5 добавить условие X ⊂ R n и требование линейности критериев fi
и fj , т. е.

�

� � �
�

� �
� � �

�

� 
 � 
 � 
 � � �
�


 � � 
 � � �� ,

где � �� � ����� � � �
�� � � ��
 �, то новый j-й критерий будет иметь вид

� � � ��� 
 � 
�
 �� ,  где

�� �
� � � �� � �θ θ� �
 � �� . (2.13)

Этот результат немедленно вытекает из формулы (2.6) с учетом
линейности скалярного произведения векторов пространства Rm.

Равенство (2.13) имеет наглядную интерпретацию в случае, когда
множеством возможных решений является подмножество дву-

мерного векторного простран-
ства, т. е. когда X ⊂ R 2 (рис. 2.5).

Чем ближе коэффициент от-
носительной важности θi j к нулю,
тем ближе конец вектора ��  к кон-
цу вектора c j. При увеличении
θi j в пределах интервала (0, 1)
вектор c i, соответствующий бо-
лее важному критерию, как бы
«притягивает» к себе вектор �� ,

соответствующий новому j-му критерию. В случае θi j = 0.5 ко-
нец вектора c будет располагаться в центре отрезка соединяю-
щего концы двух векторов c i и c j. Если же коэффициент относи-
тельной важности близок к единице, то вектор ��  будет мало от-
личаться от c i, а значит векторный критерий ��  будет содержать
два почти одинаковых критерия fi. Тем самым, влияние менее
важного критерия fj, которому соответствует вектор c j, на реше-
ние задачи многокритериального выбора практически исчезнет.

3. Геометрические аспекты. В задачах многокритериального вы-
бора отношение предпочтения �, которым ЛПР руководствуется

Рис. 2.5.

2.3. ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИИ ОБ ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ

в процессе выбора, как правило, полностью не известно. В насто-
ящей книге считается, что оно лишь подчиняется аксиомам 1−4.
В этих условиях согласно теореме 2.3 отношение предпочтения �
является конусным с (неизвестным) острым выпуклым конусом K,
не содержащим начало координат. Более того, в силу следствия 2.1
конус K содержит неотрицательный ортант, т. е. ��� ⊂ K. Отсюда
вытекает включение Ndom Y ⊂ P (Y ), что вместе с (1.7) дает

Sel Y ⊂ P (Y ). (2.14)

Последнее включение выражает собой принцип Эджворта−Па-
рето, согласно которому выбор следует производить в пределах
множества Парето. Как было указано в первой главе, этот прин-
цип применим в любой задаче многокритериального выбора, удов-
летворяющей аксиомам 1−3. Иначе его можно сформулировать
так: множество Парето представляет собой определенную оценку
сверху для множества выбираемых векторов.

Теперь предположим, что помимо аксиом 1−4, которым удов-
летворяет рассматриваемая задача многокритериального выбора,
имеется дополнительная информация о том, что i-й критерий
важнее j-го критерия с коэффициентом относительной важности
θi j ∈ (0, 1). Наличие такой информации на геометрическом языке
означает, что указан вектор �� ∈ R m вида (2.4), для которого вы-
полняется включение �� ∈ K. Таким образом, теперь известно,
что конус K кроме неотрицательного ортанта содержит еще и век-
тор �� , расположенный за пределами неотрицательного ортанта.

Рассмотрим конус M, совпадающий с множеством всех не-
нулевых неотрицательных линейных комбинаций векторов  e

1, ...,
ei − 1, � �� � ����� �� � �+ , который был введен при доказательстве тео-
ремы 2.5. В ходе доказательства были установлены включения

��� ⊂ M ⊂ K, причем M ≠ ��� . Из этих включений следует

Sel Y ⊂ Ndom Y ⊂ NdomMY ⊂ P (Y ),

где

Ndom Y = {y* ∈ Y | не существует такого y ∈ Y, что y − y* ∈ K},

NdomM Y = {y* ∈ Y | не существует такого y ∈ Y, что y− y* ∈ M},

P (Y ) = {y* ∈ Y |  не существует такого y ∈ Y, что y − y* ∈ ���}.

Отсюда получаем новую, более точную, чем (2.14), оценку сверху
для неизвестного множества выбираемых векторов:

´



	�	� ГЛАВА 2. ОТНОСИТЕЛЬНАЯ ВАЖНОСТЬ ДЛЯ ДВУХ КРИТЕРИЕВ

К тому же самому выводу можно прийти, если воспользо-
ваться результатом теоремы 2.5. В самом деле, согласно форму-
ле (2.6) новый второй критерий принимает вид 0.5 y 1 + 0.5 y 2

и, как легко найти,

� � ���� ����� ��� ����� ��� ��� � .

Парето-оптимальным в этом множестве является только один
первый вектор. Значит, он (и только он) может оказаться выб-
ранным при условии, что выбираемые векторы существуют.

2.4. Шкалы критериев и инвариантность измерений

1. Количественные и качественные шкалы. Как было указано
ранее, все критерии f1, f2, ..., fm, участвующие в постановке задачи
многокритериального выбора, принимают числовые значения. Тем
самым, включение yi = fi (x) ∈ R выполняется для любого x ∈ X
и каждого i = 1, 2, ..., m. Для строгой постановки математической
задачи многокритериального выбора этих сведений о критериях
вполне достаточно.

Однако когда речь идет о той или иной прикладной задаче,
числовые значения критериев представляют собой результаты
измерения в некоторой шкале. Например, если рассматриваемый
критерий выражает стоимость проекта, прибыль или затраты,
то все эти величины могут быть выражены в рублях, миллионах
рублей, долларах, евро или каких-то других денежных единицах.
При измерении длин предметов результаты, как известно, по-
лучают в метрах, дюймах, футах, ярдах и т. п. Для указания
временного промежутка используют часы, секунды, годы, мил-
лионы лет и т. д. Таким образом, при решении конкретных при-
кладных задачи значения критериев измеряются в пределах той
или иной шкалы и выражаются в определенных единицах изме-
рения.

Существуют различные типы шкал измерения. Когда требуется
подсчитать число предметов, людей, вещей и т. п., используется
так называемая абсолютная шкала. В этой шкале жестко зафикси-
ровано начало отсчета (нуль) и масштаб измерения (единица). Два
разных (измеряющих) человека, независимо друг от друга выполнив
измерения (подсчет) в этой шкале одних и тех же количеств, должны
получить абсолютно идентичные результаты. Можно также сказать,
что в этой шкале существует единственная для всех измеряющих
единица измерения.

Sel Y ⊂ NdomMY.

При этом чем более широким по сравнению с неотрицательным
ортантом ��� является конус M, тем более узким можно ожидать

множество NdomMY по сравне-
нию с P (Y ).

Итак, наличие указанной
дополнительной информации
об относительной важности
критериев дает возможность
выделить в неизвестном кону-
се K более широкую часть, чем

��� (рис. 2.6), и на основании
этого построить более точную оценку сверху для множества вы-
бираемых векторов по сравнению с той, которая гарантируется
принципом Эджворта−Парето.

Пример 2.1. Пусть m = 2, Y = {y 1, y 2, y 3}, причем

y 1 = 4,1; y 2 = 3,2; y 3 = 1,3.

Здесь все три возможных вектора являются парето-оптимальны-
ми, т. е. принцип Эджворта−Парето не позволяет сузить область
поиска выбираемых векторов.

Предположим, что имеется дополнительная информация о том,
что первый критерий важнее второго с коэффициентом относи-
тельной важности 0.5. На геометрическом языке это означает,

что � ����� ����� 
� � � .
На рис. 2.7 изображены

данные три возможных векто-
ра и конус M, транслированный
в точки, соответствующие вто-
рой и третьей возможным век-
торам. Видно, что ни первый,
ни второй вектор не могут ока-
заться выбранными, так как для
них существуют доминирующие
их векторы:

y 2 ∈ y 3 + M, y 1 ∈ y 2 + M.

Следовательно, единственным
выбранным может оказаться первый вектор y 1. Иными словами,
если множество выбираемых векторов в данной задаче не пусто,
то оно состоит из единственного первого вектора.

2.4. ШКАЛЫ КРИТЕРИЕВ И ИНВАРИАНТНОСТЬ ИЗМЕРЕНИЙ

Рис. 2.6.

Рис. 2.7.
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ния φi ( yi ) = yi + ci , где ci — фиксированное число. Измерения
в этой шкале характеризуются сохранением разностей между двумя
разными измерениями, выполненными различными измеряющи-
ми. Другими словами, для измерений, выполненных в шкале раз-
ностей, осмысленным является высказывание «на столько-то
больше (меньше)». Например, продолжительность правления
Николая II, вычисленная как в Григорианском, так и юлианском
(или каком-то другом) календаре будет одна и та же.

Шкалой интервалов называется шкала, в которой результаты
измерений определяются с точностью до (инвариантны относитель-
но) линейного положительного преобразования φi (yi ) = αi yi + ci,
где αi > 0 и ci — фиксированные числа. Типичным примером
такой шкалы может служить шкала температур. Как известно,
для измерения температуры имеются, например, шкалы Цель-
сия, Фаренгейта и Кельвина. Переход от результатов измерений
в одной шкале к результатам в другой происходит по формулам
вида � � � �� � �α� �� .

Шкала интервалов характеризуется тем, что у каждого изме-
ряющего может быть свое начало отсчета и свой масштаб изме-
рения. При этом для измерений, выполненных в шкале интерва-
лов различными измеряющими, будут сохраняться отношения
разностей:

� �
� �

� � � � � �� � � �

� � � � � � � � � �

� � � �� � � �

� � � � � � � �

α α

α α

�� � �� �� �

�� ��� �� ��� �� ���� � � � �
� �

� �

� �
.

Все перечисленные выше шкалы — абсолютную, отноше-
ний, разностей и интервалов относят к количественным шкалам.
Понятно, что результаты измерения, инвариантные относительно
линейного положительного преобразования � � � �� � �α� �� , бу-
дут инвариантны и относительно преобразований вида ��� = ai yi

и � � �� � �� �� . По этой причине среди количественных шкал наи-
более «общей» оказывается шкала интервалов. Поэтому все ут-
верждения, полученные для измерений, выполненных в шкале
интервалов, будут иметь место и для измерений в шкалах отно-
шений и разностей (тем более, для абсолютной шкалы).

Кроме количественных существуют качественные шкалы.
Типичным представителем качественной шкалы является по-
рядковая шкала, в которой результаты измерений определяются
с точность до преобразований вида φi (yi), где φi — произвольная
строго возрастающая функция. Примерами такой шкалы могут

При измерении такой физической характеристики, как мас-
са предмета, используют различные единицы измерения. Как
известно, масса предмета может быть выражена в килограммах,
фунтах, тоннах, пудах и т. д. Здесь фиксированным для всех из-
меряющих оказывается лишь начало отсчета — нуль, который
соответствует отсутствию какой-либо массы, тогда как масштаб
измерения может оказаться различным для разных измеряющих.
Тем самым, результаты измерений �� � и �� �� одного и того же пред-
мета для двух различных измеряющих, пользующихся разными
единица измерений, могут отличаться на некоторый фиксирован-
ный положительный множитель αi, т. е. � � �� �α� ��� . В этом случае
говорят, что результаты измерений определяются с точностью до
преобразования вида φi (yi) = αi yi, αi > 0. Шкала подобного типа
называется шкалой отношений. Название этой шкалы связано с тем,
что при измерении в этой шкале независимо от единицы измерения
отношения измерений будут одинаковыми для различных измеря-
ющих. Действительно, пусть один измеряющий для двух объектов
получил два числа �� � и �� ��, а другой для тех же объектов — ����  и �� ���
соответственно. Поскольку � � �� �α� ���  и � � �� �α�� ����  при некотором
αi > 0, то выполняются равенства

� � � �

� � �
�

� ��

� �
�

α
α

� � �

�� ���
� �

�

�

,

которые и означают сохранение отношений измерений для раз-
личных измеряющих в шкале отношений. Таким образом, если ка-
кой-то измеряющий пришел к выводу, что, например, масса одно-
го предмета в два раза больше массы другого, то и другой измеряю-
щий (использующий другие единицы измерения) должен прийти
к тому же самому выводу. Это свидетельствует о том, что, при срав-
нении результатов измерения в шкале отношений, высказывание
«во столько-то раз больше (меньше)» является осмысленным.

Нетрудно понять, что измерение таких величин, как при-
быль, затраты и т. п., выраженных в единицах какой-либо валю-
ты, также следует производить в шкале отношений.

Еще одна шкала измерений характеризуется заданием масш-
таба измерений и нефиксированным (для различных измеряю-
щих) началом отсчета. Примером такой шкалы может служить
шкала летоисчисления — переход от одного летоисчисления к дру-
гому осуществляется изменением начала отсчета. Говоря более
точно, шкалой разностей называется такая шкала, в которой ре-
зультаты измерений определяются с точностью до преобразова-
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го преобразования, а значит, понятие множества Парето можно
использовать во всех тех случаях, когда измерения критериев про-
изводятся, по крайней мере, в порядковой (тем более, в любой ко-
личественной) шкале.

3. Инвариантность результатов теоремы 2.5 относительно ли-
нейного положительного преобразования критериев. Центральный
результат второй главы — это теорема 2.5, которая показывает
каким образом информацию об относительной важности крите-
риев можно использовать для сужения множества Парето. Как
было указано в предыдущем разделе, основой этого сужения яв-
ляются включения

��� � � � � �� � 
 �
 � , (2.15)

где �� �
 � — множество парето-оптимальных векторов в многокри-
териальной задаче с исходным множеством возможных решений
X и «новым» векторным критерием � � � �� �� �� � ���� �� � � ��  (т. е.
� �� �� � �= ), компоненты которого вычисляются по формулам

� � � �� �� � � � � � �� �� � � � �θ θ� � � �  для всех s ∈ I \ { j }. (2.16)

Поскольку рассматриваемый в книге количественный подход
предполагает измерение значений критериев в количественных
шкалах, то несомненный практический интерес представляет ус-
тановление инвариантности включений (2.15) относительно ли-
нейного положительного преобразования критериев. Заметим,
что если бы такой инвариантности на самом деле не было, то это
означало бы невозможность применение предлагаемого подхода
при решении практических многокритериальных задач с количе-
ственными критериями.

Теорема 2.6. Включения (2.15) (а также (2.12)) инвариантны
относительно линейного положительного преобразования критериев.

� Прежде всего заметим, что множество выбираемых векто-
ров Sel Y определено таким образом, что оно подчиняется лишь
аксиоме 1, не содержащей никаких упоминаний о критериях.
Значит, оно не зависит от выбора шкал критериев и является
инвариантным относительно любого преобразования критериев.

В предыдущем пункте была установлена инвариантность
множества Парето относительно строго возрастающего преобра-
зования. Линейное положительное преобразование является ча-
стным случаем строго возрастающего преобразования. Поэтому
множество Парето P (Y ) из (2.15) инвариантно относительно

служить шкала твердости минералов Мосса, шкала упорядочения
по важности выполнения работ, различные балльные шкалы.
В порядковых шкалах не фиксируется начало отсчета, может быть
различным масштаб измерений, причем, образно говоря, даже
величина деления при переходе от одной отметки к другой у раз-
личных измеряющих может оказаться разной. Для результатов
измерений в порядковой шкале лишены смысла высказывания
«во столько-то раз больше (меньше)», «на столько-то единиц
больше (меньше)». Здесь имеет смысл только отношение «боль-
ше—меньше». Следует отметить, что существуют и другие каче-
ственные шкалы (см., например, [10, 27]).

Все утверждения, полученные для результатов измерений,
выполненных в качественной шкале, имеют место и для количе-
ственных шкал, тогда как обратное не верно. Поэтому количе-
ственные шкалы по сравнению с качественными оказываются
«богаче» в том смысле, что для них могут быть получены более
богатые по содержанию утверждения, хотя и для менее широко-
го класса задач.

2. Инвариантность множества Парето относительно строго воз-
растающего преобразования критериев. Напомним определение
множества Парето (в терминах векторов):

P (Y ) = {y* ∈ Y | не существует такого y ∈ Y, что y ≥ y*}.

Выполнение неравенства y ≥ y*, участвующего в определе-
нии множества Парето, означает справедливость покомпонент-
ных неравенств yi � 


��  для всех i = 1, 2, ..., m, причем по край-
ней мере для одного номера i последнее неравенство является
строгим.

Пусть φi — строго возрастающая числовая функция одной
переменной, заданная на всей числовой оси, т. е.

� � � �� � � � �� � � �φ φ� �� � �

для �� �� � �� � . Очевидно, выполнение равенства � �� � ��  для стро-
го возрастающей функции φi равносильно выполнению равенства

� � � �� �φ φ �
 � � 
 �. Далее, для такой функции в соответствии с ее оп-
ределением неравенство yi > �� � имеет место тогда и только тог-
да, когда верно неравенство � � � �� �φ φ �
 �� 
 �.

Полученное означает, что определение множества Парето по
существу не изменится, если к значениям критериев применить
строго возрастающее преобразование. Иными словами, множе-
ство Парето оказывается инвариантным относительно указанно-
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выполняется для произвольных чисел yi, yj, �� �� � . Принимая
во внимание (2.17), после умножения на положительное число
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и прибавления константы С к обеим частям (2.18), получим
неравенство

  �� �
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α α α α

��
� � � � . (2.19)

Следовательно, из выполнения неравенства (2.18) вытекает нера-
венство (2.19). Нетрудно понять, что из выполнения неравен-
ства (2.19) аналогичным образом можно прийти к неравенству
(2.18). Это означает, что рассматриваемые два неравенства эк-
вивалентны.�

Из доказательства последней теоремы видно, что коэффици-
ент относительной важности θi j не является инвариантным отно-
сительно линейного положительного преобразования критериев.
Более того, можно легко проверить, что он не является инвариан-
тным и относительно преобразований вида ��� = ak yk и ��� = yk +
+ ck, k = i, j. Это свидетельствует о том, что для различных изме-
ряющих (различных ЛПР ) коэффициенты относительной важности
критериев будут различными, даже если они решают одну и ту же
задачу выбора, имеют одинаковые предпочтения и выполняют из-
мерения в шкале одного и того же типа. И в этом нет никакого
противоречия, поскольку указанные ЛПР могут использовать раз-
личные единицы измерения для одних и тех же критериев.

В самом деле, пусть, например, два лица, принимающие
решения, производят измерения значений первого критерия
в единицах валюты и с точки зрения предпочтений ведут себя
совершенно одинаковым образом, но одно из них производит
расчет в долларах, а другое — в рублях. Предположим далее,

линейного положительного преобразования критериев. Для

доказательства инвариантности множества Парето �� �
 � доста-
точно убедиться в инвариантности строгого неравенства fj =

� � � �� �� � � � � � � � � � � � �� � � � �θ θ θ θ� � � � � � � , содержащего новый j-й

критерий, поскольку проверка инвариантности соответствующих
неравенств для произвольного критерия fi, i ≠ j, производится
так же элементарно, как в предыдущем пункте.

Сначала напомним определение коэффициента относитель-
ной важности критериев:
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� � .

Здесь � � � ��� � � �� � 
 � � 
� � �� ��� �  (k = i, j), причем 
 
�� �� �  — фик-
сированные числа.

Теперь заменим yk на ��� = αk yk + ck (αk > 0), k = i, j,
в формуле �

�
�� = θi j yi + (1 − θi j) yj, задающей новый j-й крите-

рий. В результате этой замены получим преобразованный но-
вый критерий вида
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.

После упрощения приходим к следующему выражению
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� � � , (2.17)

где константа
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не зависит от yi, yj.
Теперь предположим, что неравенство
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что измерение значений второго критерия осуществляется обо-
ими ЛПР в абсолютной шкале (например, число штук выпус-
каемых заводом изделий). Для ЛПР, работающего с долларами
и готового за добавку в $ 1000 пожертвовать 10 изделиями,
коэффициент относительной важности первого критерия в срав-
нении со вторым составит

��
��

���� ��
����θ

�
� � � .

Второе ЛПР, оперирующее с рублями (если оно ведет себя так
же как первое ЛПР), должно быть готово за 30000 руб. добавки
по первому критерию пожертвовать тем же самым количеством
изделий (10 штук) по второму критерию, поскольку один доллар
(на момент принятия решения) приблизительно равен тридцати
рублям. Поэтому для второго ЛПР коэффициент относительной
важности будет равен

��
��

����� ��
�������θ

�
�� � � ,

что значительно меньше, чем у первого. Но именно так и должно
быть, поскольку для первого ЛПР единица валюты является су-
щественно более «дорогой», чем для второго.



Предложенное в предыдущей главе понятие относительной
важности критериев здесь распространяется на общий случай двух
групп критериев. Изучаются его простейшие свойства и показы-
вается, каким образом производить учет информации о том, что
одна группа критериев важнее другой группы с определенным
набором коэффициентов относительной важности. Этот учет, как
и в случае двух критериев, сводится к построению множества
Парето относительно нового векторного критерия. Но при этом
размерность последнего может быть существенно выше размер-
ности исходного критерия.

Приведены геометрические иллюстрации для задачи выбора
с тремя критериями.

3.1. Определение и важнейшие свойства
относительной важности критериев

1. Основные определения. Введем общее определение относи-
тельной важности для двух групп критериев.

Определение 3.1. Пусть A, B ⊂ I, A ≠ ∅, B ≠ ∅, A ∩ B = ∅.
Будем говорить, что группа критериев A важнее группы критериев
B с двумя заданными наборами положительных параметров �

��  для
всех i ∈ A и �

��  для всех j ∈ B, если для любой пары векторов
y ′, y ″ ∈ R m, для которых верно

� �� � �� � �� ��� � � для всех i ∈ A,

� �� � �� � ��� �� � � для всех j ∈ B,

� �� �� ��� для всех s ∈ I \ (A ∪ B ), (3.1)

имеет место соотношение y ′ � y ″.
Другими словами, для ЛПР группа критериев A важнее дру-

гой группы B, если всякий раз при выборе из пары векторных

Глава 3

ОТНОСИТЕЛЬНАЯ ВАЖНОСТЬ
ДЛЯ ДВУХ ГРУПП КРИТЕРИЕВ
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− группа критериев A ∪ {k} при k ∈ B будет важнее группы
критериев B \ {k} с положительными параметрами �

��  для всех
i ∈ A, �

��  для всех j ∈ B \ {k} и произвольным положительным па-
раметром �

�� ;
− группа критериев A будет важнее группы критериев B \ {k}

с положительными параметрами �
��  для всех i ∈ A и �

��  для всех
j ∈ B \ {k}.

� Пусть в соответствии с определением 3.1 для векторов y ′, y ″,
удовлетворяющих (3.1), выполнено соотношение y ′ � y ″.

Рассмотрим при k ∈ I \ (a ∪ B ) произвольный вектор y ∈ R m,
для которого выполнено

�� � � �� � � �� �� � для всех s ∈ I \ {k}.

Очевидно, y ≥ y ′. Отсюда согласно аксиоме 3 следует соотноше-
ние y � y ′, которое вместе с y ′ � y ″ в силу транзитивности отно-
шения предпочтения влечет соотношение y � y ″. Поскольку

� �� � �� � ���� � � для всех i ∈ A,

�� �� � � � � �� � � � � �� �� ��� � � � � для всех j ∈ B,

� �� � ��� для всех s ∈ I \ (A ∪ B ∪ {k})

и разность �
� � �� � � ��� �  может быть любым положительным чис-

лом, то доказательство первого утверждения завершено.
Для проверки истинности второго утверждения при k ∈ B

введем вектор y с компонентами

�� � � �� � � ��� �� � для всех s ∈ I \ {k}.

Для этого вектора аналогично рассмотренному выше получим
соотношение y � y ″, которое устанавливает справедливость тре-
буемого второго утверждения.

Доказательство третьего утверждения проводится по той же
самой схеме и не составляет труда.�

Из общих соображений ясно, что в случае, когда ЛПР готово
за определенный прирост по первой группе критериев пожертво-
вать некоторым количеством по критериям менее важной группы,
то это ЛПР должно согласиться как на больший прирост по тем же
самым критериям, так и на меньшую потерю по менее важным
критериям. Действительно, справедлива следующая

оценок ЛПР готово пожертвовать определенным количеством �
��

по каждому менее важному j-му критерию fj (j ∈ B ) ради полу-
чения дополнительного количества �

��  по каждому более важно-
му i-му критерию fi (i ∈ A ) при условии сохранения значений
всех остальных критериев.

Нетрудно видеть, что в частном случае A = {i } и B = { j } оп-
ределение 3.1 совпадает с определением 2.1 относительной важно-
сти для двух критериев. Иначе говоря, определение относитель-
ной важности для двух групп критериев является прямым обобще-
нием определения относительной важности для двух критериев.

Соотношение между числами �
��  и �

�� , как и в случае двух
критериев, позволяет количественно оценить степень важности
одной группы критериев по сравнению с другой группой.

Определение 3.2. Пусть группа критериев A важнее группы кри-
териев B с двумя заданными наборами положительных парамет-
ров �

��  для всех i ∈ A и �
��  для всех j ∈ B. Положительные числа

�

��
�	
�� ������

� �

� �

�

� �
� � � �θ

�
� � � (3.2)

будем называть коэффициентами относительной важности для
указанной пары групп критериев.

Если через | A | и | B | обозначить число элементов множества
A и B соответственно, то число всех коэффициентов относитель-
ной важности, вводимых определением 3.2, равно произведению
| A | ⋅ | B |. Например, если A = {i }, т. е. | A | = 1, то указанное
число коэффициентов относительной важности будет равно | B | —
количеству элементов менее важных критериев.

2. Свойства относительной важности. Имеет место следующий
результат, в соответствии с которым, в случае, когда одна группа
критериев важнее другой, данное соотношение важности будет
сохраняться, если более важную группу расширять, добавляя к ней
другие критерии, а менее важную сужать, удаляя из нее какие-то
критерии.

Теорема 3.1. Пусть отношение предпочтения � удовлетворя-
ет аксиомам 2, 3 и группа критериев A важнее группы критериев
B с двумя заданными наборами положительных параметров �

��  для
всех i ∈ A и �

��  для всех j ∈ B. Тогда
− группа критериев A ∪ {k} при k ∈ I \ (A ∪ B ) будет важ-

нее группы B с положительными параметрами *
iw  для всех i ∈ A,

�
��  для всех j ∈ B и произвольным положительным параметром �

�� ;

3.1. ОПРЕДЕЛЕНИЕ И ВАЖНЕЙШИЕ СВОЙСТВА ОТНОСИТЕЛЬНОЙ...
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произвольных двух векторов y ′, y ″ ∈ R m выполнены следующие
m высказываний

1) 
 
� � � �� �� � ��� � � ;

2) 
 
 � ��� � � � � �� �� � �� � ��� � � � ;

3) 
 
 � � � �� �� � � � � � � �� �� � �� � �� � ��� � � � � ;
........................................................

m) � 
� �� ���� 
�� � 	 	� � � 	 � � � �� �� � �� � ��� � � � � � .

Из высказывания 1) следует, что первый критерий несравнимо
важнее группы всех остальных критериев. Действительно, согласно
высказыванию 1), для произвольных векторов y ′, y ″ ∈ R m, у ко-
торых разности � �� ���� 	 	� � � ��� � �� �� �  положительны, все числа

� �


 
 � �

�

� �

� � � �
θ

�� ��

� �� �� �� � �
� ,

� �


 
 � �


�
� �

� � � �
θ

�� ��

� �� �� �� � �
� ,

.............................


 




	 	

	 	

	

� �

� � � �
θ

�� ��

� �� �� �� � �
�

являются коэффициентами относительной важности, причем по-
скольку указанные выше разности вместе с разностью 
 
� �� ���  мо-
гут принимать все возможные значения в пределах от 0 до +∞,
выписанные коэффициенты относительной важности являются
произвольными числами, сплошь заполняющими интервал (0, 1).
Это означает, что первый критерий несравнимо важнее группы
всех остальных критериев.

Аналогично, из высказывания 2) можно прийти к выводу,
что второй критерий несравнимо важнее группы всех последую-
щих критериев (3, ..., m), ..., из (m − 1)-го высказывания следует
несравнимая важность (m − 1)-го критерия по сравнению с m-м
критерием.

Достаточность. Пусть первый критерий несравнимо важнее
группы (2, 3, ..., m) всех остальных критериев, второй — несрав-
нимо важнее группы (3, ..., m) всех последующих критериев и т. д.
Выберем два произвольных вектора y ′, y ″ ∈ R m, для которых верно

3.1. ОПРЕДЕЛЕНИЕ И ВАЖНЕЙШИЕ СВОЙСТВА ОТНОСИТЕЛЬНОЙ...

Теорема 3.2. Пусть отношение предпочтения � удовлетворяет
аксиомам 2 и 3. Предположим, что группа критериев A важнее
группы критериев B с двумя заданными наборами положительных
параметров �

��  для всех i ∈ A и �
��  для всех j ∈ B. Тогда группа

критериев A будет важнее группы критериев B с любой парой набо-
ров положительных параметров �� � для всех i ∈ A и всех �� �  для
всех j ∈ B, удовлетворяющих неравенствам

�
� �� �� � для всех i ∈ A, �

� �� �� � для всех j ∈ B.

Иначе говоря, если первая группа критериев A важнее второй
группы критериев B с коэффициентами относительной важности
θi j для всех i ∈ A  и всех j ∈ B, то первая группа будет важнее
второй и с любыми коэффициентами относительной важности � �θ� ,
меньшими, чем θi j, т. е. � � � �θ θ� �  для всех i ∈ A  и всех j ∈ B.

Доказательство теоремы 3.1 проводится аналогично доказа-
тельству теоремы 2.1; поэтому воспроизводить его здесь не будем.

По аналогии с рассмотрениями предыдущей главы можно
ввести предельные коэффициенты относительной важности для двух
групп критериев.

Кроме того, можно определить и отношение несравнимой
важности одной группы критериев по сравнению с другой груп-
пой. А именно, если любое положительной число θi j ∈ (0, 1) (при
всех i ∈ A и j ∈ B ) является коэффициентом относительной важ-
ности для группы критериев A по сравнению с группой критери-
ев B, то в таком случае будем говорить, что первая группа крите-
риев несравнимо важнее второй группы.

Во второй главе уже была получена характеризация лекси-
кографического 1) отношения в терминах последовательного на-
бора несравнимо боле важных критериев (см. теорему 2.2). Ниже
формулируется аналогичное утверждение в терминах групп кри-
териев, которое эквивалентно теореме 2.2.

Теорема 3.3. Заданное на пространстве R m бинарное отноше-
ние �, удовлетворяющее аксиомам 2 и 3, является лексикографичес-
ким тогда и только тогда, когда первый критерий несравнимо важнее
группы {2, 3, ..., m} всех остальных критериев, второй критерий не-
сравнимо важнее группы {3, ..., m} всех последующих критериев и т. д.
(m − 1)-й критерий несравнимо важнее m-го критерия.

� Необходимость. Пусть отношение � является лексикогра-
фическим. По определению лексикографического отношения для

1) Определение лексикографического отношения можно найти в разд. 1.2.
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ствует следующий результат, который доказывается по той же
схеме, что и теорема 2.4.

Теорема 3.4. В силу инвариантности отношения предпочтения �
можно считать, что в определении 3. 1 векторы y ′, y ″ фиксированы.
В частности, в нем можно положить

 �
� �� �� � для всех i ∈ A,

�
� �� �� � � для всех j ∈ B,

��� � � для всех s ∈ I \ {a ∪ B } (3.3)

и y ″ = 0m.
Поскольку отношение предпочтения � предполагается инва-

риантным относительно линейного положительного преобразо-
вания, на основании сформулированной теоремы 3.4 приведем
более простое определение относительной важности, которое
эквивалентно определению 3.1.

Определение 3.3. Пусть A, B ⊂ I, A ≠ ∅, B ≠ ∅, A ∩ B = ∅.
Группа критериев A важнее группы критериев B с двумя заданными
наборами положительных параметров �

��  для всех i ∈ A и �
��  для

всех j ∈ B, если для вектора y ′ вида (3.3) верно соотношение y ′ � 0m.
В соответствии с данным определением, если, например, век-

тор (0.7, −0.3, 1) оказывается для ЛПР предпочтительнее нулево-
го вектора (0, 0, 0), то группа из первого и третьего критериев
будет важнее группы, состоящей из одного второго критерия,
причем соответствующие коэффициенты относительной важно-
сти равны


� ��
��� ���

��� ��� 
 ���
���� ����θ θ

� �
� � � 	 .

2. Сужение множества Парето на основе информации о том,
что одна группа критериев важнее другой группы. На основе следу-
ющей теоремы в процессе принятия решений из множества всех
парето-оптимальных векторов можно удалять те, которые заве-
домо не могут оказаться выбранными.

Теорема 3.5 (в терминах векторов). Предположим, что A, B ⊂ I,
A ≠ ∅, B ≠ ∅, A ∩ B = ∅ и группа критериев A важнее группы
критериев B с двумя заданными наборами положительных парамет-
ров �

��  для всех i ∈ A и �
��  для всех j ∈ B. Тогда для любого непустого

множества выбираемых векторов имеют место включения

3.2. ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИИ ОБ ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ

неравенство 
 
� �� ��� . Для доказательства высказывания 1) следует
убедиться в том, что имеет место соотношение y ′ � y ″.

Если дополнительно к неравенству 
 
� �� ���  выполнено � �� �� ��
 ,
i = 2, ..., m, то благодаря аксиоме Парето получаем соотноше-
ние y ′ � y ″.

Рассмотрим случай, когда в дополнение к неравенству 
 
� �� ���
имеет место обратное неравенство � �� �� ���  для некоторого (или
некоторых) s ∈ {2, ..., m}. Введем в рассмотрение вектор y, у кото-
рого 
 
� � �� , для всех указанных номеров s выполнено равенство


� �� � �� � , а все остальные компоненты имеют вид 
� �� � ��� � .
Очевидно, справедливо неравенство y ′ ≥ y. Следовательно, со-
гласно аксиоме Парето верно соотношение y ′ � y. У вектора y
только первая компонента больше первой компоненты вектора y ″,
а все остальные — меньше соответствующих компонент y ″. По-
этому благодаря тому, что первый критерий несравнимо важнее
набора всех остальных критериев, получаем y � y ″. В силу тран-
зитивности отношения � из соотношений y ′ � y и y � y ″
приходим к требуемому результату y ′ � y ″.

Точно так же, используя аксиому Парето и тот факт, что вто-
рой критерий несравнимо важнее группы (3, ..., m) всех последую-
щих критериев, проверяется истинность высказывания 2) и т. д.

Действуя подобным образом, в конце концов, получим спра-
ведливость высказывания m − 1). Высказывание m) вытекает из
аксиомы 3.�

3.2. Использование информации об относительной важности
критериев для двух групп критериев

1. Эквивалентное более простое определение относительной
важности для двух групп критериев. Для того чтобы в соответ-
ствии с определением 3.1 проверить, действительно ли одна группа
критериев важнее другой группы, необходимо предложить ЛПР
для сравнения бесконечное число пар векторов y ′, y ″ ∈ R m, удов-
летворяющих соотношениям (3.1) при некоторых положитель-
ных параметрах �

�� , �
�� . Очевидно, что на практике подобную про-

верку осуществить невозможно из-за бесконечного числа срав-
ниваемых пар векторов. На самом деле, как и в случае двух
критериев (см. теорему 2.4), такая проверка в условиях инвари-
антности отношения предпочтения и не требуется. Достаточно
убедиться в выполнении соотношений (3.1) лишь для некоторой
одной фиксированной пары векторов y ′, y ″. Об этом свидетель-
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векторов e s при s ∈ B. Значит, во втором случае образующими
конуса M являются векторы e 1, e 2, ..., e m, y ′ без вектора e i. Далее
сначала рассматривается первый случай, а затем — второй.

Так как образующими конуса M являются векторы e 1, e 2, ...,
em, y ′, то множество ненулевых решений системы линейных нера-
венств

〈e i, y〉 � 0 для всех i ∈ I,

〈y ′, y〉 � 0 (3.6)

совпадает с двойственным конусом C.
Найдем фундаментальную совокупность решений системы

линейных неравенств (3.6). Это должна быть такая система век-
торов, множество неотрицательных линейных комбинаций кото-
рой в точности совпадает с множеством решений системы (3.6).
При этом ни один вектор фундаментальной совокупности невоз-
можно представить в виде неотрицательной линейной комбина-
ции остальных векторов этой совокупности.

Сначала укажем некоторый набор решений системы линейных
неравенств (3.6). Прежде всего, заметим, что каждый единичный
орт e i пространства R m при i ∈ I \ B  является решением (3.6).
Далее, введем векторы


� � � �
� � � �
 
 
θ θ� � � � �

для всех i ∈ A и всех j ∈ B. Компоненты этих векторов неотрица-
тельны, и потому все они удовлетворяют неравенствам 〈e i, y〉 � 0
для каждого i ∈ I. Более того, они удовлетворяют и последнему
неравенству 〈y ′, y〉 � 0 системы (3.6), так как

� �

� � � �
� �� 
 �� �

� � � �

� �
� � � � � � � �

� �

� � � �
� 
 � � � �θ θ

� �
� � �
 � � � � � �� � �

для всех i ∈ A  и j ∈ B.
Таким образом, набор, состоящий из векторов e i для всех

i ∈ I \ B и векторов e i j для всех i ∈ A и j ∈ B, принадлежит двой-
ственному конусу C. При этом, как нетрудно убедиться, ни один
из векторов этой совокупности невозможно представить в виде
неотрицательной линейной комбинации остальных векторов.
Общее число p всех векторов указанного набора равно

p = m − | B | + | A | ⋅ | B |.
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� � ����� � � � �� �� � , (3.4)

где P (Y ) есть множество парето-оптимальных векторов в много-
критериальной задаче с множеством возможных решений X и век-
торным критерием f, а �� �� � — множество парето-оптимальных век-
торов в задаче с исходным множеством решений X и новым p-мерным

 	 � � �� � � �� � векторным критерием g, составленном из тех

компонент fi векторного критерия f, для которых i ∈ I \ B, а также
компонент вида

gi j = θi j fi + (1 − θi j) fj для всех i ∈ A и всех j ∈ B. (3.5)

� Вновь через K обозначим острый выпуклый конус конус-
ного отношения �. По условию для вектора y ′ вида (3.3) выпол-
няется соотношение y ′ � 0m, а значит y ′ ∈ K. В соответствии со
следствием 2.1 справедливо включение 	� �� � .

Введем в рассмотрение множество M — совокупность всех
ненулевых неотрицательных линейных комбинаций конечного
набора векторов e 1, e 2, ..., em, y ′, где e 1, e 2, ..., em — единичные орты
пространства Rm. Множество M является выпуклым конусом, не
содержащим начало координат (так как коэффициенты линейных
комбинаций одновременно в нуль не обращаются). В силу вклю-
чений 
 �� � ���� 	 	
 
 
 � ��� �  и y ′ ∈ K введенное множество M
представляет собой подмножество конуса K. Более того, M —
острый конус, так как он — подмножество острого выпуклого
конуса K.

Введем так называемый двойственный 1) конус (без нуля) по
отношению к конусу M, т. е.

C = {y ∈ R m | 〈z, y〉 � 0 для всех z ∈ M } \ {0m}.

На основании теории двойственности выпуклого анализа ([28],
с. 175) образующими конуса C являются внутренние нормали
к (m − 1)-мерным граням конуса M, и обратно: образующими
конуса M служат внутренние нормали к (m − 1)-мерным граням
конуса C.

Возможны два случая: | A | > 1 и | A | = 1. В первом случае обра-
зующими конуса M являются все векторы e 1, e 2, ..., em, y ′, поскольку
ни один из этих векторов нельзя представить в виде неотрицатель-
ной линейной комбинации остальных векторов этого набора. Во
втором случае (т. е. тогда, когда A= {i }) вектор e i можно предста-
вить в виде положительной линейной комбинации вектора y ′ и всех

1) О двойственном конусе см. также п. 3.3.
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рицательной линейной комбинации этой совокупности векто-
ров. Будем далее для удобства обозначать эту совокупность
a 1, a 2, ..., a p. Рассмотрение первого случая завершено.

Несколько слов о втором случае. Когда A = {i }, рассужде-
ния аналогичны, но несколько проще приведенных выше. В этом
случае следует рассмотреть систему из m уравнений, которая от-
личается от (3.7) отсутствием уравнения 〈e i, y〉 = 0, соответству-
ющего единичному орту e i. Здесь удалять следует лишь одно урав-
нение, чтобы получить ту же самую фундаментальную совокуп-
ность решений системы линейных неравенств (3.6).

Итак, в силу доказанного выше, множество решений систе-
мы линейных неравенств (3.6), т. е. конус C (вместе с нулем),
совпадает с множеством всех неотрицательных линейных комби-
наций векторов a1, a2, ..., a p. Поэтому включение z ∈ C для век-
тора z имеет место тогда и только тогда, когда этот вектор можно
представить в виде некоторой ненулевой неотрицательной ли-
нейной комбинации векторов указанного набора.

Благодаря последнему обстоятельству неравенство

〈z, y〉 � 0 для всех z ∈ C (3.8)

для произвольного фиксированного вектора y ≠ 0m оказывается
эквивалентным неравенству

〈a i, y〉 ≥ 0, i = 1, 2, ..., p, (3.9)

где знак ≥ указывает, что хотя бы для одного i ∈ {1, 2, ..., p} нера-
венство строгое. В самом деле, если вектор y удовлетворяет нера-
венствам (3.9), то поскольку всякий вектор z ∈ C можно предста-
вить в виде некоторой ненулевой неотрицательной линейной ком-
бинации векторов a 1, a 2, ..., a p, например, z = λ 1a

1 + λ 2a
2 + ... +

+ λ p a
p, то, умножая неравенства (3.9) на соответствующие од-

новременно не равные нулю неотрицательные числа λ 1, λ 2, ..., λ p

и почленно складывая полученные таким образом неравенства,
придем к неравенству
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из (3.8). Обратно, из (3.8) вытекает (3.9), так как a i ∈ C для всех
i = 1, 2, ..., p. При этом одновременно все неравенства (3.9) как
равенства выполняться не могут. В самом деле, если для ненуле-
вого вектора y неравенства (3.9) выполняются как равенства, то

3.2. ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИИ ОБ ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ

Для того чтобы проверить, что указанный набор векторов
образует фундаментальную совокупность решений системы (3.6),
остается убедиться в том, что система линейных неравенств (3.6)
не имеет никаких других (с точностью до положительного множи-
теля) решений, кроме всевозможных неотрицательных линейных
комбинаций векторов указанного выше набора. С этой целью
наряду с системой (3.6) рассмотрим соответствующую ей систему
из m + 1 линейных уравнений:

〈e i, y〉 = 0 для всех i ∈ I,

〈y ′, y〉 = 0. (3.7)

Любая подсистема из m− 1 векторов системы e 1, e 2, ..., e m, y ′ яв-
ляется линейно независимой. Следовательно, искомая фундамен-
тальная совокупность решений системы линейных неравенств (3.6)
содержится среди (одномерных) ненулевых решений подсистем
из m − 1 уравнений системы линейных уравнений (3.7).

Начнем удалять из системы (3.7) по два уравнения и выпи-
сывать решения получающихся в результате такого удаления под-
систем, удовлетворяющие, кроме того, системе неравенств (3.6).
Найденные таким образом векторы и составят требуемую фунда-
ментальную совокупность решений системы неравенств (3.6).

Если в число удаляемых входит последнее уравнение систе-
мы (3.7), то ненулевыми решениями получающихся подсистем
будут служить (с точностью до положительного множителя), на-
пример, единичные орты e 1, e 2, ..., e m. Однако, как легко видеть,
из этого набора лишь те векторы, для которых i ∈ I \ B, удовлет-
воряют системе неравенств (3.6).

Если последнее уравнение системы линейных уравнений (3.7)
не удаляется, то ненулевыми решениями получающихся подсис-
тем будут являться (с точностью до положительного множителя)
векторы e i j для всех i ∈ A и всех j ∈ B. Все эти векторы, как
было установлено ранее, удовлетворяют системе неравенств (3.6).

Поскольку все возможные варианты удаления пар уравне-
ний из системы линейных уравнений (3.7) рассмотрены, то ни-
каких других (с точностью до положительного множителя) реше-
ний подсистем из m − 1 уравнений системы (3.7), удовлетворяю-
щих (3.6), не существует. Это означает, что система векторов,
составленная из e i для всех i ∈ I \ B и e i j для всех i ∈ A и всех
j ∈ B, образует фундаментальную совокупность решений систе-
мы линейных неравенств (3.6). Следовательно, любое решение
системы неравенств (3.6) может быть представлено в виде неот-
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где g — p-мерная векторная функция, участвующая в формули-
ровке доказываемой теоремы. Следовательно, �� �� � — это мно-
жество парето-оптимальных векторов в многокритериальной за-
даче с исходным множеством возможных решений X и вектор-
ным критерием g.

Для завершения доказательства теоремы остается в (3.11)
воспользоваться включением Sel Y ⊂ Ndom Y, которое имеет ме-
сто в силу леммы 1.2.�

Полученный результат можно легко переформулировать в тер-
минах решений. А именно, справедлива следующая теорема.

Теорема 3.4 (в терминах решений). Предположим, что выпол-
нены аксиомы 1−4 , A, B ⊂ I, A ≠ ∅, B ≠ ∅, A ∩ B = ∅ и группа
критериев A важнее группы критериев B с двумя заданными набо-
рами положительных параметров �

��  для всех i ∈ A и �
��  для всех

j ∈ B. Тогда для любого непустого множества выбираемых решений
имеют место включения

Sel X ⊂ Pg (X ) ⊂ Pf (X ), (3.12)

где Pf (X ) есть множество парето-оптимальных решений в много-
критериальной задаче с множеством возможных решений X и век-
торным критерием f, а Pg (X ) — множество парето-оптимальных
решений в задаче с исходным множеством решений X и новым p-мер-
ным векторным критерием g, который определяется в формулиров-
ке предыдущей теоремы.

Согласно полученному результату новый векторный крите-
рий g состоит из p = m − | B | + | A | ⋅ | B | � m компонент. Зна-
чит, число новых критериев может совпадать с числом «старых»
критериев, но может и превосходить его.

Следствие 3. 1. В условиях теоремы 3.4 равенство p = m вы-
полняется тогда и только тогда, когда | A | = 1.

� Пусть p = m − | B | + | A | ⋅ | B | = m. Тогда | A | ⋅ | B | = | B |,
а значит | A | = 1.

Обратно, если | A | = 1, то p = m − | B | + 1 ⋅ | B | = m.�
Пример 3.1. Пусть в многокритериальной задаче имеется де-

сять критериев, т. е. m = 10 и некоторая половина критериев
важнее оставшейся половины, т. е. | A | = | B | = 5. В этом случае
согласно теореме 3.5 имеем p = 10 − 5 + 5 ⋅ 5 = 30. Следова-
тельно, новый векторный критерий g в данном случае будет со-
держать пять старых критериев и двадцать пять новых, которые
можно вычислить на основе старых, используя формулу (3.5).

3.2. ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИИ ОБ ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ

эти же неравенства будут иметь место и для противоположного
вектора −y. Отсюда следует, что конус, двойственный по отноше-
нию к C, не является острым. Но этот двойственный конус есть

M = {y ∈ R m | 〈z, y〉 � 0 для всех z ∈ C } \ {0m},

так как C является двойственным по отношению к конусу M 1).
Тем самым, приходим к противоречию — конус M не является
острым. Полученное противоречие означает, что для ненулевого
вектора y одновременно все неравенства (3.9) выполняться как
равенства не могут.

На основании установленной эквивалентности неравенств
(3.6) и (3.9) заключаем, что включение y ∈ M выполняется тогда
и только тогда, когда справедливы неравенства (3.9), и поэтому

y ∈ M ⇔ 〈a i, y〉 ≥ 0, i = 1, 2, ..., p. (3.10)

Переходим к завершающему этапу доказательства теоремы.
Из включений

	� � �� � �
следует

� � ������ � � � �� �� � , (3.11)
где

� � �� ����� ��!"��!�!#$%&%� ��'!%�� � � � � � � � �= ∈ ∈ − ∈� � � �

представляет собой множество недоминируемых элементов мно-
жества Y, упорядоченного конусным отношением с острым вы-
пуклым конусом M.

Пусть y = f (x), y* = f (x*), f (x) ≠ f (x*) при некоторых x, x* ∈ X.
Благодаря эквивалентности (3.10) включение f (x) − f (x*) ∈ M
имеет место тогда и только тогда, когда выполняются неравенства

� �� �� 
� �� ������ � � � � � 
� �� � � 
 �
 � ,

или, что то же самое,

�� � � 
� �� ����� �� � � � � � � 
� ��

 � � �
 � .

Если вспомнить конкретный вид векторов a 1, a 2, ..., a p, то пос-
ледние неравенства можно переписать в виде

g (x) ≥ g (x*),

1) В случае многогранного конуса M двойственным по отношению к двой-
ственному конусу C является исходный конус M [28].
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Следствие 3.3. Включения (3.4) и (3.12) инвариантны относи-
тельно линейного положительного преобразования критериев f1,
f2, ..., fm, а значит, результаты теоремы 3.4 могут быть использо-
ваны для задач многокритериального выбора, в которых значения
указанных критериев вычисляются в количественных шкалах (ин-
тервалов, отношений и разностей).

3.3. Геометрические иллюстрации к задаче
с тремя критериями

1. Трехкритериальная задача общего вида. В двухкритериаль-
ной задаче информация об относительной важности может иметь
только такую форму, когда группа из одного критерия важнее
группы из другого критерия. В этом случае число новых крите-
риев (число p) будет совпадать с числом «старых» критериев, т. е.
p = 2. Таким образом, в двухкритериальной задаче учет инфор-
мации об относительной важности критериев не приводит к уве-
личению критериев (собственно говоря, этот же вывод можно
получить и из результатов предыдущей главы).

Рассмотрим многокритериальную задачу с тремя критерия-
ми, т. е. будем считать m = 3. Предположим, что имеется ин-
формация о том, что группа из
первых двух критериев f1, f2 важ-
нее третьего критерия f3. Соглас-
но определению 3.3 это означает,
что включение y ′ � 03 имеет мес-
то для некоторого вектора y ′ =
= � ��


 � �� �� � � ��� � � �  при опреде-
ленных положительных парамет-

рах � ��

 � �� �� � �  (рис. 3.1). Конкрет-

ные значения данных параметров
в дальнейшем изложении суще-
ственной роли не играют. Неотри-
цательный ортант (октант) ��� —
это острый выпуклый конус (без
нуля) OABC, порожденный единичными ортами e 1 = OA, e 2 = OB
и e 3 = OC. Этот конус имеет три двумерные грани, представляю-
щие собой соответствующие части координатных плоскостей: OBC,
OAC и OAB. Выпуклый конус M, порожденный единичными ор-
тами пространства R 3 и вектором y ′— это острый выпуклый ко-
нус (без нуля), имеющий уже четыре двумерные грани: OBC, OAC,

Следующий результат показывает, при каких условиях число
компонент нового векторного критерия оказывается наибольшим
возможным.

Следствие 3.2. В условиях теоремы 3.4 максимальное значение p
достигается в случае
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,

где квадратные скобки обозначают целую часть числа.
� Обозначим x = | A |, y = | B | и рассмотрим задачу макси-

мизации

p = m − y + x y → max

при условии x + y � m. Нетрудно понять, что максимум в сфор-
мулированной задаче может достигаться лишь при выполнении
равенства x + y = m. Выразив из этого равенства y через x и под-
ставив его в выражение для p, получим p = m − (m − x) +
+ x (m − x) = x (m + 1 − x). Эта квадратичная функция одной
переменной x принимает наибольшее значение в точке x = | A | =
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	 �
� . Если m является нечетным числом, полученный резуль-

тат представляет целое число. Когда число критериев m — четное,
максимум в целочисленной точке будет достигаться на ближай-

шем целом 
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Следствие 3.2 показывает, что в приведенном выше приме-
ре 3.1 (где m = 10) максимальное возможное число компонент
нового векторного критерия равно 30 и может достигаться в случае,
когда одна половина критериев важнее другой половины (либо
когда некоторая группа из шести критериев важнее оставшейся
группы из четырех критериев).

В теореме 2.7 была установлена инвариантность включений
(2.12) и (2.15) относительно линейного положительного преоб-
разования критериев в случае относительной важности для двух
критериев. Поскольку формулы для определения коэффициентов
относительной важности и пересчета новых критериев абсолютно
идентичны как в случае двух критериев, так и в случае двух групп
критериев, то рассуждения, приведенные в доказательстве теоре-
мы 2.7, можно применить в данном случае двух групп критериев.
В итоге придем к следующему результату, имеющему несомненное
практическое значение.

3.3. ГЕОМЕТРИЧЕСКИЕ ИЛЛЮСТРАЦИИ К ЗАДАЧЕ С ТРЕМЯ КРИТЕРИЯМИ

Рис. 3.1.
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Допустим, что первый критерий важнее группы, состоящей
из второго и третьего критерия с коэффициентами относительной
важности θ12 = θ13 = 0.5. В этом случае, согласно теореме 3.4
при учете подобного рода информации об относительной важности
критериев следует рассмотреть новую многокритериальную задачу,
в которой первый критерий остается прежним, а вместо двух менее
важных второго и третьего критериев будут участвовать два новых
критерия вида �


�* + ��� � � ��
 � и �

�* + ��� � � ��
 � (см. рис. 3.3). Тем

самым, конус целей, который образуется градиентами целевых
функций в новой многокритериальной задаче, так же как и в ис-
ходной, имеет три ребра и три грани, но он существенно ýже
исходного конуса, образованного векторами c 1, c 2 и c 3.

А теперь предположим, что группа, состоящая из второго
и третьего критерия, важнее первого критерия, причем θ21 = θ31 =
= 0.5. Тогда в соответствии с теоремой 3.4 при учете этой ин-
формации об относительной важности критериев следует рассмат-
ривать новую многокритериальную задачу, в которой остаются
прежними второй и третий критерий, а вместо первого образу-
ются два новых: g21 = 〈c 11, x〉 и g31 = 〈c 12, x〉 (см. рис. 3.4).

3.3. ГЕОМЕТРИЧЕСКИЕ ИЛЛЮСТРАЦИИ К ЗАДАЧЕ С ТРЕМЯ КРИТЕРИЯМИ

OAD и OBD. Нормальные векторы этих граней (направленные
внутрь конуса M ), а именно векторы a 1, a 2, a 3, a 4, являются
образующими двойственного (по отношению к M ) конуса C. Здесь


 
 � � � �� � �� 
 ��� � 
 ��� � ��� � ����  �    .

Поскольку трехмерный конус M имеет четыре двумерные грани,
то двойственный конус C порождается четырьмя векторами e 1,
e 2, a 3, a 4, а значит, новый векторный критерий g в данном случае
будет содержать четыре компоненты. Действительно, как утвер-
ждает теорема 3.5, выполняется равенство p = 3 − 1 + 2 ⋅ 1 = 4.

В рассмотренном примере число критериев m = 3 при учете
информации об относительной важности критериев увеличилось
на одну единицу.

Рассмотрим теперь другой случай. Пусть один из критериев
будет важнее группы из двух оставшихся. Как легко вычислить,
p = 3 − 2 + 1 ⋅ 2 = 3, т. е. число новых критериев будет со-
впадать с числом «старых» критериев. То же самое произойдет
и в случае, когда один из критериев важнее другого.

Никаких других возможностей группировки критериев по важ-
ности не существует, поэтому можно сделать следующий вывод:
в трехкритериальной задаче учет информации об относительной
важности критериев для двух произвольных групп критериев мо-
жет привести к увеличению критериев лишь одну единицу и только
в том случае, когда два критерия важнее оставшегося третьего
критерия.

2. Случай линейных критериев. Здесь снова рассмотрим трех-
критериальную задачу, в которой, кроме того, множеством возмож-
ных решений служит подмножество векторного пространства R 3,

т. е. X ⊂ R 3, а все критерии яв-
ляются линейными:


 �

 �

�
�

* + � � * + � �

* + � �

� � � � � � � �

� � � �

� 
 � � 
 �

� 
 �

где c 1, c 2, c 3, x ∈ R 3. Конус, по-
рожденный векторами c 1, c 2, c 3

(градиентами линейных целевых функций f1, f2, f3), называют ко-
нусом целей. Пусть эти векторы не компланарны и имеют вид,
изображенный на рис. 3.2. Они порождают определенный трех-
мерный трехгранный конус.

Рис. 3.2.

При этом, как нетрудно видеть, конус целей, образуемый гради-
ентами c 11, c 12, c 3, c 4 компонент нового векторного критерия,
имеет четыре образующие и является четырехгранным.

Рис. 3.3. Рис. 3.4.
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Вопросам учета набора различного рода сообщений об отно-
сительной важности критериев посвящена эта глава. Подробно
рассматриваются наиболее простые варианты набора такой инфор-
мации, когда каждый из двух данных критериев важнее другого,
когда один критерий важнее двух других в отдельности, когда
каждый из двух критериев по отдельности важнее третьего. Для
всех этих вариантов получены формулы пересчета векторного крите-
рия, на основе которого производится сужение множества Парето.

Здесь также решается практически важный вопрос непротиво-
речивости набора информации об относительной важности крите-
риев. Получены критерии непротиворечивости в различных формах.

Кроме того, в данной главе предлагается принципиально
отличный от использовавшегося ранее алгоритмический подход
к учету произвольного конечного набора информации об отно-
сительной важности критериев.

4.1. Учет двух сообщений об относительной важности

1. Случай двух независимых сообщений. Пусть даны четыре
непустых набора номеров критериев A1, B1, A2, B2, таких что
A1 ∩ B1 = ∅, A2 ∩ B2 = ∅. Предположим, что группа критериев
A1 важнее группы B1 с набором коэффициентов относительной
важности � �θ�  и одновременно группа критериев A2 важнее груп-
пы B2 с набором коэффициентов относительной важности � �θ�� .
Тем самым, имеются два сообщения об относительной важности
критериев. Будем говорить, что эти два сообщения взаимно неза-
висимы, если

A1 ∩ A2 = ∅, B1 ∩ B2 = ∅, A1 ∩ B2 = ∅, A2 ∩ B1 = ∅.

Для того чтобы использовать информацию об относительной
важности критериев для сужения множества Парето, состоящую
из двух независимых сообщений, следует просто дважды восполь-
зоваться теоремой 3.3, в которой приводятся формулы для пере-

счета векторного критерия. Сначала эту теорему можно приме-
нить, например, для учета первого сообщения, т. е. к группам
критериев A1 и B1. В результате вместо критериев менее важной
группы B1 в соответствии с формулой (3.5) необходимо вычислить
новые критерии. Затем эта же теорема применяется ко второй
группе критериев A2 и B2, что ведет к пересчету критериев груп-
пы B2 по той же самой формуле (3.5). В итоге будет получен
новый векторный критерий, множество парето-оптимальных ре-
шений (парето-оптимальных векторов) относительно которого
будет оценкой сверху для неизвестного множества выбираемых
решений Sel X (выбираемых векторов Sel Y ).

Теперь рассмотрим ситуацию, когда i-й критерий важнее j-го,
а он, в свою очередь, важнее некоторого k-го критерия, i ≠ j,
j ≠ k, i ≠ k. Здесь также имеются два сообщения об относитель-
ной важности критериев, но они не являются взаимно независи-
мыми. Тем не менее, для учета этого набора информации и фор-
мирования нового векторного критерия также можно дважды
применить теорему 2.5, в которой идет речь об учете информации
об относительной важности одного критерия в сравнении с дру-
гим. Сначала следует пересчитать k-й критерий для того, чтобы
воспользоваться информацией о том, что j-й критерий важнее
k-го. Затем необходимо пересчитать j-й критерий для учета ин-
формации о том, что i-й критерий важнее j-го. В результате
будет образован новый векторный критерий, у которого все компо-
ненты за исключением j-й и k-й остались прежними. Множество
парето-оптимальных решений (парето-оптимальных векторов) от-
носительно нового векторного критерия будет представлять собой
оценку сверху для неизвестного множества выбираемых решений
(выбираемых векторов).

2. Случай, когда каждый из двух критериев важнее другого. Сна-
чала сформулируем и докажем один вспомогательный результат.

Лемма 4.1. Благодаря транзитивности и инвариантности от-
ношения предпочтения � соотношения y � y ′ и z � z ′ для произ-
вольных векторов y, y ′, z, z ′ ∈ R m можно почленно складывать, т. е.

y � y ′, z � z ′ ⇒ y + z � y ′ + z ′.

� Прибавим к обеим частям соотношения y � y ′ вектор z.
Благодаря аддитивности отношения � получим y + z � y ′ + x.
Аналогично, из соотношения z � z′ следует z + y ′ � z ′ + y ′.
Теперь, используя транзитивность отношения �, из полученных
соотношений y + z � y ′ + z  и  z + y ′ � z ′ + y ′ приходим к тре-
буемому результату y + z � y ′ + z ′. �

Глава 4
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Рассмотрим два сообщения об относительной важности крите-
риев, состоящие в том, что i-й критерий важнее j-го, а он, в свою
очередь, важнее i-го. На первый взгляд эти два сообщения кажутся
взаимно противоречивыми — каждый из двух критериев важнее
другого. Однако, как будет показано ниже, эта ситуация противо-
речива не всегда. А именно, имеет место следующий результат.

Теорема 4.1. Для того чтобы i-й критерий был важнее j-го
критерия с коэффициентом относительной важности θi j и одно-
временно j-й критерий был важнее i-го критерия с коэффициентом
относительной важности θj i, необходимо выполнение неравенства
θi j + θj i < 1.

� На основании упрощенного определения 2.4 относительной
важности для вектора y ∈ R m с компонентами

yi = 1 − θi j, yj = −θi j, ys = 0 для всех s ∈ I \ {i, j },

по условию, имеет место соотношение y � 0m и одновременно
для вектора y ′ ∈ R m с компонентами

� � � �� � � � � � �� � �θ θ� � �� � � � �� � для всех s ∈ I \ {i, j }

выполняется соотношение y ′ � 0m.
Складывая почленно y � 0m и y ′ � 0m, получим соотношение

� ��� �� �� � � , где вектор �� имеет компоненты

� � �� � �� � ��� � �� � �θ θ� � � � � для всех s ∈ I \ {i, j }.

Как видим, этот вектор имеет одинаковые i-ю и j-ю компонен-
ты. Они не могут быть отрицательными, поскольку в этом случае

будет выполнено неравенство
� ��� � , из которого в силу ак-
сиомы Парето следует соотно-
шение 0m � ��, не совместимое
с полученным ранее �� � 0m.
Кроме того, эти компоненты
не могут быть нулевыми, так
как тогда соотношение �� � 0m

примет вид 0m � 0m. Следовательно, указанные компоненты дол-
жны быть положительными, т. е. 1 − θi j − θj i > 0.�

Геометрический смысл теоремы 4.1 лучше всего раскрывает-
ся в случае, когда критерии линейные. Пусть m = 2, n = 2,

�
�� 	 �� � � �� � 	, 



� 	 �� � � �� � 	, где c1, c2, x ∈ R 2 (рис. 4.1).

Поскольку первый критерий важнее второго (допустим, что
θ12 ≈ 0.4), то вместо второго критерия в новой многокритери-
альной задаче, множество Парето которой является оценкой сверху
для искомого множества выбираемых решений (векторов), будет
участвовать новый второй критерий, градиент которого обозна-
чен 


	� . Конец этого вектора представляет собой результат пере-
мещения конца вектора c 2 по прямой, соединяющей концы век-
торов c1 и c 2, в направлении конца вектора c1 на 40 % длины
отрезка, соединяющего концы двух данных векторов. С другой
стороны, поскольку второй критерий важнее первого (пусть
θ21 ≈ 0.25), то новый первый критерий будет иметь градиент 1

�
c ,

конец которого будет располагаться на расстоянии 25% длины
указанного выше отрезка от конца вектора c1 в направлении конца
вектора c 2. Новый векторный критерий будет иметь вид

� 
� � �	 	� � � �〈 〉 〈 〉� �. Таким образом, при учете набора указанной ин-
формации происходит взаимное изменение направлений гра-
диентов обоих критериев, которое можно трактовать как «сбли-
жение целей».

Если аналогичным образом интерпретировать равенство
θ12 + θ21 = 1, то в этом случае концы градиентов новых векто-
ров �

	�  и 

	�  должны совместиться и двухкритериальная задача

превратится в однокритериальную. Как утверждает теорема 4.1,
этого быть не должно. Тем более, концы векторов �

	�  и 

	�  не

могут перемещаться в указанных направлениях еще дальше (что
соответствует случаю θ12 + θ21 > 1).

Невозможность равенства θ12 + θ21 = 1 в общем случае легко
установить непосредственно.

� В самом деле, если указанное равенство имеет место, то для
векторов y и y ′ вида

y i > 0, y j < 0, ys = 0 для всех s ∈ I \ {i, j }; y ′ = −y

выполняются соотношения y � 0m и y ′ � 0m. Сложив почленно
последние два соотношения (это допускается леммой 4.1), полу-
чим y + y ′ = 0m � 0m, что противоречит асимметричности от-
ношения �.�

Теперь перейдем к вопросу учета информации об относитель-
ной важности в случае, когда i-й критерий важнее j-го с коэффи-
циентом относительной важности θi j и одновременно j-й крите-
рий важнее i-го критерия с коэффициентом относительной важ-
ности θj i. Напоминаем, что в контексте данной книги учесть
информацию об относительной важности критериев — означает
построить новую многокритериальную задачу, множество Парето

4.1. УЧЕТ ДВУХ СООБЩЕНИЙ ОБ ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ

Рис. 4.1.
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которой является оценкой сверху для множества выбираемых
решений (векторов) в исходной задаче.

Для учета указанной информации можно дважды восполь-
зоваться теоремой 2.5. В соответствии с этой теоремой в новой
многокритериальной задаче критерий fi следует заменить на
(1 − θi j) fi + θj i fj, а fi — на критерий θi j fi + (1 − θi j) fj . Все ос-
тальные критерии (если они имеются) остаются прежними.

3. Случай, когда один критерий важнее двух других. Если для
сужения множества Парето используется сразу несколько сооб-
щений об относительной важности критериев, то следует учи-
тывать следующее обстоятельство. Пусть i-й критерий важнее
j-го с коэффициентом относительной важности θi j и, кроме того,
i-й критерий важнее k-го (k ≠ j ) с коэффициентом относительной
важности θik. Тем самым, имеется набор из двух указанных сообще-
ний об относительной важности критериев, причем эта ситуация
внешне напоминает ту, в которой i-й критерий важнее группы кри-
териев { j, k } с коэффициентами относительной важности θi j и θi k.

Оказывается, если i-й критерий важнее группы критериев {j, k}
с коэффициентами относительной важности θi j и θi k, то i-й крите-
рий будет важнее каждого из критериев j и k в отдельности с теми
же самыми коэффициентами относительной важности.

� Действительно, когда соотношение y ′ � 0m выполняется
для всех векторов y ′ ∈ R m вида

� � �� � � �� � � � 
 
 �� � � � � � �� � � �� � � � � � для всех s ∈ I \ {i, j, k},

то аналогичное соотношение y″ � 0m будет иметь место и для
всех векторов y″ ∈ R m вида

� �� � �� � � � �� � � � ��� �� ��� � � � для всех s ∈ I \ {i, j },

так как неравенство y″ ≥ y ′ благодаря аксиоме Парето влечет
соотношение y″ � y ′, что вместе с соотношением y ′ � 0m приво-
дит к соотношению y″ � 0m. Это означает, что i-й критерий важ-
нее j-го критерия с коэффициентом относительной важности θi j.

Точно так же можно проверить, что бóльшая важность i-го
критерия по сравнению с группой критериев {j, k} с коэффици-
ентами относительной важности θi j и θi k влечет бóльшую важ-
ность k-го критерия по сравнению с k-м критерием с коэффици-
ентом относительной важности θi k.�

Теперь пусть i-й критерий важнее j-го и k-го в отдельности
с коэффициентами относительной важности θi j и θi k. В этом слу-

чае ЛПР за прирост по i-му критерию в размере �
��  единиц гото-

во пожертвовать отдельно �
��  единиц по j-му критерию, либо �


�

единиц по k-му критерию. Нетрудно понять, что отсюда, вообще
говоря, не следует, что ЛПР согласится в качестве компенсации
за прирост �

��  единиц по i-му критерию потерять одновременно
и по j-му и по k-му критерию �

��  единиц и �

�  единиц соответ-

ственно. Это свидетельствует о том, что если i-й критерий важнее
j-го и k-го в отдельности с коэффициентами относительной важ-
ности θi j и θi k, то отсюда в общем случае не следует бoльшая важ-
ность i-го критерия по сравнению с группой критериев {j, k} с теми
же самыми коэффициентами относительной важности.

Следует, однако, обратить внимание на то, что из бóльшей важ-
ности i-го критерия по сравнению с j-м и k-м критериями в отдель-
ности с коэффициентами относительной важности θi j и θi k соот-
ветственно, вытекает бoльшая важность i-го критерия по сравне-
нию с группой критериев {j, k}, но с меньшими коэффициентами
относительной важности.

� В самом деле, складывая почленно соотношения y ′ � 0m

и y ″ � 0m, где векторы y ′ и y ″ имеют вид

� �� � �� � � � �� � � � �� � �� � � � для всех s ∈ I \ {i, j },

� � �� � 
 
 �� � � � ��� �� ��� � � � для всех s ∈ I \ {i, k}

получим соотношение y = y ′ + y″ � 0m, где вектор y имеет ком-
поненты

� �� � � �� � � � � 
 
 �� � � � � � � � �� � � � � � � для всех s ∈ I \ {i, j }.

Полученное означает, что i-й критерий важнее группы кри-
териев {j, k} с коэффициентами относительной важности

�

� � �
�

� 


� � � � � 

� � � � � 
 � 


� �

� � � � � �
θ θ θ θ

� � � �
� �� 
 � 
 .�

Следующий результат показывает, каким образом следует
производить пересчет векторного критерия для того, чтобы учесть
набор информации, состоящей из двух сообщений о том, что i-й
критерий важнее как j-го, так и k-го критериев в отдельности.

Теорема 4.2 (в терминах векторов). Пусть выполнены аксиомы
1−4 и имеются два сообщения о том, что i-й критерий важнее j-го
критерия с коэффициентом относительной важности θi j, а также
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что i-й критерий важнее k-го критерия с коэффициентом относи-
тельной важности θi k. Тогда для любого непустого множества вы-
бираемых векторов справедливы включения

�
��� 
 � 
 �� � � �� � , (4.1)

где �
 �� � — множество парето-оптимальных векторов в многокри-
териальной задаче с множеством возможных решений X и новым
(m + 1)-мерным векторным критерием g с компонентами

�� 	 � �� 	� � � � � � � 
 �
 � �
 
� � � � � �θ θ θ θ� � � � � � ,

� �� 	 �� 	� � � �
 � � � �
 � � � �
 
� � � �θ θ θ θ θ θ� � � � � � ,

g s = fs для всех s ∈ I \ {i, k}. (4.2)

� Вновь символом K обозначим острый выпуклый конус (без
нуля) конусного отношения �.

Согласно определению 2.4 наличие информации об относи-
тельной важности критериев в данном случае означает справед-
ливость соотношений y ′ � 0m и y ″ � 0m, что равносильно выпол-
нению включений y ′ ∈ K  и  y ″ ∈ K для векторов y ′ и y ″ с ком-
понентами

� � � �� � � � � � �� � �θ θ� � �� � � � � для всех s ∈ I \ {i, j },

� � � �� �
 
 �
 �� � �θ θ�� �� ��� � �� � для всех s ∈ I \ {i, k}.

Обозначим через M выпуклый конус (без нуля), порожден-
ный векторами e1, ..., e m, y ′, y ″. Этот конус порождается тем же
самым набором, но без вектора e i, так как последний можно
представить, например, в виде линейной комбинации векторов
e j, y ′ с положительными коэффициентами. Таким образом, ко-
нус M совпадает с множеством всех ненулевых неотрицательных
линейных комбинаций вида

� � �
� � ���� ���� � �

� � � � �� � � � � �λ λ λ λ λ λ� �
� �� � �� ��� � � � � � � .

Поскольку все указанные выше векторы, порождающие конус M,
принадлежат острому конусу K, то и конус M — острый.

Установим совпадение конуса M с множеством ненулевых
решений системы линейных неравенств

ys � 0 для всех s ∈ I \ {i, k},

�� 	 �� � � � � �� �θ θ� � � ,

�� 	 ��
 � �
 
� �θ θ� � � ,

�� 	 �� 	 �� � �
 � � � �
 � � � �
 
� � �θ θ θ θ θ θ� � � � � . (4.3)

С этой  целью найдем общее решение этой системы неравенств,
введя в рассмотрение соответствующую ей систему линейных
уравнений

〈e s, y〉 = 0 для всех s ∈ I \ {i, k},

� �� �� � ,

� �� ��� � ,

� �� � � , (4.4)

где компоненты векторов � �� � �� ��  определяются равенствами

� � �� � � � � � � �� � � �θ θ� � � �� � � � для всех s ∈ I \ {i, j },

� � �� �
 
 �
 � �� � � �θ θ�� �� �� ��� � � � для всех s ∈ I \ {i, k},

� �� 	 � �� 	� � � �
 � � � �
 
 � � �
� � �θ θ θ θ θ θ� � � � � ,

�� = 0  для всех s ∈ I \ {i, j, k}.

Система (4.4) содержит m + 1 линейное уравнение, причем
любая подсистема из m − 1 векторов набора e s, s ∈ I \ {i, k},
� �� � �� �� , участвующих в образовании этой системы, является

линейно независимой. Поэтому для отыскания общего решения
системы линейных неравенств (4.3) достаточно просмотреть (од-
номерные) ненулевые решения всех возможных подсистем сис-
темы (4.4), получающихся из (4.4) удалением каких либо двух ее
уравнений. При этом найденные таким способом решения должны
удовлетворять системе неравенств (4.3).

Начнем удалять из системы (4.4) по два уравнения. Сначала
рассмотрим случай, когда в каждую такую удаляемую пару урав-
нений входит последнее уравнение. При удалении двух последних
уравнений получаем систему с ненулевым решением e k. Если вме-
сте с последним удалить (m− 1)-е уравнение, то придем к системе
с решением e j. Исключение из (4.4) последнего уравнения вместе
с одним из уравнений вида 〈e s, y〉 = 0 для всех s ≠ i приводит
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к системе, обладающей решением e s. Если же к последнему уда-
ляемому уравнению добавить 〈e i, y〉 = 0, то полученная таким
образом система уравнений не будет иметь ни одного ненулевого
решения, удовлетворяющего системе неравенств (4.3).

Перейдем к разбору случая, когда из системы линейных урав-
нений (4.4) удаляется пара уравнений, одним из которых являет-
ся предпоследнее уравнение. Если вместе с предпоследним уда-
лить предшествующее ему уравнение, то получим систему, среди
ненулевых решений которых нет ни одного, удовлетворяющего
системе неравенств (4.3). Исключая предпоследнее уравнение
вместе с одним из уравнений вида 〈e s, y〉 = 0 при s ≠ i, получим
систему с решением e s. Если же вместе с предпоследним удалить
уравнение 〈ei, y〉 = 0, то придем к системе с решением y ′.

Аналогично разбирается случай удаления (m − 1)-го уравне-
ния вместе с одним из уравнений вида 〈e s, y〉 = 0. При этом будет
найдено еще одно ненулевое решение y ″ при s = i, удовлетворя-
ющее системе линейных неравенств (4.3).

Исключение из системы уравнений (4.4) пары уравнений вида
〈e s, y〉 = 0 не приведет к новым решениям.

В итоге получаем совокупность векторов e1, ..., ei−1, y ′, y ″,
e i+1, ..., e m, порождающих конус решений системы линейных не-
равенств (4.3). Полученная совокупность совпадает с системой
векторов, порождающих конус M. Тем самым, установлено, что
множество ненулевых решений системы линейных неравенств (4.3)
совпадает с конусом M.

Из включений ��� ⊂ M ⊂ K вытекают включения

� � ������ 
 � 
 �� �� � , (4.5)

где

�
 �� � = {y* ∈ Y | не существует такого y ∈ Y, что y − y* ∈ M}

представляет собой множество недоминируемых элементов мно-
жества Y, упорядоченного конусным отношением с конусом M.

Пусть y = f (x), y* = f (x*), f (x) ≠ f (x*) при x, x* ∈ X. Благода-
ря доказанному выше совпадению множества решений системы
линейных неравенств (4.3) и конуса M, включение f (x) −
− f (x*) ∈ M имеет место тогда и только тогда, когда выполняются
неравенства

fs (x) − fs (x*) � 0 для всех s ∈ I \ {j, k},

� �� �� � � � � � � �� � � � � � � �θ θ� � � �� � � �� � � � � �� � � � � ,

� �� ��
 � � �
 
 
� � � � � � � �θ θ� � � �� � � �� � � � � �� � � � � ,

� �

�

�

� ��

� � �
 � � � � �
 � �

� � �
 
 


� � � � � � � �

� � � �

θ θ θ θ

θ θ

� � � �

� �

� � � �� � � � � � �

� � � � � � �

� � � �

� � �

причем здесь хотя бы одно неравенство — строгое. Нетрудно
понять, что эти неравенства в терминах векторной функции g,
определяемой в условиях теоремы формулами (4.2), можно пере-
писать в виде g (x) ≥ g (x*). Отсюда следует, что �
 �� � — это мно-
жество парето-оптимальных векторов в многокритериальной за-
даче с исходным множеством возможных решений X и новым
векторным критерием g.

Для завершения доказательства и получения включений
(4.1) остается к соотношениям (4.5) применить включение
Sel Y ⊂ Ndom Y.�

Теорему 4.2 легко переформулировать в терминах решений.
В результате она примет следующий вид.

Теорема 4.2 (в терминах решений). Пусть выполнены аксиомы
1−4 и имеются два сообщения о том, что i-й критерий важнее j-го
критерия с коэффициентом относительной важности θi j, а также
что i-й критерий важнее k-го
критерия с коэффициентом от-
носительной важности θik. Тогда
для любого непустого множества
выбираемых решений справедливы
включения

Sel X ⊂ Pg (X ) ⊂ Pf (X ),  (4.6)

где Pg (X ) — множество парето-
оптимальных решений в многокритериальной задаче с множеством
возможных решений X и (m+ 1)-мерным векторным критерием g,
определяемым равенствами (4.2).

Приведем геометрическую иллюстрацию теоремы 4.2 для
случая линейных критериев. Пусть m = n = 3, fi (x) = 〈c

i, x〉,
i = 1, 2, 3, где c 1, c 2, c 3, x ∈ R3 (см. рис. 4.2).

Предположим, что первый критерий важнее второго с коэф-
фициентом относительной важности θ12 ≈ 0.25, а также важнее
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третьего критерия с коэффициентом относительной важности
θ13 ≈ 0.4. Учет бóльшей важности первого критерия в сравнении
со вторым приводит к трехкритериальной задаче с векторами

���
�� ���

�
, являющимися градиентами трех линейных критериев.

Аналогично, учет большей важности первого критерия в сравне-
нии с третьим ведет к трехкритериальной задаче с тремя вектора-
ми ���

��
�
��� . Тем самым, получаем два конуса целей, соответ-

ствующих двум имеющимся сообщениям об относительной важ-
ности критериев. Для одновременного учета обоих сообщений
об относительной важности необходимо рассмотреть пересече-
ние указанных конусов. В итоге приходим к конусу, порожден-
ному четырьмя векторами ����

��� ����
��

. Это и есть конус целей
новой задачи, множество Парето которой дает оценку сверху для
множества выбираемых решений.

Следующий результат показывает, что теорему 4.2 можно
применять к любым критериям, значения которых вычисляются
в количественных шкалах.

Теорема 4.3. Включения (4.1) и (4.6) инвариантны относитель-
но линейного положительного преобразования компонент векторно-
го критерия g, определяемого равенствами (4.2).

� Учитывая доказательство теоремы 2.7, достаточно прове-
рить инвариантность множеств �
 �� � и Pg (X ) из (4.1) и (4.6) от-
носительно линейного положительного преобразования только
последнего критерия g m + 1.

Поскольку множество Парето не изменяется, если критерии
умножать на положительные числа, то доказательство можно
проводить для критерия
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где фиксированные векторы � � �� � � �� �� � �� задают информацию
об относительной важности критериев, т. е. имеют место соотно-
шения �� � � �� �� � ��� � , причем

�
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Заменим ys на � �� � � �� � � � �� � � � � � 
α α� � � �� , в формуле, за-

дающей критерий �
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где константа C не зависит от yi, yj, yk.
Нетрудно видеть, что преобразованный критерий �� �

�
�� �  мож-

но получить из � �

�
�� �  умножением его на положительное число αi

и прибавлением константы C. Обратно, вычитая из �� ��� �  кон-
станту C и деля полученный результат на число αi, получим � �

�
�� � .

Отсюда вытекает, что строгие неравенства
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для критерия � ��� �  и преобразованного критерия �� ��� �  являют-
ся эквивалентными друг другу. Следовательно, включения (4.1)
и (4.6) инвариантны относительно линейного положительного
преобразования критерия gm + 1, а значит и всех компонент век-
торной функции g.�

4. Учет информации о том, что два критерия по отдельности
важнее третьего. Здесь будет рассмотрен случай, когда имеются
два сообщения об относительной важности, состоящие в том,
что i-й критерий важнее k-го с коэффициентом относительной
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важности θi k, а также что j-й критерий важнее k-го с коэффици-
ентом относительной важности θj k.

Предварительно сравним этот случай с ситуацией, когда
имеется одно сообщение о том, что группа критериев {i, j } важ-
нее k-го критерия; при этом коэффициенты относительной важ-
ности в обоих случаях считаются одинаковыми. Используя лем-
му 4.1, легко убедиться в том, что если каждый из критериев i и j
в отдельности важнее k-го критерия, то группа {i, j } важнее кри-
терия k с теми же самыми коэффициентами относительной важ-
ности, но не наоборот. Следовательно, набор из двух указанных
сообщений является более содержательным, чем одно сообщение
о том, что группа из двух критериев важнее третьего критерия.

Учет указанных двух сообщений об относительной важности
критериев следует осуществлять при помощи следующей теоремы.

Теорема 4.4 (в терминах векторов). Предположим, что выпол-
нены аксиомы 1−4 и имеется набор из двух сообщений о том, что
i-й критерий важнее k-го с коэффициентом относительной важно-
сти θi k, а также что j-й критерий важнее k-го с коэффициентом
относительной важности θj k. Тогда для любого непустого множе-
ства выбираемых векторов Sel Y справедливы включения (4.1), где

�
 �� � — множество парето-оптимальных векторов в задаче с мно-
жеством возможных решений X и векторным критерием g вида

gs = fs для всех s ∈ I \ {k},

� � � � � �� �� � � �
 �
 �
 � �
 �
 � �
 �
 
� � � �θ θ θ θ θ θ� � � � � � � . (4.7)

� Пусть K — выпуклый острый конус (без нуля) конусного
отношения предпочтения �.

В силу определения 2.4 наличие информации о том, что i-й
критерий важнее k-го с коэффициентом относительной важнос-
ти θi k и j-й критерий важнее k-го с коэффициентом относитель-
ной важности θj k означает выполнение соотношений y ′ � 0m и
y ″ � 0m для векторов y ′ и y ″ вида

� � � �� �
 
 �
 �� � �θ θ� � �� � � � � для всех s ∈ I \ {i, k},

� � � �� �
 
 �
 �� � �θ θ�� �� ��� � �� � для всех s ∈ I \ {j, k}.

Пусть M — выпуклый конус (без нуля), порожденный векто-
рами e1, e2, ..., em, y ′, y ″. Вектор ei можно представить в виде ли-
нейной положительной комбинации векторов ek и y ′, а вектор

e j — в виде подобной комбинации векторов ek и y ″. Следова-
тельно, конус M порождается набором векторов

� � � � �� ���� � � � ���� � � � ����� � � � �� � � � � � � �� � � �� �� , (4.8)

а значит, этот конус совпадает с множеством всех ненулевых
линейных неотрицательных комбинаций вида

� � � �
� � � �

�
�

��� ���

��� �

� � �
� � � � �

� �
� �

� � � � � �

� �

λ λ λ λ λ λ

λ λ

� � �
� � �

�
�

� ��� � � � � � � �

� � �

Конус острый, так как является подмножеством острого конуса K.
Докажем совпадение конуса M с множеством ненулевых ре-

шений системы линейных неравенств

ys � 0 для всех s ∈ I \ {k},

� � � � ��
 �
 � �
 �
 � �
 �
 
� � �θ θ θ θ θ θ� � � �� � � �� � �� � � � . (4.9)

Для этого найдем общее решение системы (4.9), рассматривая
соответствующую ей систему линейных уравнений

〈es, y〉 = 0 для всех s ∈ I \ {k},

� �� �� 	 � , (4.10)

где � � � � � � � �� �
 �
 � �
 �
 
 �
 �
 �� � � �θ θ θ θ θ θ� � � � � � � � � � � �� � � �  для
всех s ∈ I \ {i, j, k}.

В системе (4.10) m уравнений. Любая подсистема из m − 1
вектора системы векторов � � �� ���� � � � ����
 
 �� � � � �� �  является ли-
нейно независимой. Поэтому для отыскания фундаментальной
совокупности решений системы линейных неравенств (4.9) дос-
таточно найти по одному ненулевому решению каждой из под-
систем системы (4.10), получающейся из (4.10) удалением како-
го-то одного из ее уравнений (при этом найденное решение дол-
жно удовлетворять системе неравенств (4.9)).

Если из системы уравнений (4.10) удалить последнее уравне-
ние, то полученная система будет иметь решение e k. Если из
системы (4.10) удалить уравнение 〈e s, y〉 = 0 при s = i (или s = j ),
то соответствующая система уравнений будет обладать решением
y ′ (или y ″ ). Удаление уравнения 〈e s, y〉 = 0 при s ∈ I \ {i, j, k}
приводит к подсистеме, имеющей решение e s.
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Таким образом, одна из фундаментальных совокупностей
решений системы линейных неравенств (4.9) имеет вид (4.8).
Следовательно, конус M совпадает с множеством ненулевых нео-
трицательных решений системы линейных неравенств (4.9).

Из включений

�� � �� � �

вытекают включения

������ 
 � 
 �� �� �� � , (4.11)

где

�
 �� �= {y* ∈ Y |  не существует такого y ∈ Y, что y − y* ∈ M }

представляет собой множество недоминируемых элементов мно-
жества Y относительно конусного отношения с конусом M.

Пусть x, x* ∈ X, y = f (x), y* = f (x*), f (x) ≠ f (x*). На осно-
вании установленного выше совпадения конуса M с множеством
ненулевых решений системы линейных неравенств (4.9) включе-
ние f (x) − f (x*) ∈ M имеет место тогда и только тогда, когда
вектор f (x) − f (x*) удовлетворяет системе неравенств

fs (x) − fs (x*) � 0 для всех s ∈ I \ {k},
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причем хотя бы одно из неравенств этой системы должно быть
строгим (чтобы исключить случай f (x) = f (x*)). Эту систему не-
равенств можно переписать в виде g (x) ≥ g (x*) с векторной фун-
кцией g, определяемой равенствами (4.7). Для завершения дока-
зательства включений (4.1) остается в (4.11) воспользоваться вклю-
чением Sel Y ⊂ Ndom Y.�

В терминах решений установленный результат принимает
следующий вид.

Теорема 4.4 (в терминах решений). Пусть выполнены аксиомы
1−4 и имеется набор из двух сообщений о том, что i-й критерий
важнее k-го с коэффициентом относительной важности θik, а также
что j-й критерий важнее k-го с коэффициентом относительной
важности θjk. Тогда для любого непустого множества выбираемых
решений выполняются включения (4.6), где Pg(X ) — множество паре-

то-оптимальных решений в задаче с множеством возможных реше-
ний X и векторным критерием g вида (4.7).

Для геометрической иллюстрации теоремы 4.4 обратимся
к многокритериальной задаче выбора с линейными критериями,
в которой m = n = 3, f s (x) =
= 〈c s, x〉, s = 1, 2, 3, причем пер-
вый и второй критерии важнее тре-
тьего критерия по отдельности с ко-
эффициентами относительной важ-
ности θ13 ≈ 0.2, θ23 ≈ 0.6 (см.
рис. 4.3).

Конус целей, соответствующий
новой многокритериальной задаче,
является трехгранным и порождается векторами 1 2 3, ,

�
c c c . Этот

конус представляет собой пересечение двух трехгранных конусов,
один из которых соответствует многокритериальной задаче, в кото-
рой учитывается информация о том, что первый критерий важнее
третьего, а второй — многокритериальной задаче, где учтена
информация о бóльшей важности второго критерия по сравнению
с третьим.

Теорема 4.5 применима к любой многокритериальной зада-
че, значения критериев в которой измеряются в количественной
шкале. Об этом свидетельствует следующий результат.

Теорема 4.5. Включения (4.1) и (4.6) инвариантны относительно
линейного положительного преобразования всех компонент вектор-
ного критерия g вида (4.7).

� Здесь так же, как и при доказательстве теоремы 4.4, доста-
точно проверить инвариантность множеств � 	
 �  и Pg (X ) из (4.1)
и (4.6) относительно линейного положительного преобразования
только критерия g k.

Поскольку множество Парето не изменяется, если критерии
умножать на положительные числа, то для доказательства введем
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где фиксированные векторы � � �� � � �� �� � �� задают информацию
об относительной важности критериев, т. е. имеют место соотно-
шения �� � � �� �� � ��� � , причем

Рис. 4.3.
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Заменим ys на ��� = α s y s + cs (αs > 0), s = i, j, k, в форму-

ле, определяющей критерий �
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где константа C не зависит от yi, yj, yk.
Из последнего представления видно, что преобразованный

критерий �� 
�  можно получить из �
�  умножением его на положи-

тельное число � �




α α

α
 и прибавлением константы C. Обратно, вы-

читая из �� 
�  константу C и деля полученный результат на число
� �




α α

α
, придем к �
� . Отсюда вытекает, что строгие неравенства

�

��� � �

� � � �

� � � �

� � � �

� � � �

�
 �
 �
 �


�
 �
 �
 �


� � 



� � 
 


� � � �

� � � �

θ θ θ θ

θ θ θ θ

� 
 � 
� 
 � 
� �� �� �� �� �� � � � � � � �� �� �� �� �� �� �� �� �� �� �� � � �� � � �

� 
 � 
� 
 � 
� �� �� �� �� �� � � � � � � �� �� �� �� �� �� �� �� �� �� �� � � �� � � �

и

��
� � � �

� � � �
�
 �
 �
 �


� � 

� � � �
θ θ θ θ

� 
 � 
� 
 � 
� �� �� �� �� �� �� �� � � � � � � �� �� �� �� �� �� �� �� �� �� �� �� �� � � �� � � �
� � �

���� � �
� � � �

� � � �
�
 �
 �
 �


� � 
 
� � � �
θ θ θ θ

� 
 � 
� 
 � 
� �� �� �� �� �� � � � � � � �� �� �� �� �� �� �� �� �� �� �� � � �� � � �
� � �

для критерия �
�  и преобразованного критерия �� 
�  являются эк-
вивалентными друг другу. Следовательно, включения (4.1) и (4.6)
инвариантны относительно линейного положительного преобра-
зования критерия gk.�

4.2. Непротиворечивость набора информации
об относительной важности критериев

1. Предварительное рассмотрение. Пусть A, B ⊂ I, A ≠ ∅,
B ≠ ∅, A ∩ B = ∅. В соответствии с определением 3.3 задание
вектора y ′ ∈ R m с компонентами

�
� �� �� � для всех i ∈ A,

�
� �� �� � � для всех j ∈ B,

��� � � для всех s ∈ I \ (A ∪ B ),

для которого верно соотношение y ′ � 0m, означает, что группа кри-
териев A важнее группы критериев B с двумя наборами положи-
тельных параметров �

��  для всех i ∈ A и �
��  для всех j ∈ B. Посколь-

ку A ≠ ∅ и B ≠ ∅, указанный вектор y ′ имеет по крайней мере
одну положительную и по крайней мере одну отрицательную ком-
поненты. Введем множество всех подобного рода векторов:

�� � � �
�� � � �� �� � � �� �� �� � .

Предположим, что в результате прямого опроса ЛПР или же
на основе анализа действий, ранее предпринимавшихся данным
ЛПР, была выявлена такая пара различных векторов u, v ∈ R m,
что вектор u предпочтительнее вектора v, т. е. u �Y v. Согласно
аксиоме 2 последнее соотношение эквивалентно u � v. Пусть
u − v ∈ N m. Обозначим множество номеров положительных
компонент вектора u − v через A, а множество номеров отри-
цательных компонент — через B. Очевидно, A ≠ ∅, B ≠ ∅,
A ∩ B = ∅. Поэтому задание произвольной пары векторов
u, v ∈ R m, для которых выполнены соотношения u � v  и u −
− v ∈ N m, можно рассматривать как наличие информации о том,
что группа критериев A важнее группы критериев B (с соответ-
ствующими двумя наборами положительных параметров). Тем
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самым, любая пара векторов u, v ∈ R m, для которой справедливо
соотношение u − v ∈ N m, может при определенном условии (т. е.
при выполнении соотношения u � v) задавать информацию об
относительной важности критериев.

Теперь допустим, что имеется набор пар векторов

u i, v i ∈ R m, u i − v i ∈ N m, i = 1, 2, ..., k. (4.12)

Возникает вопрос: могут ли все эти пары векторов участвовать
в задании определенного набора информации об относительной
важности критериев? Простые примеры показывают, что в об-
щем случае ответ на этот вопрос является отрицательным.

Пример 4.1. Пусть m = 2, k = 2 и

u 1 = (1, −3), u 2 = (−2, 1), v 1 = v 2 = 02.

Допустим, что данный набор из двух пар векторов задает инфор-
мацию об относительной важности критериев, так что имеют
место соотношения u1 � v1 и u2 � v2. Складывая эти соотноше-
ния почленно, на основе леммы 4.1 получим u1 + u2 � v1 + v2

или, что то же самое, (−1, −2) � 02. С другой стороны, справед-
ливо соотношение 02 � (−1, −2), так как 02 ≥ (−1, −2). Полу-
ченные два соотношения (−1, −2) � 02 и 02 � (−1, −2) противо-
речат асимметричности отношения �. Следовательно, одновре-
менное выполнение обоих соотношений u1 � v1 и u2 � v2 для
указанных выше пар векторов невозможно ни для какого бинар-
ного отношения, удовлетворяющего аксиомам 2−4.

2. Определение непротиворечивого набора векторов.
Определение 4.1. Пусть имеется набор пар векторов (4.12).

Будем называть этот набор непротиворечивым (совместным), если
существует хотя бы одно бинарное отношение �′, подчиненное
аксиомам 2−4 и такое, что выполняются соотношения u s �′ v s,
s = 1, 2, ..., k 1).

Непротиворечивость набора векторов является необходимым
условием того, чтобы он задавал набор информации об относи-
тельной важности критериев хотя бы в какой-то одной много-
критериальной задаче выбора. Таким образом, непротиворечи-

вый набор векторов (4.12) является своеобразной «заготовкой»
для набора информации об относительной важности критериев,
которым может располагать некоторое ЛПР.

При решении реальных задач принятия решений, когда в на-
личии имеется целое семейство различного рода сообщений
об относительной важности критериев, может оказаться так,
что векторы, участвующие в задании набора информации, обра-
зуют противоречивый набор. Это связано с тем, что информация
об относительной важности, как правило, не точна и чаще всего
отражает лишь желательную, а не действительную картину пред-
почтений ЛПР. Кроме того, ЛПР, само того не желая, иногда
может несколько отклоняться от класса задач многокритериаль-
ного выбора, ограниченных аксиомами 2−4, и в таком случае его
поведение следует подкорректировать, объявив о противоречи-
вости его предпочтений, выраженных в форме набора информа-
ции об относительной важности критериев.

Так или иначе, если в процессе принятия решений на осно-
ве количественной информации об относительной важности кри-
териев присутствует набор такого рода информации, то его обя-
зательно следует проверять на непротиворечивость (совмест-
ность). А для осуществления такой проверки необходимо
располагать соответствующим инструментарием, поскольку ис-
пользовать для этой цели лишь определение 4.1 не представля-
ется возможным.

3. Критерии непротиворечивости. Здесь будут даны три кри-
терия непротиворечивости конечного набора векторов. Один
из них имеет геометрическую форму, второй представляет собой
алгебраический вариант, а третий — алгоритмический, удобный
для реализации в среде программирования.

Теорема 4.6 (геометрический критерий непротиворечивости).
Для того чтобы набор пар векторов (4.12) был непротиворечивым,
необходимо и достаточно, чтобы конус, порожденный векторами

e1, e 2, ..., em, u 1 − v 1, u 2 − v 2, ..., uk − v k, (4.13)

являлся острым.
� На основе определения 4.1 и следствия 2.1 можно заключить,

что набор векторов (4.12) будет непротиворечивым тогда и только
тогда, когда существует конусное отношение с острым выпуклым
конусом M (без нуля), для которого выполняются соотношения

� � �� 
� ����� � �� � � � � 
� � � � �v . (4.14)

4.2. НЕПРОТИВОРЕЧИВОСТЬ НАБОРА ИНФОРМАЦИИ

1) На основе аддитивности отношения �′ в этом определении и во всем
последующем рассмотрении, связанном с непротиворечивостью информации об
относительной важности критериев, можно было бы положить v s = 0 m,
s = 1, 2, ..., k. Однако, здесь, по мнению автора, удобнее использовать приня-
тую начиная с данного определения несколько более громоздкую форму с нену-
левыми в общем случае векторами vs, поскольку именно эта форма больше соот-
ветствует практике получения дополнительной информации об относительной
важности критериев.
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Необходимость. Пусть набор векторов (4.12) является непро-
тиворечивым. Тогда в силу сказанного в начале доказательства
существует острый выпуклый конус M (без нуля), для которого
верно (4.14). Векторы (4.13) принадлежат конусу M и порождают
в общем случае некоторый выпуклый подконус конуса M. По-
скольку подконус острого конуса сам является острым, то набор
векторов (4.13) порождает острый выпуклый конус.

Достаточность. Рассмотрим выпуклый конус (без нуля), порож-
денный векторами (4.13). Обозначим его M. По условию он — ост-
рый. Поскольку все единичные векторы e1, e2, ..., em входят в набор
векторов, порождающих M, то �� �� � . Следовательно, для это-
го конуса справедливы соотношения (4.14).�

Теорема 4.7 (алгебраический критерий непротиворечивости). Для
того чтобы набор пар векторов (4.12) был непротиворечивым, необхо-
димо и достаточно, чтобы однородная система линейных уравнений

� �

�
� 


� � �
� � �

� �

� �λ µ
� �

� � �� �� � v (4.15)

не имела ни одного ненулевого неотрицательного решения относи-
тельно 1) λ 1, λ 2, ..., λ m, µ1, µ2, ..., µk.

� Теорема является следствием предыдущей теоремы и одно-
го утверждения из теории систем линейных неравенств (см. [34],
с. 269).�

Рассмотрим самую простую ситуацию, когда информация
об относительной важности критериев состоит из одного сооб-
щения (т. е. k = 1). Соответствующая этому случаю система ли-
нейных уравнений (4.15) принимает вид

� �
�

�

�
�

�
�

� �λ µ
�

� � �� �� v . (4.16)

Допустим, что эта система имеет ненулевое неотрицательное ре-
шение λ 1, λ 2, ..., λ m, µ1. Если µ1 = 0, то (4.16) превращается в ра-

венство 
�

�
�

�
� �

�

�λ
�

�� , где хотя бы один из коэффициентов λ 1,

λ 2, ..., λ m строго положителен. Но тогда это равенство является
ложным.

Пусть µ1 ≠ 0. Вектор u1 − v1 имеет хотя бы одну положи-
тельную компоненту и поэтому вектор −µ1(u

1 − v1), записан-
ный в правой части равенства (4.16) и имеющий по крайней мере
одну отрицательную компоненту, невозможно представить в виде
неотрицательной линейной комбинации единичных векторов
e1, e2, ..., em. Следовательно, равенство (4.16) вновь невозможно,
а значит система (4.15) не имеет ни одного ненулевого неотрица-
тельного решения.

В итоге приходим к следующему результату.

Следствие 4.1. Если имеется в точности одно сообщение об от-
носительной важности критериев, то вектор, порождающий эту
информацию, образует непротиворечивый набор. Набор пар векто-
ров (4.12) может оказаться противоречивым лишь в том случае,
когда число пар векторов данного набора более одной.

Тот факт, что уже при k = 2 противоречивая ситуация воз-
можна, демонстрирует рассмотренный ранее пример 4.1, для ко-
торого система уравнений (4.15) принимает вид

λ 1 + µ 1 + µ2 (−2) = 0,

λ 2 + µ1(−3)+ µ 2 = 0

и, как нетрудно в том убедиться, имеет, например, следующее не-
нулевое неотрицательное решение λ 1 = 3, λ 2 = 1, µ1 = 1, µ2 = 2.

Следствие 4.2. Пусть имеются две группы номеров критериев
is ∈ I, js ∈ I, s = 1, 2, ..., k, {i1, ..., ik } ∩ { j1, ..., jk } = ∅, причем среди
номеров первой группы (так же, как среди номеров второй группы)
могут быть (и даже все) одинаковые. Непротиворечивым является
набор пар таких векторов (4.12), что у каждого вектора u s − v s

компонента с номером is — положительна, с номером js — отрица-
тельна, а все остальные компоненты — равны нулю, s = 1, 2, ..., k.

� Предположим противное: система линейных уравнений (4.15)
обладает ненулевым неотрицательным решением λ 1, λ 2, ..., λ m, µ1,
µ2, ..., µk. Сначала рассмотрим случай, когда среди чисел µ1, µ2, ..., µk

имеется, по крайней мере, одно положительное. В этом случае

у вектора 
�



� �

�

�

�µ
�

�� �� v  существует хотя бы одна положительная

компонента среди тех, которые принадлежат номерам первой груп-
пы. Отсюда получаем противоречие начальному предположению

о том, что сумма 
� �

� 

� � �

� �

� �

� �λ µ
� �

� �� �� � v  равна нулевому вектору.
1) Отсутствие ненулевых неотрицательных решений означает, что данная

система если и имеет некоторое решение λ 1, λ 2, ..., λ m, µ 1, µ 2, ..., µ k, то либо все
эти числа равны нулю, либо по крайней мере одно из них — отрицательное.

4.2. НЕПРОТИВОРЕЧИВОСТЬ НАБОРА ИНФОРМАЦИИ
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Если же все коэффициенты µ1, µ2, ..., µk равны нулю, то систе-

ма (4.15) превращается в 
�

�
�

�
� �

�

�λ
�

�� , где хотя бы один из коэффи-

циентов λ i отличен от нуля. Но такая система ненулевых решений
не имеет, что вновь противоречит начальному предположению.�

При помощи рассуждений, аналогичных тем, которые были
использованы при доказательстве последнего следствия, можно
получить следующий более общий результат.

Следствие 4.3. Набор пар векторов (4.12) является непротиво-
речивым, если он удовлетворяет следующим условиям: у каждого
вектора u s − v s все компоненты, номера которых принадлежат
множеству A s, A s ⊂ I, положительны, все компоненты, номера ко-
торых принадлежат множеству B s, B s ⊂ I, отрицательны, а все
остальные компоненты равны нулю, s = 1, 2, ..., k, причем для лю-
бой пары различных номеров i, j ∈ {1, 2, ..., k} выполняется равен-
ство A i ∩ B j = ∅.

Теперь сформулируем еще один критерий для проверки непро-
тиворечивости (точнее говоря, противоречивости) набора векторов.

Теорема 4.8 (алгоритмический критерий противоречивости).
Для того чтобы набор векторов (4.12) был противоречивым, необ-
ходимо и достаточно, чтобы в задаче линейного программирования

ξ 1 + ξ 2 + ... + ξ m → min,

� � � �
�

�
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�λ µ ξ
�

� � � �� �� v ,

.............................................
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� �
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�

�λ µ ξ
�

� � � �� �� v ,

λ 1 + ... + λ m + µ1 + ... + µk = 1,

λ i � 0, ξ i � 0, i = 1, 2, ..., m; µ s � 0, s = 1, 2, ..., k,   (4.17)

оптимальное значение целевой функции было равно нулю.
� Нетрудно видеть, что система ограничений в форме ра-

венств в задаче линейного программирования (4.17) без учета
искусственных переменных ξ 1, ξ 2, ..., ξ m и равенства λ 1 + ... +
+ λ m + µ1 + ... + µk = 1 полностью совпадает с системой ли-
нейных уравнений (4.15). В силу теоремы 4.8 набор пар векторов
(4.12) является противоречивым тогда и только тогда, когда од-
нородная система линейных уравнений (4.15) имеет по крайней

мере одно ненулевое неотрицательное решение. Это, в свою оче-
редь, справедливо тогда и только тогда, когда в задаче линейного
программирования (4.17) существует допустимое решение, в ко-
тором все искусственные переменные равны нулю: ξ i = 0 для
i = 1, 2, ..., m. Последнее равносильно тому, что оптимальное
значение целевой функции в задаче линейного программирова-
ния (4.17) равно нулю.�

Замечание. Следует отметить, что задача линейного програм-
мирования (4.17) всегда имеет оптимальное решение, так как
значения ее целевой функции ограничены снизу нулем. Поэтому
оптимальное значение целевой функции в этой задаче всегда су-
ществует и либо равно нулю, либо строго больше нуля.

4. Существенность информации об относительной важности
критериев. Выше уже отмечалось, что на практике процесс полу-
чения информации об относительной важности критериев часто
носит последовательный характер, т. е. сначала получают одно
сообщение, затем — второе и т. д. В этом случае важно уметь
распознавать сообщения о важности, противоречащие получен-
ным ранее. Кроме того, крайне полезно уметь отличать суще-
ственную информацию от несущественной. Например, если уже
было известно, что i-й критерий важнее j-го с коэффициентом
относительной важности 0.5, то аналогичное сообщение с мень-
шим коэффициентом не вносит ничего нового, существенного
по сравнению с первым сообщением и поэтому его можно про-
сто проигнорировать.

Пусть имеется непротиворечивый набор пар векторов (4.12).
Добавим к нему еще одну такую пару векторов � ��
 
� � �v , что

� �
 
 �� �� �� �v . В результате получим «расширенный» набор пар
векторов

� � � �� 
� ���� �� � � � � �� � � � � 
� � � � �v v . (4.18)

Определение 4.2. Для непротиворечивого набора пар векторов
(4.12) пару � ��
 
� � �v  будем называть существенной, если выпук-
лый конус, порожденный единичными векторами e1, e2, ..., em вме-
сте с векторами ui − v i, i = 1, 2, ..., k+ 1, не совпадает с выпуклым
конусом, порожденным теми же самыми единичными векторами
и векторами ui − v i, i = 1, 2, ..., k + 1.

Смысл введенного определения состоит в том, что существен-
ная дополнительная информация об относительной важности
критериев должна изменять имеющееся конусное отношение

4.2. НЕПРОТИВОРЕЧИВОСТЬ НАБОРА ИНФОРМАЦИИ
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предпочтения. Нетрудно понять, что несовпадение конусов, в ко-
торых участвуют наборы (4.12) и (4.18), может произойти лишь за
счет того, что конус, порожденный расширенным набором векто-
ров, будет шире конуса, образованного исходным набором k век-
торов.

Теорема 4.9 (критерий непротиворечивости и существеннос-
ти). Пусть набор пар векторов (4.12) является непротиворечивым.
Для того чтобы расширенный набор (4.18) одновременно был непро-
тиворечивым, а пара векторов � ��
 
� � �v  являлась существенной,
необходимо и достаточно, чтобы обе системы однородных линей-
ных уравнений

� �

� �
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� � �λ µ � �

� �

� � � � � � �� �� � v v (4.19)

не имели ни одного неотрицательного решения λ 1, λ 2, ..., λ m, µ1,
µ2, ..., µ k.

� Сначала решим вопрос с непротиворечивостью. Согласно
алгебраическому критерию непротиворечивости расширенный
набор векторов (4.18) будет совместным тогда и только тогда,
когда однородная система линейных уравнений
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� � � �� � �� �� � v v (4.20)

не имеет ни одного ненулевого неотрицательного решения.
Проверим, что это равносильно тому, что система уравнений
(4.19−), т. е. система (4.19), в правой части которой взят знак
минус, не имеет неотрицательного решения. Действительно, если
система уравнений (4.20) не имеет ненулевых неотрицательных
решений, то система (4.19−) не может иметь неотрицательного
решения. Обратно, если вторая из указанных систем (т. е. (4.19−))
не имеет неотрицательного решения, а первая обладает ненуле-
вым неотрицательным решением λ 1, λ 2, ..., λ m, µ1, µ2, ..., µk, то
нетрудно прийти к противоречию. В самом деле, случай µk + 1 = 0
невозможен из-за того, что набор векторов (4.12) является непро-
тиворечивым. Значит, µk + 1 > 0. В таком случае, разделив обе
части равенства (4.20) на µk + 1, придем к тому, что система ли-
нейных уравнений (4.19−) имеет неотрицательное решение. Это
противоречит начальному предположению. Тем самым, первая
часть теоремы, связанная с непротиворечивостью доказана.

Перейдем к доказательству второй части, посвященной суще-
ственности пары векторов � ��
 
� � �v . Согласно определению 4.2
эта пара векторов является существенной тогда и только тогда,
когда вектор � �
 
� � ��v  не принадлежит выпуклому конусу, по-
рожденному векторами � 
 � � 
 
� � ���� � � � ����� 
 
� � � � � �� � �v v v .
Последнее имеет место тогда и только тогда, когда неоднородная
система линейных уравнений (4.19+) не имеет ни одного неот-
рицательного решения.�

Замечание. В доказанной теореме есть две части — одна по-
священа непротиворечивости, а вторая — существенности пары
векторов � ��
 
� � �v . Из доказательства видно, что первая часть
теоремы связана с существованием неотрицательного решения
системы уравнений (4.19−), тогда как вопрос существенности
решается в терминах системы уравнений (4.19+).

4.3. Использование набора информации
об относительной важности критериев

1. Случай, когда несколько критериев по отдельности важнее
одного критерия. В п. 4 разд. 4.2 была рассмотрена ситуация, когда
два критерия по отдельности важнее третьего. Ниже изучается
общий случай, где число критериев, которые являются более
важными, чем некоторый один данный критерий, может быть
больше двух.

Теорема 4.10. Пусть k, i1, i2, ..., il ∈ I, l � m − 1. Предполо-
жим, что выполнены аксиомы 1−4 и имеется набор информации
об относительной важности, состоящей из l сообщений о том, что
i1-й критерий важнее k-го с коэффициентом относительной важно-
сти 

�� 

θ , i2-й критерий важнее k-го с коэффициентом относитель-

ной важности 

� 


θ , ..., il-й критерий важнее k-го с коэффициентом
относительной важности 

�� 

θ . Тогда для любых непустых множеств

выбираемых векторов и решений выполняются включения

�
��� 
 � 
 �� �� �� � (4.1)

и

Sel X ⊂ Pg (X ) ⊂ Pf (X ), (4.6)

где �
 �� � (Pg(Y )) — множество парето-оптимальных векторов (па-
рето-оптимальных решений) в многокритериальной задаче с мно-
жеством возможных решений X и векторным критерием g, имею-
щим компоненты
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g s = f s, для всех s ∈ I \ {k},

� �

�

�

�

� 


� 


�


 
 �

�

� � �
θ

θ� �
� �� . (4.21)

� Как обычно, пусть K означает острый выпуклый конус
(без нуля) конусного отношения предпочтения �. Наличие име-
ющейся в условиях теоремы информации об относительной важ-
ности критериев означает выполнение включения ��� ��  для
каждого p = 1, 2, ..., l, где у m-мерного вектора ���  все компо-
ненты равны нулю, кроме ip-й и k-й, которые определяются ра-
венствами ��

��

�
� 
�

� θ� �  и �

�

�
� 

� θ� � .

Через M обозначим выпуклый конус (без нуля), порожден-
ный векторами e 1, e 2, ..., e m, � 
� ����� �� � �� � � . Вектор ���  можно пред-
ставить в виде линейной комбинации векторов e k и ���  с поло-
жительными коэффициентами. Следовательно, конус M порож-
дается набором векторов вида

e i, i = 1, 2, ..., m  (i ≠ ip для всех p = 1, 2, ..., l );

� 
� � ���� �� � �� � � , (4.22)

а значит, этот конус совпадает с множеством всех ненулевых неот-
рицательных линейных комбинаций векторов (4.22).

Установим совпадение конуса M с множеством ненулевых
решений системы линейных неравенств

ys � 0 для всех s ∈ I \ {k},

� �
��

�

�

� 


� 


�


 �

�

� �
θ

θ� �
�� � . (4.23)

С этой целью найдем общее решение системы линейных нера-
венств (4.23), рассмотрев соответствующую ей систему линей-
ных уравнений

〈e s, y〉 = 0 для всех s ∈ I \ {k},

� �� �� 	 � , (4.24)
где

�
��

�


�

�

�

� 



 �� �
θ

θ�
� � , p = 1, 2, ..., l,

а все остальные компоненты вектора �  равны нулю.

В системе (4.24) имеется m уравнений. Любая подсистема
из m− 1 векторов системы � � �� ���� � � � ����
 
 �� � � � �� �  линейно неза-
висима. Поэтому для отыскания фундаментальной совокупнос-
ти решений системы неравенств (4.23) достаточно найти по од-
ному ненулевому решению каждой из подсистем системы урав-
нений (4.24), получающейся из (4.24) удалением какого-то одного
уравнения (при этом все найденные решения должны удовлет-
ворять системе неравенств (4.23)).

При удалении последнего уравнения из (4.24) получим под-
систему с решением e k. Если из (4.24) удалить уравнение 〈e s, y〉 = 0
при s = ip (p ∈ {1, 2, ..., l }), то соответствующая подсистема будет
обладать решением ��� . Удаление уравнения 〈e s, y〉 = 0 при
s ∈ I \ {k, i1, i2, ..., il } приводит к подсистеме, имеющей решение e s.

Итак, фундаментальная совокупность решений системы ли-
нейных неравенств (4.23) имеет вид (4.22). Поэтому конус M дей-
ствительно совпадает с множеством ненулевых решений систе-
мы линейных неравенств (4.23).

Остальная часть доказательства почти дословно повторяет соот-
ветствующую часть доказательств теорем 4.4 и 4.5 с очевидными
изменениями в формулах, и поэтому здесь не приводится.�

2. Использование набора взаимно независимой информации об
относительной важности критериев. Как было указано в п. 1 пре-
дыдущего раздела, учет набора взаимно независимой информа-
ции, состоящей из двух сообщений, происходит последователь-
но. Идея последовательного учета набора взаимно независимой
информации может быть применена и в случае более двух сооб-
щений. Например, имеет место следующий результат.

Теорема 4.11. Пусть выполнены аксиомы 1−4 и имеется набор
взаимно независимой информации об относительной важности кри-
териев, состоящий из k сообщений о том, что группа критериев A s

важнее группы критериев B s с коэффициентами относительной

важности �
� �θ  для всех i ∈ As, j ∈ Bs, s = 1, 2, ..., k  � �



�

�


 � .

Обозначим

� �

�

 


� �
� �

� � � �
� �

� �� � .

Тогда для любого непустого множества выбираемых векторов и непу-
стого множества выбираемых решений выполняются включения

�
�� � 
�� � �� 
 � 
 � � 
 � 
 �� � � � � � � � � �� � ,
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где ��  — множество значений векторной функции g (т. е. � � �� � �� ),

а g — p-мерная векторная функция, 
�




� �

�

� � � � �
�

� � � �� , с ком-

понентами, составленными из тех компонент fi векторного крите-
рия f, для которых i ∈ I \ B, а также компонент

� ��� � �
�� � � � � � �� � �θ θ� � � для всех i ∈ As, j ∈ Bs, s = 1, 2, ..., k.

3. Задача выпуклого анализа. Легко понять, что рассмотрен-
ные выше случаи использования набора информации об относи-
тельной важности критериев далеко не исчерпывают всех воз-
можных вариантов. Разумеется, это относится к наборам инфор-
мации, которые не являются взаимно независимыми. Например,
выше не приводились формулы для пересчета нового критерия
для случая, когда одна группа критериев важнее другой группы
критериев, а вторая, в свою очередь, является более важной, чем
первая. Ждет своего разрешения ситуация, в которой один кри-
терий важнее каждого из некоторого набора более чем двух кри-
териев в отдельности. И этот список можно легко продолжить.

Из приведенных доказательств теорем, посвященных учету
различного рода информации об относительной важности кри-
териев, можно усмотреть вполне определенную схему, на основе
которой получаются соответствующие формулы для пересчета
нового критерия. Кратко эту схему можно описать следующим
образом. С самого начала, когда еще нет никакой информации
об относительной важности критериев, справедливо лишь вклю-
чение �� �� � , где символом K обозначен острый выпуклый ко-
нус (неизвестного) конусного отношения �. Указанное включе-
ние выполняется благодаря аксиоме Парето. Наличие в общем
случае некоторого набора информации, состоящего из k сообще-
ний об относительной важности критериев, на геометрическом
языке означает задание k векторов y i ∈ R m, для которых выпол-
нено y i � 0m, или, что то же самое, y i ∈ K, i = 1, 2, ..., k. Далее
вводится острый выпуклый конус M, порожденный векторами
e 1, e 2, ..., e m, y 1, y 2, ..., y k. Этот конус определяет конусное отно-
шение того же самого класса, что и неизвестное отношение пред-
почтения �, но более широкое, так как M ⊂ K. Конус M являет-
ся конечнопорожденным, а значит многогранным. Число ком-
понент нового векторного критерия в точности совпадает с числом
(m − 1)-мерных граней конуса M, а нормальные (направленные

внутрь конуса) векторы этих граней дают возможность получить
формулы для пересчета нового векторного критерия.

Например, в самом простом случае, когда i-й критерий важ-
нее j-го с коэффициентом относительной важности θi j, конус M
(см. теорему 2.5) имел следующие нормальные векторы, направ-
ленные внутрь конуса — � �� � �� ���� � � � � ����� � � � �

� � � �� � � � � �θ θ� �� � .
Поэтому в данном случае формула для пересчета нового j-го кри-
терия принимает вид � ��� � � � � � �� � �θ θ� � � .

В соответствии со сказанным, сформулируем общую задачу
(она формулируется в терминах выпуклого анализа), решение
которой позволило бы получать формулы для пересчета новых
критериев в любых ситуациях с произвольными наборами ин-
формации об относительной важности критериев.

Сначала, однако, напомним определение двойственного ко-
нуса. Пусть a 1, a 2, ..., a k — конечный набор векторов m-мерного
евклидова пространства. Выпуклый конус, порожденный указан-
ными векторами, обозначим

M = cone {a 1, a 2, ..., a m }.

Он представляет собой множество всех неотрицательных линей-
ных комбинаций указанных векторов. Будем считать, что этот
конус острый и его размерность 1) равна m.

Двойственный конус [4] по отношению к конусу M обозначим
символом C. Он определяется равенством

C = {x ∈ R m | 〈x, y 〉 � 0 для всех y ∈ M }.

Например, двойственным конусом для неотрицательного
ортанта будет сам неотрицательный ортант.

Двойственный конус для многогранного (или конечнопорож-
денного) конуса так же является многогранным конусом, а зна-
чит, порождается некоторым конечным набором векторов. Изве-
стно также [28], что двойственный для острого m-мерного кону-
са сам является острым и m-мерным.

Задача. Найти алгоритм, который для произвольного заданного
конечного набора векторов a 1, a 2, ..., a k, порождающих выпуклый
острый m-мерный конус M, дает возможность за обозримое время
построить минимальный набор векторов b 1, b 2, ..., b n, порождаю-
щих двойственный конус C, т. е. таких, что

C = cone {b 1, b 2, ..., b n}.

4.3. ИСПОЛЬЗОВАНИЕ НАБОРА ИНФОРМАЦИИ

1) Размерность конуса совпадает с размерностью минимального подпрост-
ранства, содержащего данный конус.
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На геометрическом языке сформулированная задача заклю-
чается в построении на основе ребер конуса M, набора нормаль-
ных векторов всех гиперплоскостей, являющихся (m − 1)-мер-
ными гранями M.

В частном случае, когда конусом M является неотрицатель-
ный ортант пространства R m, сформулированная задача триви-
альна и ее решением будет, например, набор единичных ортов
этого пространства (тех самых, которые порождают данный нео-
трицательный ортант).

Имея в распоряжении алгоритм, о котором идет речь в сфор-
мулированной выше задаче, можно для любого конечного непроти-
воречивого набора информации об относительной важности кри-
териев за обозримое время получать формулы для пересчета ста-
рого векторного критерия и образования нового, на основе
которого строится оценка сверху для множества выбираемых ре-
шений (векторов).

4.4. Алгоритмический подход
к использованию произвольного набора информации
об относительной важности критериев

1. Идея алгоритмического подхода. Рассмотрим ситуацию, когда
информация об относительной важности критериев содержит
произвольный конечный набор k сообщений, каждое из которых
состоит в том, что некоторая группа критериев важнее какой-то
другой группы критериев с определенными коэффициентами
относительной важности. При этом предполагается, что участву-
ющие в данном наборе пары сообщений в общем случае не явля-
ются взаимно независимыми.

Как указывалось выше, задание подобной информации рав-
носильно указанию набора из k пар векторов

� � � �� 
� ����� � � � � �� � � � � 
� � � �v v ,

для которых выполнены соотношения u i � v i, i = 1, 2, ..., k.
Напомним, что множество N m составляют все m-мерные векто-
ры, имеющие по крайней мере одну положительную и хотя бы
одну отрицательные компоненты.

Введем выпуклый конус M (без нуля), порожденный векторами

� 
 � �� � ���� � � ����� 
 
� � � � �� �v v . (4.25)

Все указанные векторы принадлежит острому выпуклому
конусу K, который задает конусное отношение предпочтения �.
Поэтому справедливо включение M ⊂ K, а значит конус M —
острый. Кроме того, благодаря аксиоме Парето он содержит нео-
трицательный ортант ��� , т. е. ��� ⊂ M.

Обозначим через �M конусное отношение с конусом M. В силу
следствия 2.1 это конусное отношение удовлетворяет аксиомам
2−4, т. е. относится к отношениям того же класса, что и исход-
ное отношение �. Следует, правда, заметить, что отношение �
удовлетворяет еще и аксиоме 1, а для отношения �M оно может
оказаться не выполненным. Но его выполнение для дальнейшего
и не понадобится.

Таким образом, имеются два конусных отношения � и �M,
которые в силу включения M ⊂ K связаны друг с другом импли-
кацией

y ′ �M y ″ ⇒ y ′ � y ″

для y ′, y ″ ∈ R m.
Наличие этой связи приводит к тому, что множество недо-

минируемых векторов Ndom Y, построенное на основе отноше-
ния �, является подмножеством множества недоминируемых век-
торов, определяемого с помощью отношения �M, т. е.

Ndom Y ⊂ N domM Y, (4.26)

где

NdomM Y = {y* ∈ Y | не существует такого y ∈ Y, что y �M y*}.

Включение (4.26) означает, что множество NdomM Y являет-
ся некоторой оценкой сверху для множества недоминируемых
векторов Ndom Y, а значит и для множества выбираемых векто-
ров Sel Y. Построив множество NdomM Y, получим в общем слу-
чае более узкое множество, чем множество Парето, и, тем са-
мым, за счет удаления некоторых парето-оптимальных векторов
произойдет сужение множества Парето. В этом и заключается
существо подхода, предлагаемого ниже.

2. Мажорантное отношение. Конусное отношение �M с ост-
рым выпуклым конусом M (без нуля), порожденным векторами
(4.25), будем называть мажорантным отношением. Это наимено-
вание обуславливается тем, что на его основе далее будет постро-
ена оценка сверху (т. е. мажоранта) для множества выбираемых
векторов (решений).

4.4. АЛГОРИТМИЧЕСКИЙ ПОДХОД
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Предлагаемый алгоритмический подход основан на приме-
нении следующего утверждения.

Теорема 4.12. Пусть y ′, y″ ∈ Rm, y ′ ≠ y″. Соотношение y ′ �M y″
имеет место тогда и только тогда, когда равно нулю оптимальное
значение целевой функции в следующей канонической задаче линей-
ного программирования

ξ 1 + ξ 2 + ... + ξ m → min
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λ µ ξ
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λ 1, λ 2, ..., λ m, µ 1, µ 2, ..., µ k, ξ 1, ξ 2, ..., ξ m � 0. (4.27)

Здесь символ sign (a) определяется равенством
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� Прежде всего, заметим, что соотношение y ′ �M y ″ выпол-
няется тогда и только тогда, когда верно включение y ′ − y ″ ∈ M,
что равносильно выполнению равенства
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при некоторых одновременно не равных нулю неотрицатель-
ных коэффициентах λ 1, λ 2, ..., λ m, µ 1, µ 2, ..., µ k. В свою очередь,
равенство (4.28) при указанных коэффициентах имеет место тогда
и только тогда, когда выполнено
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(4.29)

Далее, для того чтобы выполнялись равенства (4.29) при неко-
торых одновременно не равных нулю неотрицательных числах
λ 1, λ 2, ..., λ m, µ 1, µ 2, ..., µ k необходимо и достаточно, чтобы кано-
ническая задача линейного программирования (4.27) имела оп-
тимальное решение, в котором ξ 1 = ξ 2 = ... = ξ m = 0. После-
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днее эквивалентно равенству нулю оптимального значения целе-
вой функции в задаче линейного программирования (4.27).�

В соответствии с теоремой 4.12 проверка справедливости со-
отношения y ′ �M y ″ сводится к решению канонической задачи
линейного программирования (4.27). Это решение может быть
осуществлено с помощью известного алгоритма симплекс-мето-
да. Такой способ проверки соотношения y ′ �M y ″ удобен при
создании общего алгоритма построения оценки сверху в случае
конечного множества возможных векторов Y. Если же требуется
решить задачу невысокой размерности «вручную», то более удоб-
ным оказывается использование следующего результата, кото-
рый представляет собой частный случай теоремы 4.12, установ-
ленный в ходе доказательства этой теоремы.

Следствие 4.4. Пусть y′, y ″ ∈ R m, y ′ ≠ y ″. Соотношение
y ′ �M y ″ имеет место тогда и только тогда, когда неоднородная
система линейных уравнений (4.28) имеет ненулевое неотрицатель-
ное решение относительно λ 1, λ 2, ..., λ m, µ 1, µ 2, ..., µ k.

3. Пример. Пусть m = 3, k = 2, Y = {y 1, y 2, y 3, y 4}, где

y 1 = (1, 4.5, 2), y 2 = (2, 3, 1), y 3 = (3, 2, 1.5), y 4 = (5, 1.5, 2),

u 1 = (0, 5, 1), v 1 = (2, 2, 0), u 2 = (5, 0, 2), v 2 = (1, 1, 1).

Поскольку

u 1 − v 1 = (−2, 3, 1), u 2 − v 2 = (4, −1, 1),

то данные две пары векторов u 1, v 1, u 2, v 2 могут задавать (если
они непротиворечивы) информацию об относительной важности
критериев, состоящую их двух сообщений. Первое из этих сооб-
щений о том, что группа из второго и третьего критериев, важнее
первого критерия. Второе сообщение — о бóльшей важности груп-
пы, состоящей из первого и третьего критериев по сравнению со
вторым критерием. Обращаем внимание на то, что имеющаяся
информация не является взаимно независимой и для учета этой
информации ни одна из полученных ранее формул непригодна.

Сначала убедимся в совместности имеющихся пар векторов
u 1, v 1, u 2, v 2. Для этого воспользуемся теоремой 4.6 и запишем
для данного случая однородную систему линейных уравнений (4.15):

λ 1 − 2 µ 1 + 4 µ 2 = 0,

λ 2 + 3 µ 1 − µ 2 = 0,

λ 3 + µ 1 + µ 2 = 0.
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Из последнего уравнения благодаря неотрицательности чисел
λ 3, µ 1, µ 2 следует их равенство нулю: λ 3 = µ 1 = µ 2 = 0. В таком
случае из первого и второго уравнений получаем λ 1 = λ 2 = 0.
Следовательно, рассматриваемая система линейных уравнений
не имеет ненулевых неотрицательных решений. Согласно теоре-
ме 4.6 это означает совместность двух пар векторов u 1, v 1, u 2, v 2.

Теперь построим оценку сверху для множества недоминиру-
емых векторов Ndom Y (а значит и для множества выбираемых
векторов Sel Y ). С этой целью сначала запишем систему линей-
ных уравнений (4.28) для векторов y ′ = y 1 и y ″ = y 2:

λ 1 − 2 µ 1 + 4 µ 2 = −1,

λ 2 + 3 µ 1 − µ 2 =   1.5,

λ 3 + µ 1 + µ 2 =   1.

Она имеет ненулевое неотрицатательное решение λ 1 = λ 2 =
= µ 2 = 0, λ 3 = µ 1 = 0.5. Следовательно, выполняется соотно-
шение y 1 �M y 2, а значит, вектор y 2 не может входить в множе-
ство недоминируемых векторов NdomM Y.

Для векторов y′ = y 4 и y ″ = y 3 система линейных уравне-
ний (4.28) принимает вид

λ 1 − 2 µ 1 + 4 µ 2 =   2,

λ 2 + 3µ 1 − µ 2 = −0.5,

λ 3 + µ 1 + µ 2 =   0.5.

У этой системы имеются ненулевые неотрицательные реше-
ния, например, λ 1 = λ 2 = λ 3 = µ 1 = 0, µ 2 = 0.5. Поэтому век-
тор y 3 так же не входит в множество недоминируемых векторов
NdomM Y.

Выпишем пару систем линейных уравнений (4.28) для векто-
ров y ′ = y 1, y ″ = y 4 и y ′ = y 4, y ″ = y 1:

λ 1 − 2µ 1 + 4µ 2 = −4, λ 1 − 2 µ 1 + 4 µ 2 =   4,

λ 2 + 3µ 1 − µ 2 =   3, λ 2 + 3 µ 1 − µ 2 = −3,

λ 3 + µ 1 + µ 2 =   0; λ 3 + µ 1 + µ 2 =  0.5.

Нетрудно проверить, что ни одна из этих двух систем не имеет
ненулевых неотрицательных решений, а, значит, ни одно из со-
отношений y 1 �M y 4, y 4 �M y 1 не выполняется.

В итоге получено следующее двухэлементное множество не-
доминируемых векторов

NdomM Y = {y 1, y 4}.

Это множество представляет собой оценку сверху для множества
выбираемых векторов Sel Y, т. е. Sel Y ⊂ {y1, y 4}. Как видим, ни один
из возможных векторов y 2, y 3 не вошел в это множество, а, значит,
ни один из них заведомо не должен быть выбранным.

4. Алгоритм построения оценки сверху в случае конечного мно-
жества Y. Здесь будем считать, что множество возможных векто-
ров Y состоит из конечного числа элементов:

Y = {y 1, y 2, ..., yN}.

Алгоритм построения множества недоминируемых векторов
NdomM Y состоит из следующих восьми шагов.

Шаг 1. Прежде всего, рекомендуется проверить совместность
(непротиворечивость) набора пар векторов u i, v i ∈ Rm, для кото-
рых выполняется u i − v i ∈ N m, i = 1, 2, ..., k. Такая проверка сво-
дится к решению канонической задачи линейного программиро-
вания (4.15). Если в результате решения этой задачи оптимальное
значение целевой функции оказалось равным нулю, то вычисле-
ния следует закончить, так как данный набор пар векторов про-
тиворечив. Если же это значение положительно, то необходимо
перейти к следующему шагу.

Шаг 2. Положить NdomM Y = y, i = 1, j = 2. Тем самым
образуется так называемое текущее множество недоминируемых
векторов, которое в начале работы алгоритма совпадает с множе-
ством Y, а в конце — составит искомую оценку сверху. Алгоритм
устроен таким образом, что эта оценка получается из Y последо-
вательным удалением заведомо доминируемых векторов.

Шаг 3. Проверить выполнение соотношения y i �M y j. Для
этого нужно решить каноническую задачу линейного програм-
мирования (4.27) при y ′ = y i, y ″ = y j. Если оптимальное значе-
ние целевой функции в этой задаче оказалось равным нулю, то
перейти к Шагу 4. В противном случае (т. е. когда это значение
положительно) перейти к Шагу 6.

Шаг 4. Удалить из текущего множества недоминируемых век-
торов NdomM Y вектор y j, так как он не может входить в это
множество.

Шаг 5. Проверить выполнение неравенства i < N. Если оно
имеет место, то положить j = j + 1 и вернуться к Шагу 3. В
противном случае — перейти к Шагу 8.

4.4. АЛГОРИТМИЧЕСКИЙ ПОДХОД
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Шаг 6. Проверить справедливость соотношения y j �M y i. Для
этого необходимо решить каноническую задачу линейного про-
граммирования (4.27) при y′ = y i, y ″ = y i. В том случае, когда
оптимальное значение целевой функции этой задачи окажется
равным нулю, перейти к Шагу 7. В противном случае (т. е. когда
это оптимальное значение положительно) — вернуться к Шагу 5.

Шаг 7. Удалить из текущего множества недоминируемых век-
торов NdomM Y вектор y i.

Шаг 8. Проверить выполнение неравенства i < N − 1. В слу-
чае истинности этого неравенства следует последовательно по-
ложить i = i + 1, а затем j = i + 1. После этого необходимо
вернуться к Шагу 3. В противном случае (т. е. когда i � N − 1)
вычисления закончить. Множество недоминируемых векторов по-
строено полностью.



Здесь дается теоретическое обоснование предлагаемого да-
лее метода последовательного сужения множества компромиссов
на основе конечного набора информации об относительной важ-
ности критериев. Изложение данной главы является наиболее
сложным в математическом отношении, поэтому она без ущерба
для понимания дальнейшего материала может быть пропущена
читателями, не имеющими соответствующей подготовки.

Существо полученных здесь результатов можно выразить сле-
дующим образом: информация об относительной важности кри-
териев полна в том смысле, что только на ее основе для любой
задачи определенного достаточно широкого класса можно с любой
степенью точности определить неизвестное множество недоми-
нируемых векторов (недоминируемых решений). Если же число
возможных векторов конечно, то множество недоминируемых
векторов может быть построено точно и полностью. Таким обра-
зом, научившись выявлять информацию об относительной важ-
ности из ЛПР, можно успешно находить множество недомини-
руемых решений и векторов, не привлекая информации никакого
другого типа.

При изложении результатов этой главы были использованы
некоторые идеи из книги [3].

5.1. Предварительное рассмотрение

1. Постановка задачи. Наличие информации об относительной
важности критериев, состоящей в том, что некоторая группа кри-
териев важнее другой группы, позволяет удалить определенные
парето-оптимальные векторы как заведомо неприемлемые и, тем
самым, получить более точную оценку сверху (аппроксимацию)
для множества выбираемых векторов, чем множество Парето. Если
же такой информации имеется некоторый конечный набор, то
можно надеяться, что с его помощью удастся построить еще
более точную (более узкую) оценку сверху. Из общих соображений

Глава 5

ПОЛНОТА ИНФОРМАЦИИ
ОБ ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ КРИТЕРИЕВ
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по крайней мере одну положительную и хотя бы одну отрица-
тельную компоненты, для которого выполняется соотношение
u � 0m. В том случае, когда имеется конечный набор подобного
типа информации, соответственно получаем набор таких векто-
ров u i ∈ N m, что верно u i � 0m, i = 1, 2, ..., k. Если набор векто-
ров непротиворечив (точнее говоря, непротиворечивым является
набор пар векторов u i, 0m, i = 1, 2, ..., k), то выпуклый конус M,
порожденный векторами e 1, e 2, ..., em, u 1, u 2, ...,uk, представляет
собой совокупность всех ненулевых неотрицательных линейных
комбинаций этих векторов и является острым выпуклым кону-
сом (без нуля). Он задает конусное отношение, обозначаемое да-
лее �M.

Поставленный в предыдущем пункте вопрос о полноте инфор-
мации об относительной важности критериев теперь в геометри-
ческих терминах примет следующую форму: насколько близким
к неизвестному отношению предпочтения � можно получить от-
ношение �M, используя лишь различного рода конечные непро-
тиворечивые наборы векторов u 1, u 2, ..., u k. Другими словами,
имеется ли принципиальная возможность за счет выбора указанного
набора векторов сколь угодно точно приблизить отношение �M

к неизвестному отношению предпочтения �?
Для упрощения последующего решения поставленный воп-

рос переведем в плоскость конусов отношений и сформулируем
его так: возможно ли за счет выбора набора векторов u 1, u 2, ..., uk

получить конус M сколь угодно близким к неизвестному конусу K 1)?
При этом число векторов k не фиксировано и может быть любым
конечным числом.

Конус K является произвольным острым выпуклым конусом
и не содержит нуля. Что касается конуса M, то он принадлежит
тому же классу, что и K, т. е. так же является острым, выпуклым
и не содержит нуля. Однако в отличие от K конус M порожден
конечным числом векторов, а, значит, он — конечнопорожден-
ный, т. е. многогранный (см. [4, 28]). В такой постановке вопрос
о полноте информации об относительной важности критериев
имеет много общего с известной в выпуклом анализе задачей
аппроксимации произвольного выпуклого компактного множе-
ства многогранником. Как известно, эта задача имеет положи-
тельное решение — произвольное выпуклое замкнутое ограни-
ченное множество можно сколь угодно точно аппроксимиро-
вать (приблизить) многогранником. Поэтому есть все основания

1) Напоминаем, что K — острый выпуклый конус отношения �.

ясно, что, располагая все большим набором подобного рода ин-
формации, можно строить все более точную оценку сверху. В
связи с этим, возникает следующий вопрос: каковы границы ис-
пользования конечного набора различной информации об отно-
сительной важности критериев?

Прежде чем продолжить рассмотрение, отметим следующее.
Благодаря лемме 1.2 множество выбираемых векторов должно
содержаться в множестве недоминируемых векторов. Более того,
имея дело с классом задач многокритериального выбора, ограни-
ченных рамками аксиом 1−4, ясно, что выбранным может ока-
заться любое подмножество множества недоминируемых векторов.
Иными словами, информация об отношении предпочтения ЛПР
и наличие набора критериев, удовлетворяющих аксиомам 1−4,
не позволяют исключить как заведомо неприемлемый ни один
из недоминируемых векторов. Поэтому самой узкой оценкой
сверху для множества выбираемых векторов в рассматриваемой
модели будет множество недоминируемых векторов. По этой
причине мы будем далее говорить об аппроксимации (приближе-
нии) не множества выбираемых, а множества недоминируемых
векторов.

Более точно поставленный выше вопрос можно сформулиро-
вать следующим образом: возможно ли, используя лишь конечный
набор информации об относительной важности критериев, получить
сколь угодно точное представление о неизвестном множестве недо-
минируемых векторов? Оказывается, на этот вопрос в принципе
можно ответить положительно. В принципе — так как придется
несколько сузить класс рассматриваемых задач многокритери-
ального выбора, уже ограниченных рамками аксиом 1−4.

Ниже будет показано, что для определенного класса задач
многокритериального выбора нужно лишь научиться успешно
извлекать и грамотно использовать информацию об относитель-
ной важности критериев. Этого вполне достаточно для того, что-
бы, по крайней мере, теоретически получить сколь угодно точное
представление о неизвестном множестве недоминируемых векто-
ров (и недоминируемых решений). Такое положение свидетель-
ствует о важной роли информации об относительной важности
критериев в процессе принятия решений.

2. Геометрические аспекты. Сформулируем поставленный
выше вопрос в геометрических терминах.

В соответствии с определением 3.3 наличие информации об
относительной важности одной группы критериев по сравнению
с другой группой означает, что указан вектор u ∈ N m, имеющий
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� Из неравенства � �� ��  следует, что найдется точка
y ∈ R m, такая что � ��� � � �� � , либо найдется такая точка
y ∈ R m, для которой � ��� � � �� � . Для определенности про-
должим рассмотрение первого случая, так как второй разбирает-
ся аналогично.

Из соотношений � ��� � � �� �  вытекает существование та-
кой точки y ′, что y ′ ≠ 0m и � ��� � � �� �� � . Рассмотрим луч (ча-
стный случай конуса), исходящий из начала координат и прохо-
дящий через y ′. Обозначим этот луч l. Для него выполнены соот-
ношения � ��� � � �� � .

Норма || y ′ − y ||, как функция переменных y1, y2, ..., ym, не-
прерывна и ограничена снизу на конусе K2. Поэтому найдется
предельная для множества K2 точка � �� �� , для которой выпол-
няется равенство

�
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� �� � � ,

причем �� � �� . Выберем на луче l последовательность точек

� �
�
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�
 вида

y k = ky ′, k = 1, 2, ...

Для точек этой последовательности имеем

�

� � �

�

��	 

 

 ��	 

 

 ��	

��	 

 

 

 

 �

�

� � � � � �

�� � �

�

�
� � � � � � �

� � � � � �

� � �

� 
	

� �� � � � � �

� �� � � � 
 �	

откуда немедленно следует требуемое равенство dist (K1, K2) =
= +∞.�

В соответствии с доказанной леммой хаусдорфово расстоя-
ние между двумя «существенно несовпадающими» конусами (за-
мыкания которых не совпадают) всегда равно +∞. Поэтому из-
мерять близость конусов бинарных отношений с помощью хаус-
дорфова расстояния не представляется возможным.

Пусть K означает выпуклый конус в пространстве R m, а Y —
подмножество того же пространства. Введем множество

Yz = {y ∈ | y − z ∈ K}

5.1. ПРЕДВАРИТЕЛЬНОЕ РАССМОТРЕНИЕ

надеяться, что аналогичный вопрос, сформулированный для ко-
нусов (когда произвольный выпуклый конус нужно аппрокси-
мировать многогранным конусом) найдет свое положительное ре-
шение. Но для того чтобы получить это решение, прежде всего
необходимо договориться об измерении расстояния между вы-
пуклыми конусами.

3. Расстояние между конусами. Пусть A и B — произвольные
непустые выпуклые подмножества пространства R m. Как извест-
но, хаусдорфово расстояние (см. [11]) между данными множествами
обозначается dist (A, B ) и определяется формулой

dist (A, B ) = inf {r ∈ R+ | A ⊂ (B)r , B ⊂ (A)r},

где R+ означает множество положительных вещественных чисел и

� � � �� � � � �� � � �

� � � 	

� 
 � 	 
 �
� �

� �� � ,

а Ur (y) (r > 0) — замкнутый шар в пространстве Rm с центром в y
и радиусом r:

Ur (y) = {z ∈ R m | || z − y || � r },

Символом || a || здесь обозначена евклидова норма (длина) векто-
ра a ∈ R m, т. е.

� � �
� � 


 �� � � �� � � � .

В частном случае, когда A и B — одноэлементные множества
(a) и (b) соответственно, хаусдорфово расстояние между ними
совпадает с евклидовым и равно норме разности этих векторов,
т. е. || a − b ||.

Следующий результат показывает, что непосредственное при-
менение хаусдорфова расстояния для измерения расстояния между
выпуклыми конусами наталкивается на определенные трудно-
сти, которые, впрочем, далее будут преодолены.

Лемма 5.1. Пусть K1 и K2 — произвольные два выпуклые конуса
в пространстве R m, не содержащие начало координат, причем

� �� �� , где черта сверху означает замыкание множества 1). Тог-
да имеет место равенство

dist (K1, K2) = +∞.

1) Операция замыкания множества состоит в присоединении к нему всех
его граничных точек.
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5.2. Первая теорема о полноте

1. Постановка математической задачи. Бинарное отношение
предпочтения �, которым ЛПР руководствуется в процессе приня-
тия решений, благодаря аксиомам 2−4 является конусным с ост-
рым выпуклым конусом K без начала координат. Поэтому пусть
имеется произвольный острый выпуклый конус K, K ⊂ R m, кото-
рый не содержит начало координат и в силу аксиомы Парето вклю-
чает неотрицательный ортант ��� . Следует заметить, что в общем
случае конус K не является многогранным.

Как указано в предыдущем разделе, наличие конечного набо-
ра информации об относительной важности критериев равносиль-
но заданию некоторого непротиворечивого конечного набора век-
торов u 1, u 2, ..., u k ∈ N m, которые вместе с единичными ортами
e 1, e 2, ..., em порождают многогранный конус M, содержащийся
в конусе K.

Математическая постановка рассматриваемого вопроса выг-
лядит следующим образом: возможно ли за счет выбора набора
указанных выше векторов u 1, u 2, ..., uk (при этом число k векторов
конечно, но не фиксировано) добиться того, чтобы расстояние
dr (K, M ) между конусами K и M было сколь угодно малым?

Ответ на поставленный вопрос дается в следующей теореме.

2. Первая теорема о полноте.
Теорема 5.1 (в терминах аппроксимации конусов). Пусть K —

произвольный острый выпуклый конус, не содержащий начала коор-
динат, и такой, что � �� � �� � � � � �� �� � � . Выберем и за-
фиксируем произвольное положительное r. Тогда для любого поло-
жительного числа ε  найдется такой конечный набор векторов

� �
�

� �� �� �� �� 


�
�

� � � �
� �

�
� � � 
 � 
 � �

�
� � �� � ,

что

dr(K, cone {e 1, e 2, ..., e m, u 1, u 2, ..., u k}) < ε, (5.2)

где cone {e 1, e 2, ..., em, u 1, u 2, ..., uk} — выпуклый конус, порожден-
ный конечным набором векторов e 1, e 2, ..., em, u 1, u 2, ..., uk.

Более того, при этом можно считать, что компоненты всех
векторов u i являются рациональными числами.

� Примем обозначения

� ��� �� ��� ��� ��� �� �� � � �� � 
 � � 
� �� � .

5.2. ПЕРВАЯ ТЕОРЕМА О ПОЛНОТЕ

для каждого z ∈ Y. Если существует такая положительная кон-
станта r, что для любого z ∈ Y выполняется неравенство

���
� �

� �
�

� 

z

z ,

то множество Y называют K-ограниченным. Нетрудно проверить,
что всякое ограниченное множество является K-ограниченным,
тогда как обратное утверждение в общем случае места не имеет.

Теперь пусть Y есть множество возможных векторов, а K —
выпуклый конус конусного отношения предпочтения �. Предпо-
ложим, что имеет место соотношение y ′ � y ″ для векторов
y ′, y ″ ∈ R m. Это равносильно выполнению включения y ′ − y″ ∈ K.
Если допустить, что множество Y является K-ограниченным, то
справедливо неравенство || y ′ − y ″ || � r или, что то же самое,
верно включение

y ′ − y ″ ∈ R ∩ Ur (0m).

Таким образом, для K-ограниченного множества возможных век-
торов Y истинна эквивалентность

y ′ − y ″ ∈ K ⇔ y ′ − y ″ ∈ K ∩ Ur (0m).

Это означает, что для K-ограниченного множества Y вопрос бли-
зости конусов равнозначен вопросу близости лишь тех частей
конусов, которые расположены в шаре Ur (0m).

Приведенные рассуждения обосновывают введение следую-
щего определения. Расстояние между конусами K1 и K2 будем обо-
значать dr (K1, K2); оно определяется формулой

dr (K1, K2) = dist (K1 ∩ Ur (0m), K2 ∩ Ur (0m)), (5.1)

где r — некоторое (достаточно большое) положительное число.
Введенное расстояние обладает стандартными свойствами мет-
рики (см. [11]):

1) dr (K1, K2) � 0,

2) dr (K1, K2) = 0 ⇔ � �� �� ,

3) dr (K1, K2) = dr (K2, K1),

4) dr (K1, K3) � dr (K1, K2) + dr (K2, K3)

для любых выпуклых конусов K1, K2, K3.
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выполняется включение � � �� � ε� , которое вместе с (5.3) влечет
неравенство

�� ����� �� � ε� . (5.4)

Нетрудно понять, что

� �� � � � ����� �� �� � 
 �� �� .

Поэтому из (5.4) следует

� � � � �� �� ����� � ���� � � 


� ��
� �� � � � 
 ε�� . (5.5)

В свою очередь, из (5.5) в силу �� �� �  получаем неравенство

�� �� � � ����� ����� � � 


� � � � 


� �� �
� �� � � � � � � 
 ε� � �� � � .

Оно совпадет с доказываемым неравенством (5.2), если из векто-
ров u 1, u 2, ..., u l удалить все «лишние», т. е. те, которые принад-
лежат неотрицательному ортанту ��� , и оставшийся набор векто-
ров обозначить u 1, u 2, ..., uk.�

Как известно, компьютер может оперировать только с раци-
ональными числами, поскольку для задания иррационального
числа в десятичной форме требуется бесконечное число разрядов.
Поэтому информацию об относительной важности критериев
будем называть машинно реализуемой, если все компоненты набора
векторов, задающих эту информацию, являются рациональными
числами. Поскольку всякий вектор из множества N m задает оп-
ределенную количественную информацию об относительной важ-
ности критериев, то полученный результат в терминах теории
относительной важности критериев может быть переформулирован
следующим образом.

Теорема 5.1 (в терминах информации об относительной важ-
ности критериев). С помощью конечного набора машинно реализуемой
информации об относительной важности критериев можно полу-
чить сколь угодно точное представление (точность оценивается
формулой (1)) о конусе любого бинарного отношения предпочтения,
удовлетворяющего аксиомам 2−4.

5.2. ПЕРВАЯ ТЕОРЕМА О ПОЛНОТЕ

Зафиксируем произвольное положительное ε. Введем 
� �

ε
 — сеть

пространства R m. Через Π(y) будем обозначать замкнутый m-мер-
ный куб этой сети с центром в точке y ∈ R m.

Выделим все кубы данной сети, пересекающиеся с множе-
ством ����� . Благодаря ограниченности этого множества, число
выделенных кубов конечно. Обозначим их через Π(y 1), Π(y 2), ...,
Π(y i ) и пусть

�

�
�

�

�
�

� � �� �� .

По построению ����� ��. На самом деле имеет место вклю-
чение �� ��. Действительно, если это не так, то в силу замкну-
тости множества Π найдется такая точка � �� �� , что она не при-
надлежит Π вместе с некоторой своей окрестностью intU( �� ). Если
соединить отрезком точку ��  с какой-нибудь точкой из ����� , то
на основании теоремы 6.1 из [28] получим, что все внутренние
точки указанного отрезка принадлежат ����� . Из этих внутрен-
них точек множества ��  выберем какую-нибудь в пределах окре-
стности intU( �� ) и обозначим ее через y ′. Для нее получаем

���� �� � �� �� � �, что противоречит включению ����� ��. Таким
образом, Π — покрытие множества �� .

В каждом пересечении ������ ��� � �  можно выбрать точку
u j с рациональными компонентами, j = 1, 2, ..., l. Введем выпук-
лую оболочку 1) всех таких точек u j и обозначим ее P. Это мно-
жество представляет собой некоторый многогранник.

Так как ��  — выпуклое множество и ��� �� , j = 1, 2, ..., l, то
�� �� , а значит и

�� �� � ε� . (5.3)

С другой стороны, найдутся точки, одновременно принад-
лежащие ��  и не принадлежащие Π. Поскольку Π — покрытие �� ,
то каждая из этих точек удалена от P не более чем на длину

диагонали куба введенной сети, т. е. на 
�

ε
. Поэтому заведомо

1) Выпуклой оболочкой данного множества называют наименьшее выпуклое
множество, содержащее это множество.
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2. Вторая теорема о полноте. Анализ примера 5.1 показыва-
ют, что если конус K не является открытым множеством, то при
«небольшом» изменении этого конуса соответствующее ему мно-
жество недоминируемых точек может изменяться значительно.
Однако если ограничиться отношениями предпочтения с откры-
тыми конусами, то множество недоминируемых точек относи-
тельно произвольного отношения, удовлетворяющего всем ука-
занным в теореме 5.1 свойствам, может быть получено как пре-
дел последовательности множеств недоминируемых точек
относительно некоторых конусных отношений, построенных на
основе набора машинно реализуемой информации об относи-
тельной важности критериев. Точнее говоря, имеет место следу-
ющий результат.

Теорема 5.2. Пусть K — открытый острый выпуклый конус,
не содержащий начала координат и K ⊃ ��� , K ≠ ��� . Допустим,
что множество Y является K-ограниченным. Тогда существует
такая последовательность векторов

� �
�
� � �� �� 


� � �

�
� � 
 � �

	

�
� ��

с рациональными компонентами, что имеет место сходимость

���� ����
�
� �
�

при s → ∞, (5.6)

где �s — конусное отношение, порожденное острым выпуклым кону-
сом cone {e 1, e 2, ..., em, u 1, u 2, ..., us } без начала координат, s = 1, 2, ...

Замечание. Сходимость в формуле (5.6) последовательности
множеств недоминируемых векторов означает так называемую
«поточечную» сходимость множеств, определяемую следующим
образом: точка (вектор) y* ∈ Y принадлежит предельному мно-
жеству (т. е. y* ∈ Ndom Y ) тогда и только тогда, когда существу-
ет такое натуральное s0, что включение � ����

�
� �� �  имеет ме-

сто для всех натуральных s > s0.

� Положим 
�

�
ε � . Применяя доказательство теоремы 5.1,

при n = 1 получим существование набора векторов u1, u2, ..., uk,
для которых

dr (K, cone {e 1, e 2, ..., em, u 1, u 2, ..., u k}) < 1.

При n = 2 аналогично найдется, вообще говоря, другой набор
векторов �� 


�� � �� �� � , для которых

5.3. ВТОРАЯ ТЕОРЕМА О ПОЛНОТЕ

5.3. Вторая теорема о полноте

1. Пример. В предыдущем разделе было установлено, что при
определенных условиях конус неизвестного отношения предпоч-
тения можно сколь угодно точно аппроксимировать «изнутри» мно-
гогранным конусом, соответствующим некоторому конечному на-
бору информации об относительной важности критериев. Следует
отметить, что близость конусов двух данных отношений (измеря-
емая расстоянием по формуле (5.1)) в общем случае не влечет бли-
зость самих бинарных отношений, а, значит, и множеств недоми-
нируемых векторов, построенных на основе этих отношений. Под-
тверждение тому — следующий простой пример.

Пример 5.1. Пусть m = 2, плоское множество возможных
векторов (точек) имеет вид отрезка

Y = {(y1, y2) ∈ R 2 | y1, y2 � 0, y1 + y2 = 1},

а острый выпуклый конус K задается равенством

K = cone {(1, 0), (−1, 1)}.

Здесь точка (0, 1) ∈ Y доминирует (имеется в виду доминирова-
ние относительно конусного отношения с конусом K ) над всеми
остальными точками выделенного на рис. 5.1 отрезка, соединяю-
щего эту точку с точкой (0, 1). В частности, выполнено соотно-

шение (0, 1) � (1, 0), так как
(0, 1) − (1, 0) = (−1, 1) ∈ K.

Теперь немного изменим K.
Вместо него рассмотрим конус

Kε = cone {(1, 0), (−1, 1 + ε)},

где ε ∈ (0, 1) (см. рис. 5.1). Вы-
бирая положительное число ε до-
статочно малым, конус Kε мож-

но сделать сколь угодно близким к конусу K (измеряя близость
при помощи расстояния по формуле (5.1)). С другой стороны,
каким бы малым положительное ε не выбрать, конусное отноше-
ние с конусом Kε не будет близким к отношению с конусом K,
поскольку для последнего множество недоминируемых точек бу-
дет состоять из одной точки (0, 1) отрезка, соединяющего (0, 1) и
(1, 0), а для отношения с конусом Kε (при любом ε ∈ (0, 1)) мно-
жество недоминируемых точек будет составлять весь указанный
отрезок.

Рис. 5.1.
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такой номер s0, что включение z = y − y* ∈ Cs будет выполнено

для всех номеров s = s0, s0 + 1, ... Это влечет � ����
�

� �� �  для
всех указанных s. Поэтому всякая точка множества Y, не принад-
лежащая множеству Ndom Y, не может являться предельной точ-

кой последовательности множеств ����
�
�� , s = 1, 2, ...

С другой стороны, любая точка из N dom Y заведомо при-
надлежит указанному пределу последовательности множеств, так
как включения Cs ⊂ Cs + 1 ⊂ K влекут ���� ����

�
� �� �  при

всех s = 1, 2, ...
Тем самым, соотношение (5.6), а вместе с ним и теорема 5.2

доказаны.�

3. Случай конечного множества возможных оценок. Когда мно-
жество возможных векторов состоит из конечного числа эле-
ментов, для точного определения множества недоминируемых
векторов (с конусным отношением, у которого конус K — от-
крытый) достаточно располагать лишь определенным конечным
набором информации об относительной важности критериев. Об
этом свидетельствует следующая ниже теорема. Она имеет важ-
ное значение в рамках подхода, развиваемого в данной книге,
поскольку теоретически обосновывает исключительную значи-
мость теории относительной важности критериев в вопросах
построения множества недоминируемых векторов (недомини-
руемых решений). В соответствии с этой теоремой, для задач
многокритериального выбора определенного класса, используя
лишь информацию об относительной важности критериев, можно
точно найти множество недоминируемых векторов (и недомини-
руемых решений).

Теорема 5.3. Если дополнительно к предположениям теоремы 5.2
добавить, что множество возможных векторов Y — конечное 1), то
существует такой конечный набор p векторов � �

�

�
� �

�
� 


�
�  с ра-

циональными компонентами, что

���� ����
�

� �� � ,

где �p конусное отношение с выпуклым конусом cone {e 1, e 2, ..., em,

u 1, u 2, ..., u p }.

5.3. ВТОРАЯ ТЕОРЕМА О ПОЛНОТЕ

1) При этом K-ограниченность множества возможных векторов можно не
предполагать, так как конечное множество ограничено, а значит и K-ограничено.

� �� � � � �

�
� ���� � � 


� � � � 


�� � � � �

�� � � � � � � �� � � �� � .

Поскольку при «расширении» конуса ����� �


�� � �� �� �� � за счет
добавления полученных ранее образующих u 1, u 2, ..., u k ∈ K рас-
стояние между K и указанным способом «расширенным» конусом

� ����� � 


� � � 


�� � � �� � � �� �� � становится разве что меньше, то

� �� � � � � � �

�
� ���� � � 


� � � � 


� � � � 


�� � � � � �

�� � � � � � � � � � �� � � �� � .

Рассуждая подобным образом, придем к существованию та-

кой последовательности векторов � �
�

�

�
�

	

�
, что для каждого нату-

рального n найдется номер sn, при котором верно неравенство

� �� � � � �
� ���� � �


� � � �


� � � ��


� �

� � �
�

� � � � � � � � � � �� � �� � (5.7)

Введем конусы

Cs = cone {e 1, e 2, ..., em, u 1, u 2, ..., u s}, s = 1, 2, ...

Очевидно, Cs ⊂ Cs + 1 ⊂ K, s = 1, 2, ... Кроме того, в соответствии
с неравенством (5.7) для любого n существует номер sn, при кото-
ром справедливы неравенства

� �
�

� � � �� 


� � � �
�

� � � � � �� � �

Отсюда сразу следует, что для любой точки ������z , где
� � ��� �� � 
� � , найдется такой номер s0, что включение z ∈ Cs

будет выполнено для всех s = s0, s0 + 1, ...
Перейдем к доказательству сходимости (5.6) недоминируе-

мых множеств. Если y* ∈ Y и y* ∈ Ndom Y, то по определению
множества недоминируемых точек найдется точка y ∈ Y, для ко-
торой y − y* ∈ K. Отсюда, используя условие теоремы о K-огра-
ниченности множества Y, получаем ��� � �� � . Так как K — от-
крытый конус, то можно считать, что �� ���� � �� � �z  (в про-
тивном случае, в качестве такой внутренней точки z можно взять,
например, ���
�� � ���� � �� � ). Тогда, как указано выше, существует
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� Пусть множество допустимых векторов Y — конечно и имеет
вид Y = {y 1, y 2, ..., yN }. Для каждого y i ∈ Y введем конечное мно-
жество

Zi = {z ∈ Y | существует такой y ∈ Y, что z = y − y i ∈ K },

i = 1, 2, ..., N.

Благодаря тому, что K — открытое множество, найдется номер si ,
для которого Zi ⊂ Cs при всех s = si, si + 1, ..., где Cs — конусы,
введенные в ходе доказательства теоремы 5.2. Положим p =
= max {s1, s2, ..., sN }. Для этого номера в силу вложенности кону-
сов Cs ⊂ Cs + 1, s = 1, 2, ..., имеем

Zi ⊂ Cp для всех i = 1, 2, ..., N.

Выберем два произвольных вектора y i, y j ∈ Y. Если имеет
место включение y j − y i ∈ K, то выполняется y j − y i ∈ Zi ⊂ Cp ,
а значит и y j − y i ∈ Cp. Обратно, если верно включение y j −
− y i ∈ Cp , то в силу вложенности Cp ⊂ K выполнено включе-
ние y j − y i ∈ K. Таким образом, истинна эквивалентность

y j − y i ∈ K ⇔ y j − y i ∈ Cp ,

которая устанавливает равенство конусных отношений с конуса-
ми K и Cp .�



В этой главе после краткого предварительного рассмотрения
вопросов, связанных с процессом принятия решения человеком,
излагается метод последовательного сужения множества Парето
(области компромиссов) на основе количественной информации
об относительной важности критериев. Теоретические предпосылки
применения этого метода были разработаны в предыдущих главах,
а здесь дается его описание без математических подробностей
и приводятся некоторые рекомендации по применению. Кроме
того, изучается возможность комбинирования этого метода с ме-
тодом целевого программирования и методом достижимых целей.

6.1. Как принимает решение человек?

1. Психические составляющие процесса принятия решений.
В процессе решения выделяют стадии поиска, принятия и реали-
зации решения.

Принятие решений — волевой акт формирования последова-
тельности действий, ведущих к достижению цели на основе преоб-
разования исходной информации в ситуации неопределенности.
Основные этапы процесса принятия решений включают инфор-
мационную подготовку решений и собственно процедуру принятия
решений — формирование и сопоставление вариантов, выбор,
построение программы действий.

Принятие решений с одной стороны может выступать как
особая форма мыслительной деятельности (например, управлен-
ческое решение), с другой — как один из этапов мыслительного
действия при решении любых задач. Область применения этого
понятия чрезвычайно широка. В этой книге под принятием реше-
ний обычно понимается особый процесс человеческой деятель-
ности, направленный на выбор наилучшего варианта действий.

Процесс принятия решений обеспечивается деятельностью
интеллекта, который складывается в основном из совместной
работы памяти, внимания и мышления.

Глава 6

МЕТОДОЛОГИЯ ПРИНЯТИЯ РЕШЕНИЙ
НА ОСНОВЕ ИНФОРМАЦИИ
ОБ ОТНОСИТЕЛЬНОЙ ВАЖНОСТИ КРИТЕРИЕВ
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момент времени на каком-то идеальном или реальном объекте,
т. е. предмете, событии, образе, рассуждении и т. п. Внимание —
это динамическая сторона сознания, характеризующая степень его
направленности на объект и сосредоточения на нем с целью обес-
печения адекватного отражения в течение времени, необходимого
для выполнения определенного акта деятельности (например, при-
нятия решения). Внимание обеспечивает индивиду возможность
сосредоточенности и направленности сознания на объекты, кото-
рые он воспринимает в ходе той или иной деятельности. Концен-
трация внимания позволяет человеку быстрее и качественнее вы-
полнять ту или иную работу. С другой стороны, отсутствие долж-
ного внимания затрудняет восприятие нового, усложняет процесс
обучения человека. Как известно, отсутствие внимания пагубным
образом сказывается, например, на выполнении различного рода
вычислительных операций: достаточно лишь одной ошибки для
того, чтобы в итоге получить неверный результат.

Мышление в понимании психологов — это процесс познава-
тельной деятельности человека, обеспечивающий организацию
и переработку информации; это — анализ, синтез, а также обоб-
щение условий и требований решаемой задачи и способов ее ре-
шения. Только с помощью развитого мышления человек получа-
ет возможность преодолевать пространственную ограниченность
восприятия и может устремляться мыслью в необозримые дали
макро- и микромира. При этом снимается и временная ограни-
ченность восприятия — возникает свободное мысленное переме-
щение вдоль временной оси от седой древности к неопределен-
ному будущему.

Мышление активизируется при решении любой задачи, воз-
никающей перед человеком, коль скоро она актуальна, не имеет
готового решения, и мощный мотив побуждает человека искать
выход из создавшегося положения. Непосредственным толчком
к развертыванию мыслительного процесса служит возникновение,
осознание задачи. Следующий этап обычно связан с задержкой
импульсивно возникающих реакций. Такая задержка создает па-
узу, необходимую для ориентировки в ее условиях, анализа ком-
понентов, выделения наиболее существенных и соотнесения их
друг с другом. Ключевой этап мышления связан с выбором одного
из вариантов и формирования общей схемы решения.

Мышление включает произвольные и непроизвольные состав-
ляющие. В качестве непроизвольных могут выступать ассоциации,
приводящие к образованию неуправляемых связей, которые с од-
ной стороны определяют некоторую стереотипность, с другой —

6.1. КАК ПРИНИМАЕТ РЕШЕНИЕ ЧЕЛОВЕК?

Память связывает прошлое субъекта с его настоящим и бу-
дущим и представляет собой особого рода процессы организа-
ции и сохранения прошлого опыта, позволяющие повторно ис-
пользовать этот опыт в деятельности человека или же дающие
возможность возврата в сферу сознания. Память лежит в основе
любого психического явления. Собственно благодаря памяти
существует как таковая личность, ее отношения, навыки, привыч-
ки, надежды, желания и притязания.

В зависимости от времени сохранения различают несколько
видов памяти — мгновенную или сенсорную (обеспечивает удержа-
ние информации в течение срока менее одной секунды), крат-
ковременную (время сохранения — до 30 сек.), оперативную (вре-
мя сохранения информации до нескольких минут) и долговре-
менную, которая способна удерживать информацию от нескольких
часов до десятилетий. По мнению психологов, именно с опера-
тивной памятью человека прежде всего связаны процессы при-
нятия решений, поскольку наиболее типичным для оперативной
памяти является удержание материала для использования его
именно в процессе принятия решений. Оперативная память тесно
связана с долговременной и опирается на способы запоминания
и различные приемы, выработанные в других видах деятельности.
В свою очередь, долговременная память использует приемы и спо-
собы запоминания, сложившиеся внутри оперативной памяти.
Между этими видами памяти существует самая тесная связь и в от-
ношении циркуляции информации — оперативная память исполь-
зует часть информации, хранящейся в долговременной памяти
и, с другой стороны, она сама постоянно передает в долговре-
менную память какую-то часть новой информации.

Любопытно, что в оперативной памяти может храниться лишь
очень ограниченное количество информации — не более 7 ± 2
единиц материала, которых называют чанками (от английского
слова chunk). Этот факт составляет содержание так называемого
закона Дж. Миллера по имени психолога, который в 1956 году на
основе экспериментальных данных опубликовал свою знамени-
тую статью «о магическом числе 7 ± 2» (см. [14]).

Заметное влияние на постановку проблемы памяти оказала
аналогия между этапами переработки информации человеком
и структурными блоками компьютера. Следует, однако, заметить,
что при таком сравнении функциональная структура памяти
человека обнаруживает значительно большую гибкость по срав-
нению с компьютером.

Следующий компонент интеллекта — внимание, которое по-
нимают как сосредоточенность деятельности субъекта в данный
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дает — ведь нужно уметь реализовать эту точку зрения. Другими
словами, необходимо научиться выполнять указанное сведение
к единой шкале (на языке многокритериальной оптимизации это
означает — уметь производить скаляризацию многокритериальной
задачи), а его выполнение есть не что иное, как определенный
этап решения исходной по существу многокритериальной задачи.

Многокритериальные задачи принятия решений представля-
ют собой исключительно сложный класс задач интеллектуальной
деятельности человека. Наличие нескольких критериев усиливает
нагрузку на ограниченную естественными пределами оператив-
ную память человека, делает задачу, стоящую перед человеком,
более неопределенной, требует высокой концентрации внимания
и нередко — нестандартного мышления.

К настоящему времени еще нет полной картины того, каким
образом и при помощи каких механизмов человек осуществляет
выбор в многокритериальной среде. Существуют лишь опреде-
ленные подходы и варианты предложений решения этих слож-
ных вопросов. При этом они нередко в чем-то противоречат друг
другу и в совокупности явно не исчерпывают все возможные спо-
собы выбора. Считается, что одной из наиболее типичных черт
поведения индивида в ходе решения задачи выбора является рас-
членение (декомпозиция) исходной проблемы на множество более
простых промежуточных задач.

Когда имеются всего два возможных варианта (решения),
стратегии поведения человека в условиях многокритериальной
среды в этом простейшем случае, можно разделить на два класса:

− стратегия компенсации,
− стратегия исключения.
Стратегия компенсации соответствует такой линии поведе-

ния человека, при которой низкие показатели по одному крите-
рию (или сразу по нескольким критериям) искупаются (компен-
сируются) высоким показателем по другому критерию (или од-
новременно по некоторым другим критериям). Типичный пример
выбора при использовании стратегии компенсации — покупка
автомобиля, когда невысокая экономичность (т. е. большой рас-
ход горючего) может окупаться стильным видом или престижной
маркой автомобиля. Другой пример подобного рода — приобре-
тение дома с не совсем удачной планировкой комнат и несколь-
ко завышенной ценой, но в замечательном районе парковой зоны,
расположенном не слишком далеко от места работы.

Стратегия исключения (или некомпенсирующая стратегия) со-
стоит в удалении (исключении) из списка имеющихся возможных

6.1. КАК ПРИНИМАЕТ РЕШЕНИЕ ЧЕЛОВЕК?

могут способствовать появлению оригинальных и плодотворных
в свете решаемой задачи идей и гипотез. Мышление характерно
единством осознанного и неосознанного. Следует отметить, что
большую роль в мыслительной деятельности играют эмоции, обес-
печивающие управление поиском решения задачи.

Различают следующие виды мышления: наглядно-образное,
словесно-образное, словесно-логическое, и др. Считается уста-
новленным, что мышление словесно-логическое является наи-
более поздним продуктом развития мышления индивида и что
переход от наглядного к абстрактному мышлению составляет одну
из линий этого развития. Кроме того, психологи выделяют сле-
дующие в определенном плане противоположные пары типов
мышления — теоретическое и практическое (эмпирическое), ло-
гическое (аналитическое) и интуитивное, реалистическое и аутис-
тическое, связанной с уходом от действительности во внутренние
переживания и др.

2. Стратегии принятия решений человеком в многокритериальной
среде. Во многих ситуациях, связанных с выбором, результат выбо-
ра невозможно оценить только в одной шкале, например, в деньгах
или времени. Правда, по этому поводу, как известно, существует
расхожая поговорка «время — деньги», которая подразумевает, по
крайней мере, теоретическую возможность выражения единиц
времени в денежных единицах и, тем самым, принципиальную
сводимость одной шкалы к другой. Но в противовес указанной
имеется и такая поговорка — «не хлебом единым». Последняя, на
взгляд автора, утверждает факт многокритериальности той среды,
в которой живет человек, принципиальную несводимость духовно-
го к материальному, а значит невозможность выражения в единой
шкале многого из того, что связано с человеком.

Процитированные поговорки можно рассматривать как кон-
центрированное выражение двух принципиально различных по-
зиций, отражающих в определенном плане противоположные точ-
ки зрения на данный предмет. В соответствии с первой точкой
зрения существует некий единый показатель или критерий, в тер-
минах которого могут быть измерены все другие качества. Соглас-
но второй — подобного показателя не существует в принципе.
При этом чисто логическим путем, умозрительно ни одна из этих
позиций, по-видимому, не может быть доказана или опровергну-
та, поэтому они обе имеют право на существование. Но вторая
(«не хлебом единым») более реалистична и жизнеспособна, по-
скольку знание лишь того отвлеченного факта, что все можно
выразить в единой шкале, в практике принятия решений мало что
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Нередко к точным механизмам и методам принятия реше-
ний причисляют все те, которые предполагают использование
математического аппарата. С этим нельзя согласиться, поскольку
применение языка математики для записи некоторого высказы-
вания еще не означает точности самого высказывания! Более того,
у людей, не разбирающихся в математических тонкостях, при
знакомстве с такими методами или механизмами может возникнуть
иллюзия их высокой точности и надежности.

Психологи продолжают заниматься изучением поведения
человека при выборе различного рода решений (см. [21]). К на-
стоящему времени сформулирован и изучен целый ряд психоло-
гических эффектов, которые человек должен учитывать для осу-
ществления действительно наилучшего выбора. На основе этого
материала специалистами предложены (см. [21]) определенные
рекомендации, например:

− не позволяйте детализированным сценариям вводить вас
в заблуждение,

− по возможности обращайте внимание на так называемую
базовую частоту (т. е. на относительную частоту, с которой про-
исходит то или иное событие),

− помните, что шанс не саморегулируется (т. е. после длинной
череды неудач совсем необязательно наступит ряд удачных со-
бытий, или наоборот),

− не забывайте о регрессе к среднему (когда после сильных
отклонений в ту или иную сторону обычно следуют более обычные,
средние события).

6.2. Метод последовательного сужения множества Парето

1. Формирование математической модели. В упрощенной форме
процесс принятия решений можно представить в виде схемы,
изображенной на рис. 6.1.

Рис. 6.1.

6.2. МЕТОД ПОСЛЕДОВАТЕЛЬНОГО СУЖЕНИЯ МНОЖЕСТВА ПАРЕТО

вариантов тех, которые заведомо не удовлетворяют по какому-то
одному или же сразу по нескольким критериям одновременно.
Например, при покупке автомобиля или дома покупатель, пользу-
ясь некомпенсирующей стратегией, сразу исключает такие вари-
анты, которые выходят за пределы его финансовых возможностей.
Еще один характерный пример некомпенсирующей стратегии,
связанный с покупкой автомобиля, — это такая ситуация, когда
внимание покупателя сосредотачивается только на моделях с ав-
томатической коробкой передач, а все машины с ручной переда-
чей сразу исключаются из дальнейшего рассмотрения.

Результаты экспериментальных исследований показывают, что
при решении многокритериальных задач с более чем двумя воз-
можными решениями, человек обычно не придерживается лишь
одной линии поведения. Он, как правило, определенным обра-
зом комбинирует указанные стратегии. Такого рода фактический
материал позволил некоторым авторам выдвинуть теории чело-
веческого поведения в процессе принятия решений [9]. Напри-
мер, в соответствии с теорией поиска доминантной структуры
человек при выборе лучшего варианта из нескольких сначала
как бы окидывает взглядом все имеющиеся возможные решения
и старается найти лучшее, основываясь лишь на первом впечат-
лении. После этого он попарно сравнивает выделенное решение
со всеми остальными. Если в результате такого сравнения выб-
ранное решение оказалось предпочтительнее остальных, то про-
цесс выбора закончен. В противном случае то решение, которое
при сравнении оказалось лучше выбранного первоначально, ста-
новится претендентом на наилучшее решение и именно оно далее
сравнивается со всеми остальными возможными решениям, и т. д.

С точки зрения наличия или отсутствия гарантии получен-
ного результата механизмы принятия решений можно разделить
на два класса — точные (или аналитические, логические) и эврис-
тические (или приближенные, интуитивные) механизмы. Меха-
низмы первого класса характеризуются четким описанием того
типа или класса задач принятия решений, в которых их приме-
нение гарантированно приводит к положительным результатам
(или, по крайней мере, дает возможность избежать принятия за-
ведомо неприемлемых решений). Что касается эвристических ме-
ханизмов, то они в задачах разного типа могут давать различные
с точки зрения удовлетворительности результаты. При этом точное
разделение всех возможных задач на две группы, в одной из ко-
торых данный эвристический механизм работает хорошо, а в дру-
гой — его применять не стоит, осуществить не удается.
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нейшее решение задачи выбора в сильной степени зависит от спо-
соба задания множества возможных решений. Некоторые из спо-
собов задания могут оказаться не слишком удобными для после-
дующего оперирования с множествами. В этом вопросе свое сло-
во должен сказать специалист по принятию решений.

Перейдем к критериям. Все участвующие в задаче функции
f1, f2, ..., fm , во-первых, должны быть числовыми и, во-вторых, ЛПР
должно быть заинтересовано в максимизации каждой из них (см.
аксиому 3 в разд. 1.4). Когда значения одного или сразу несколь-
ких критериев измеряются не в количественной, а лишь в качес-
твенной шкале, опыт показывает, что в таких случаях все-таки
удается тем или иным способом перейти к числовым значениям,
вводя, например, балльную шкалу. Так, например, всем хорошо
известна четырех балльная шкала (2, 3, 4, 5) для оценки знаний
учащихся в России. Подобного рода шкалы существуют для оцен-
ки выступления спортсменов — гимнастов и фигуристов. Нема-
ло примеров введения и дальнейшего использования количе-
ственных шкал для измерения качественных характеристик мож-
но встретить в психологии. С вопросами введения специальной
девяти балльной шкалы и ее обоснованием можно ознакомить-
ся в работах Т. Саати [27, 37].

Если какой-то из критериев для ЛПР желательно не макси-
мизировать, а минимизировать, то его в математическую модель
следует включить со знаком минус; такой распространенный
прием сводит операцию минимизации к операции максимиза-
ции. Следует заметить, что критерии, как функции, также мож-
но задавать различными способами. В некоторых случаях важно
иметь критерии, которые обладали бы определенными полезны-
ми с математической точки зрения свойствами (например, непре-
рывностью, дифференцируемостью, вогнутостью или выпуклос-
тью). Здесь вновь требуется консультация со специалистом по
принятию решений.

Третья компонента задачи многокритериального выбора —
отношение предпочтения — наиболее трудно формализуемая. Как
правило, полностью построить отношение предпочтения, кото-
рым ЛПР пользуется в процессе выбора, невозможно. Об этом
отношении удается получить лишь некоторые фрагментарные
сведения. Среди этих сведений обязательно должна быть инфор-
мация о том, что оно принадлежит определенному классу, кото-
рый ограничен специальными требованиями. Напомним, что пред-
лагаемый в данной книге подход к решению задач многокритери-
ального выбора предполагает, что используемое ЛПР отношение
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Собственно выбор решения (решений) осуществляет лицо,
принимающее решение (ЛПР). Оно же несет всю ответственность за
принятое решение. Результат решения задачи многокритериаль-
ного выбора именуют множеством выбираемых решений и обозна-
чают Sel X. Нередко в реальных задачах это множество содержит
лишь одно решение. Однако можно указать немало ситуаций, когда
оно должно включать несколько (а иногда и бесконечное число)
элементов. Например, при выборе кандидатов на вакантные ме-
ста, число выбранных претендентов должно в точности совпадать
с числом вакантных мест, которых может быть несколько.

Основными компонентами задачи многокритериального вы-
бора являются: множество возможных решений X, векторный кри-
терий f = � �� 
� � ���� �� � �  и отношение предпочтения �X , которым
ЛПР руководствуется в процессе выбора.

Для того чтобы решить конкретную задачу выбора, прежде
всего, необходимо сформировать математическую модель этой
задачи. Другими словами, следует образовать множество возмож-
ных решений, векторный критерий и отношение предпочтения,
которые наиболее полно и точно отражали бы имеющуюся в на-
личии реальную ситуацию. Чем более адекватной реальной зада-
че будет построена математическая модель, тем больше будет
шансов получить действительно наилучшее решение.

В построении математической модели вместе с ЛПР активно
участвуют как исследователи (специалисты в области принятия ре-
шений), так и эксперты (специалисты в той области, которой
принадлежит решаемая задача). Как правило, именно благодаря
совместным напряженным усилиям указанных лиц удается пост-
роить приемлемую математическую модель, которая, с одной сто-
роны, адекватно отражает конкретную ситуацию и с другой —
допускает наилучшее решение за обозримое время. Этот первый
этап, на котором происходит формирование математической мо-
дели (этап формализации), невозможно запрограммировать зара-
нее. Здесь многое зависит от опыта и интуиции всех участвующих
сторон (не зря существует такое словосочетание как искусство фор-
мализации, отражающее исключительную сложность этого этапа).

Множество возможных решений может состоять из конечного
числа элементов, но оно может оказаться и бесконечным. Конеч-
ное множество обычно задается перечислением всех его элементов.
Что касается бесконечного множества возможных решений, то его
можно задавать различными способами (например, в виде множе-
ства решений некоторой системы уравнений или неравенств). Даль-
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Смысл следующей аксиомы 3 заключается в том, что ЛПР за-
интересовано в максимизации значений каждого из критериев fi ,
i = 1, 2, ..., m, при условии сохранения значений всех остальных
критериев. Здесь, видимо, нет особой нужды подробно объяснять,
что и это требование в каких-то ситуациях может не выполняться
(если, например, ЛПР заинтересовано в удержании значения ка-
кого-то критерия в определенных промежуточных пределах).

Последняя аксиома 4 состоит в инвариантности (сохранении)
для любых двух векторов y ′, y ″ критериального пространства R m

соотношения y ′ � y ″ при одновременном увеличении (или умень-
шении) всех компонент данных двух векторов в одно и то же чис-
ло раз (свойство однородности), а также при добавлении к этим
векторам одного и того же произвольного вектора критериально-
го пространства (свойство аддитивности). Например, пусть спра-
ведливо соотношение � � � �� 
 � 
� � ���� � � ����� �� � � � � � � �� � � � �� �� �� ��� �� .
Тогда в соответствии с аксиомой 4 для произвольного положи-
тельного числа α должно выполняться соотношение αy ′ =
� � � �� 
 � 
� � ���� � � ����� �� � � � � � �α α α α α α α� � � �� �� �� ��� �� , а для любого век-

тора c = (c1, c2, ..., cm) — соотношение � � � 
 
� � ����� � � � � �� � �� � � �

� � �� � 
 
� � ����� � � �� � � � � � � � � �� �� �� �� ��� � � � � �� . В тех случаях, ког-
да отношение предпочтения, которым ЛПР руководствуется в про-
цессе выбора, не удовлетворяет хотя бы одной из упомянутых
четырех аксиом, применение излагаемого ниже подхода не га-
рантирует получение наилучшего результата.

Если же проверить выполнение всех указанных аксиом в ка-
кой-то конкретной ситуации не удается, то остается лишь наде-
яться, что применение данного подхода не приведет к заведомо
неудовлетворительному решению.

2. Выявление информации об относительной важности крите-
риев. Основная идея предлагаемого подхода состоит в использо-
вании информации об относительной важности критериев для
исключения неприемлемых парето-оптимальных решений. Су-
ществуют по меньшей мере два способа получения такого рода
информации:

− на основе анализа решений, ранее принимавшихся дан-
ным ЛПР,

− в результате прямого пороса ЛПР.
Для того чтобы воспользоваться первым способом, нужно рас-

полагать сведениями о поведении данного ЛПР в прошлом при
решении аналогичных задач выбора с имеющимся набором кри-
териев f1, f2, ..., fm. Если же до этого момента ЛПР не сталкивалось
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предпочтения должно удовлетворять четырем аксиомам 1−4 (см.
главы 1−2), которые описывают в определенном смысле после-
довательное (рациональное) поведение субъекта в процессе при-
нятия решений.

Согласно аксиоме 1, если какое-то решение не выбирается
из пары, то оно не может быть выбрано и из всего множества
возможных решений. Это требование выглядит вполне разум-
ным и не слишком обременительным, однако, в некоторых прак-
тически значимых случаях оно не может быть выполнено. Под-
тверждение тому — следующий простой пример. Предположим,
что на два вакантных места претендуют три кандидата, причем
при попарном сравнении оказалось, что первый кандидат лучше
второго и третьего, а второй лучше третьего. Поскольку необхо-
димо заполнить оба вакантных места, то ЛПР вынуждено будет
остановить свой выбор на первом и втором кандидатах. Тем са-
мым, второй кандидат войдет в множество выбираемых реше-
ний, не смотря на то, что для него существует лучшее решение —
первый кандидат.

Следующая аксиома 2 устанавливает принципиальную воз-
можность сравнения лицом, принимающим решение, любых век-
торов критериального пространства: для произвольных двух век-
торов y ′, y ″ ∈ R m может реализоваться одна (и только одна) из
следующих трех возможностей:

− y ′ предпочтительнее y ″; при этом пишут y ′ � y ″ (в этом
случае из двух данных векторов ЛПР выбирает первый и не вы-
бирает второй),

− y ″ предпочтительнее y ′; в таком случае пишут y ″ � y ′ (ЛПР
из двух данных выбирает второй вектор),

− не выполняется ни соотношение y ′ � y ″, ни соотношение
y ″ � y ′ (т. е. из данных двух векторов ЛПР не в состоянии отдать
предпочтение ни одному из этих векторов).

При этом согласно аксиоме 2 результаты попарного сравне-
ния должны подчиняться так называемому свойству транзитив-
ности, согласно которому для любой тройки векторов y, y ′, y ″,
удовлетворяющих соотношениям y � y ′ и y ′ � y ″, всегда имеет
место соотношение y � y ″. Это свойство выражает «последователь-
ность» (логичность или рациональность) поведения ЛПР в процес-
се выбора. Несмотря на естественность этого требования, как
утверждают психологи, человек в своем поведении не всегда сле-
дует свойству транзитивности и при сравнении трех решений,
когда первое решение лучше второго, а второе — лучше третьего,
из первого и третьего вполне может выбрать третье.
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Сказанное выше свидетельствует о том, что конкретная ве-
личина коэффициента относительной важности зависит от еди-
ниц, в которых измеряются значения критериев. При переходе
к другим единицам (в пределах той же самой шкалы!) — коэффи-
циенты относительной важности, как правило, меняются. На-
пример, если речь идет о прибыли, и она выражается в денежных
единицах, то коэффициенты относительной важности, соответ-
ствующие двум идентичным ЛПР, но пользующихся при расчете
различной валютой (рублями и долларами), будут различными.

Если в результате опроса ЛПР выясняется, что оно готово
за некоторую добавку по i-у критерию пожертвовать определен-
ным количеством по j-у критерию, то такое положение на осно-
вании определения 2.4 свидетельствует о большей важности i-го
критерия по сравнению с j-м. Остается определить степень этой
важности, т. е. найти конкретное значение коэффициента отно-
сительной важности. При определении этого коэффициента сле-
дует иметь в виду, что чем больше он окажется, тем более содер-
жательной будет информация об относительной важности кри-
териев и, тем самым, на большую степень сужения множества
Парето (области компромиссов) можно рассчитывать. Поэтому
у ЛПР необходимо стремиться выяснить, каким максимальным
возможным количеством 


��  по j-му критерию оно готово пожер-
твовать ради получения некоторой фиксированной прибавки (на-
пример, в одну единицу: 
 ��� � ). На основе полученных чисел



��  и 


��  по формуле (6.1) вычисляется коэффициент относитель-
ной важности θi j. Этот коэффициент будет далее использоваться
для пересчета менее важного критерия.

3. Метод последовательного сужения множества Парето. Опи-
шем общую схему метода последовательно сужения множества
Парето на основе количественной информации об относитель-
ной важности критериев. В его основу положена стратегия ис-
ключения, которая упоминалась в разд. 6.1.

Первый этап этого метода состоит в выявлении информа-
ции об относительной важности критериев. Наиболее распрос-
траненный путь выявления этой информации — прямой опрос
ЛПР. В результате выявления должен быть получен коэффици-
ент относительной важности критериев θi j.

Второй этап осуществляется без привлечения ЛПР. В соот-
ветствии с теоремой 2.5 необходимо менее важный j-й критерий
в общем списке критериев f1, f2, ..., fm заменить новым, вычис-
ленным по простой формуле θi j fi + (1 − θi j) fj . Затем следует най-
ти множество Парето относительно нового векторного критерия.
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с необходимостью решения таких задач, то остается только вто-
рой способ — непосредственный опрос ЛПР.

Перед осуществлением опроса следует ознакомить ЛПР с оп-
ределением 2.1, в котором идет речь о самой простой ситуации,
когда i-й критерий (т. е. fi ) важнее j-го критерия (т. е. fj ) с поло-
жительными параметрами 


��  и 

�� . В основе этого определения

лежит идея компенсации, упоминавшаяся в предыдущем пункте,
а его смысл заключается в том, что всякий раз ради увеличения
значения более важного i-го критерия на 


��  единиц ЛПР готово
пожертвовать 


��  единицами по менее важному j-му критерию
(иначе говоря, потеря в 


��  единиц по j-му критерию всегда мо-
жет быть компенсирована увеличением на 


��  единиц значения
i-го критерия) при условии сохранения значений по всем осталь-
ным критериям. При этом положительное число





 

� �

�

� �
� � � �

�

� �
θ θ

�
� � � � �, (6.1)

выражающее долю потери относительно суммы потери и при-
бавки, носит названия коэффициента относительной важности
i-го критерия по сравнению с j-м критерием.

Значение этого коэффициента, близкое к единице, свиде-
тельствует о большой степени важности i-го критерия по сравне-
нию с j-м, поскольку за относительно небольшую добавку по бо-
лее важному критерию ЛПР готово платить довольно существен-
ной потерей по менее важному критерию. В случае, когда данный
коэффициент близок к нулю, указанная степень относительной
важности мала, так как здесь ЛПР согласно пойти на потери
по менее важному критерию лишь при условии относительно
большой прибавки по более важному критерию.

Следует, однако, заметить, что сказанное не носит абсолют-
ного характера, так как величина коэффициента относительной
важности в сильной степени зависит от единиц, в которых изме-
ряются значения сравниваемых по важности критериев (см.
разд. 2.4). Вполне возможна ситуация, когда два абсолютно оди-
наковых (с точки зрения принятия решений) ЛПР при решении
одной и той же задачи пользуются разными коэффициентами
относительной важности по той простой причине, что они при-
меняют различные единицы при измерении значений сравнива-
емых по важности критериев.
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Теоретическое обоснование описанного метода последова-
тельного сужения множества Парето на основе количественной
информации об относительной важности критериев приведено
в пятой главе. Доказанная в ней теорема 5.3 утверждает, что во
многих случаях, когда множество возможных векторов состоит
из конечного числа элементов (это условие заведомо выполняется,
если конечным является множество возможных решений), на
основе конечного набора информации об относительной важности
критериев, можно точно построить неизвестное множество недо-
минируемых векторов (а значит, и множество недоминируемых
решений). К сожалению, этот результат не является конструк-
тивным в том смысле, что в нем не указывается, какой именно
набор информации следует при этом использовать. Неизвестно
также, какое количество сообщений об относительной важности
при этом нужно иметь. Решение этих вопросов в сильной степени
зависит от конкретного вида множества возможных решений и уча-
ствующих в задаче выбора критериев. Тем не менее, эта теорема
имеет важное теоретическое значение, поскольку она обосно-
вывает описанный метод последовательного сужения множества
Парето. По сути дела она утверждает, что при решении задач
многокритериального выбора следует лишь научиться выявлять
информацию об относительной важности критериев и умело ее
использовать; на основе только такой информации можно полнос-
тью и точно построить множество недоминируемых решений для
произвольной задачи многокритериального выбора из достаточно
широкого класса, в которой множество возможных решений ко-
нечно. Если же указанное множество не является конечным, то
с помощью одной информации об относительной важности мож-
но получить сколь угодно точное приближение к искомому мно-
жеству недоминируемых решений (см. теорему 5.2). Аналогич-
ное утверждение справедливо не только для решений, но и для
векторов.

Иногда за прибавку по какому-то одному очень важному
критерию ЛПР согласно пойти на потери сразу по нескольким
критериям. В других случаях потеря по некоторому менее важ-
ному критерию не может быть компенсирована прибавкой лишь
по одному более важному критерию, а только одновременно по
нескольким критериям. В общем случае могут существовать две
группы критериев, номера которых принадлежат непересекающим-
ся множествам A и B, и такие, что за прибавки в размере 


��  еди-
ниц по всем более важным критериям fi (для которых i ∈ A), ЛПР
согласно потерять 


��  единиц по всем менее важным критериям fj

Рис. 6.2.
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На этом этапе могут возникнуть определенные вычислительные
трудности, если множество возможных решений не является ко-
нечным. Если же число возможных решений конечно, то для
нахождения множества Парето можно использовать алгоритм,
о котором упоминается в п. 6 разд. 1.4.

Построенное с использованием нового векторного критерия
множество Парето представляет собой оценку сверху для искомо-
го множества выбираемых решений. Проще говоря, это означает,
что дальнейший выбор следует производить в пределах найденно-
го множества Парето. Поэтому после его отыскания на третьем
этапе оно предъявляется для анализа ЛПР. В случае если ЛПР
сочтет его приемлемым (по размерам) для окончательного выбора,

то процесс принятия решений закан-
чивается. В противном случае (т. е.
когда указанное множество «слишком
широкое») необходимо попытаться
получить дополнительную информацию
об относительной важности критериев
и затем аналогичным образом исполь-
зовать ее для дальнейшего сужения об-
ласти поиска множества выбираемых
решений. В этом случае при форми-
ровании нового векторного критерия
придется использовать набор инфор-
мации об относительной важности
критериев, состоящий из двух сооб-
щений и прежде чем сделать это, не-
обходимо убедиться в непротиворечи-
вости данного набора из двух сооб-
щений (по этому поводу см. разд. 4.2).
Заметим, что в общем случае такая
проверка сводится к решению опре-
деленной задачи линейного програм-
мирования.

В результате последовательного
выполнения указанных действий об-
разуется циклический процесс, схема
которого изображена на рис. 6.2. Цик-

лы в нем повторяются до тех пор, пока не будет получен результат,
приемлемый для ЛПР. Этим результатом является очередное
множество Парето, размеры которого, по мнению ЛПР, соответ-
ствуют размерам множества выбираемых решений Sel X.



������ ГЛАВА 6. МЕТОДОЛОГИЯ ПРИНЯТИЯ РЕШЕНИЙ

при учете информации об относительной важности не произойдет
(см. следствие 3.1), т. е. число новых критериев будет равно числу
старых критериев.

4. Использование набора информации об относительной важности
критериев. Описанный выше метод последовательного сужения
на основе информации об относительной важности критериев
предполагает одновременный учет сразу нескольких сообщений
об относительной важности. В тех случаях, когда приходится учи-
тывать сравнительно простой набор информации, используют
процедуру пересчета менее важных критериев и формирование
нового критерия с помощью заранее выведенных формул. К по-
добным «простым» случаям относятся следующие:

− когда имеются два критерия, причем каждый из них ока-
зывается важнее другого (как указано в п. 2 разд. 4.1 для учета
этой информации следует дважды воспользоваться результатом
теоремы 2.5),

− когда один критерий важнее каждого из двух других в от-
дельности (в соответствии с теоремой 4.2 в этом случае новый
критерий, размерность которого будет на единицу больше исход-
ного, следует формировать по формуле (4.2)),

− когда два критерия по отдельности важнее третьего (тогда
для формирования нового векторного критерия следует исполь-
зовать формулу (4.7)),

− когда один критерий важнее второго, а он, в свою очередь,
важнее третьего (здесь можно дважды применить теорему 2.5 —
сначала пересчитывается третий критерий, а затем второй; см.
п. 1 разд. 4.1),

− когда имеются два произвольных взаимно независимых
сообщения (в этом случае дважды применяется теорема 3.3).

К тому же классу «простых» ситуаций относятся следующие:
− когда имеется более двух сообщений, состоящих в том,

что каждый из определенного набора критериев важнее одного
и того же критерия, не входящего в указанный набор (здесь реко-
мендуется применить теорему 4.10 с формулами пересчета (4.21)),

− когда имеется произвольное конечное число попарно вза-
имно независимых сообщений об относительной важности кри-
териев (в таком случае применяется теорема 4.11).

Напомним (см. п. 1 разд. 4.1), что два сообщения об относи-
тельной важности критериев, состоящие в том, что группа крите-
риев A1 важнее группы B1 и группа критериев A2 важнее группы B2,
являются взаимно независимыми, если ни одна пара из указанных
четырех множеств номеров не имеет ни одного общего элемента.
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(для которых j ∈ B ). В соответствии с определением 3.3 это оз-
начает, что группа критериев A важнее группы критериев B с дву-
мя наборами положительных параметров 


��  и 

��  для всех i ∈ A

и всех j ∈ B. При этом степень важности одной группы по срав-
нению с другой оценивается набором коэффициентов относи-
тельной важности θi j для всех указанных i и j, определяемых той
же формулой (6.1), что и в случае двух критериев.

При выявлении информации об относительной важности для
двух групп критериев следует учитывать следующее обстоятельство.
В теореме 3.1 утверждается, что из бóльшей важности группы
критериев A по сравнению с группой B вытекает бóльшая важ-
ность более широкой, чем A, группы по сравнению с более узкой
группой, чем B. Грубо говоря, более важную группу всегда можно
расширить, а менее важную — сузить. В силу сказанного, при
выявлении информации об относительной важности одной группы
по сравнению с другой всегда следует стремиться к тому, чтобы
более важная группа была как можно уже, а менее важная — как
можно шире. Тогда информация об относительной важности
одной группы критериев по сравнению с другой будет наиболее
содержательной, и последующее использование этой информа-
ции может привести к существенному сужению области компро-
миссов. В этом смысле самым лучшим является вариант, когда
какой-то один критерий оказывается важнее группы всех осталь-
ных критериев.

Пересчет векторного критерия на основе информации об
относительной важности для двух групп критериев производится
с помощью теоремы 3.3. Согласно этой теореме из исходного
набора критериев f1, f2, ..., fm прежде всего удаляются все менее
важные критерии, т. е. те, номера которых принадлежат множе-
ству B. Затем к оставшимся необходимо добавить новые крите-
рии вида θi j fi + (1 − θi j) fj , число которых совпадает с числом
коэффициентов относительной важности (оно равно произведению
чисел элементов множества A и множества B ).

Нетрудно понять, что общее число новых критериев при этом
может оказаться значительно больше числа первоначального на-
бора критериев. Например, если множество A состоит из двух
элементов, а B — из трех, то число коэффициентов относительной
важности равно 6. Три менее важных критерия должны быть уда-
лены, но при этом шесть новых следует добавить. В итоге общее
число критериев увеличится на 3.

В случае, когда множество более важных критериев состоит
в точности из одного элемента, увеличения количества критериев
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методы целевого программирования широко используются при
решении различных прикладных задач, в которых присутствует
несколько критериев.

Опишем в общем виде метод целевого программирования.
Пусть имеется набор критериев f1, f2, ..., fm, каждый из которых
желательно максимизировать на множестве возможных решений
X. В соответствии с методологией целевого программирования
будем считать, что в критериальном пространстве R m задано непу-
стое множество U, которое обычно называют множеством иде-
альных (наилучших или утопических) векторов. При этом обычно
считается, что это множество не достижимо, т. е. имеет место
равенство U ∩ Y = ∅, где Y означает множество возможных век-
торов. Кроме того, на критериальном пространстве должна быть
задана метрика, т. е. такая числовая функция ρ = ρ (y, z), которая
каждой паре векторов y, z критериального пространства R m со-
поставляет неотрицательное число, называемое расстоянием между
векторами y и z. Метрика для всех векторов w, y, z должна удов-
летворять следующим аксиомам:

− ρ (y, z) � 0; ρ (y, z) = 0 ⇔ y = z,
− ρ (y, z) = ρ (z, y),
− ρ (w, z) � ρ (w, y) + ρ (y, z).

Оптимальным (наилучшим или наиболее удовлетворитель-
ным) объявляется такое решение x* ∈ X, для которого выполне-
но равенство
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означающее, что оценка f (x*), соответствующая наилучшему ре-
шению x*, должна быть расположена как можно ближе к множе-
ству идеальных оценок.

Множество идеальных оценок U может состоять и из одного
элемента. Нередко таким единственным элементом является век-
тор, составленный из максимальных значений критериев:

� ��� �� ��� � ���� ��� �
	 
 	 


� � � � 	 � 	
� �

� � � �� � .

Один из наиболее простых способов образования идеального
множества восходит к Чарнсу и Куперу и состоит в задании его
при помощи линейных неравенств и уравнений:

yi = fi (x) � αi для всех i ∈ I1,

6.3. КОМБИНИРОВАННЫЕ МЕТОДЫ

Вышеперечисленными ограничиваются все возможные вари-
анты, для которых в главах 2 и 3 были выведены простые формулы
пересчета векторного критерия.

Если при реализации метода последовательного сужения
множества Парето необходимо учесть набор информации, который
не относится ни к одному из перечисленных выше «простых»
случаев, то можно воспользоваться так называемым алгоритми-
ческим подходом, изложенным в разд. 4.4. Его реализация в случае
бесконечного множества возможных векторов Y может натолк-
нуться на определенные вычислительные трудности, тогда как
для конечного Y проблем подобного рода не возникает. В п. 4
указанного раздела описана соответствующая вычислительная про-
цедура, которая при желании может быть легко запрограммирована
и использована в той или иной компьютерной среде.

6.3. Комбинированные методы

1. Модифицированный метод целевого программирования. В ос-
нове круга методов, получивших название целевого программиро-
вания лежит довольно простое эвристическое соображение — ста-
раться в качестве наилучшего выбрать такой возможный вектор,
который в критериальном пространстве расположен ближе всех
остальных допустимых векторов к некоторому идеальному или
же к целому множеству идеальных векторов. При этом в качестве
идеального нередко берется вектор, составленный из максималь-
ных значений компонент векторного критерия, а варьирование
метрики для измерения расстояния в критериальном пространстве
приводит к целому семейству однотипных методов, которые, од-
нако, могут приводить к различным конечным результатам. Для
обоснованного выбора той или иной метрики никаких четких
рекомендаций не выработано; здесь чаще всего исходят из сооб-
ражений простоты, а именно, — применяют такую метрику, что-
бы получающаяся в итоге экстремальная задача приближения была
наиболее простой в вычислительном отношении.

Принято считать, что родоначальниками целевого програм-
мирования являются А. Чарнс и В. Купер, которые в 1953 году [36]
использовали указанное выше эвристическое соображение для
решения многокритериальной задачи линейного программирова-
ния. В 1961 году свой метод они изложили в книге [37]. Позже на
эту тему были написаны десятки (если не сотни) статей и выпу-
щено несколько книг. Несмотря на отсутствие логического фун-
дамента (его заменяет указанное эвристическое соображение)
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Например (см. [26]), если ����
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на множестве возможных векторов Y всегда является парето-оп-
тимальной.

Перейдем к обсуждению возможности комбинирования целе-
вого программирования с описанным ранее методом последова-
тельного сужения области компромиссов. Эта комбинация автором
данной монографии использовалась еще в начале 1990-х годов
для решения прикладных экономических задач и была названа
модифицированным целевым программированием. В соответствии
с последним вначале следует выявить всю возможную информа-
цию об относительной важности критериев. В общем случае это
может быть целый набор сведений. Далее на основе этого набора
необходимо удалить все те возможные векторы, которые не со-
вместимы с имеющейся информацией (т. е. необходимо приме-
нить метод последовательного сужения области компромиссов).
В результате такого удаления будет получено некоторое подмно-
жество исходного множества Парето, являющееся определенной
оценкой сверху для искомого множества выбираемых векторов.
Если последнее множество (оценка сверху) оказывается сравни-
тельно широким и больше никакой дополнительной информации
об относительной важности критериев для дальнейшего его су-
жения получить не удается, то в таком случае для завершения
процесса поиска наилучшего решения можно применить метод
целевого программирования. Разумеется, когда исходное мно-
жество возможных решений бесконечно, отыскание указанного
подмножества может составить непростую вычислительную задачу.
Однако для конечного множества возможных решений описан-
ная процедура легко программируется и может быть реализована
с помощью компьютера.

Модифицированный метод целевого программирования в 1991 году
был применен автором для решения задачи оптимизации годовой
производственной программы энергетического объединения [2].
Множество возможных решений в ней конечно и определялось
параметрами имитационной модели, в рамках которой она ис-
пользовалась. В этой задаче было выделено восемь критериев
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yi = fi (x)  = βi для всех i ∈ I2,

где множества I1 и I2 образуют разбиение множества номеров
критериев I, а числа αi и βi определяют некоторые «пороговые»
(предельно низкие) значения критериев.

Необходимо сказать, что в общем случае формирование це-
левого множества многокритериальной задачи, если оно есте-
ственным образом не диктуется условиями конкретной задачи,
может составить непростую задачу.

Кроме того, есть еще одна проблема целевого программиро-
вания — выбор метрики. Чаще всего при решении прикладных
задач используют какую-либо метрику из следующего парамет-
рического семейства
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Здесь может быть и s = +∞; в этом случае получаем так называ-
емую чебышевскую (равномерную) метрику
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Чарнс и Купер использовали указанную метрику в частном
случае s = 1; а в работе [30] эта метрика применяется при s = 2.

Варьируя вектор параметров a s, стремятся учесть «неравно-
ценность» критериев, придавая большее значение той компоненте
вектора параметров, которая соответствует критерию большей
ценности. Разумеется, никаких строгих определений и рассужде-
ний на этот счет не приводится, поэтому все сказанное можно
смело относить к типичным эвристическим приемам.

Необходимо отметить, что использование метрики указанно-
го выше параметрического семейства не всегда приводит к паре-
то-оптимальным векторам. На этот счет в литературе имеется
достаточное количество примеров. Поэтому в рамках целевого
программирования значительное место уделяется нахождению
условий, при которых использование той или иной метрики за-
ведомо приводит к парето-оптимальным решениям.
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двумерных сечений. При этом использование метода предназна-
чено в основном для сложных в вычислительном отношении слу-
чаев бесконечного числа возможных решений и векторов.

Один из недостатков метода целевого программирования,
изложенного выше, состоит в том, что идеальный вектор (или
идеальное множество) задается «вслепую», без учета реальных
возможностей. Поэтому достижимые значения показателей, даже
наиболее близкие к заданному идеалу, зачастую оказываются да-
лекими от него. Метод достижимых целей направлен на преодо-
ление отмеченного недостатка. В соответствии с этим методом
исследователям, экспертам и ЛПР, — всем участвующим в реше-
нии задачи принятия решений, — в наглядной, доступной для
восприятия форме представляется множество возможных (дос-
тижимых) векторов. Среди них они могут выбрать ту или иную
компромиссную цель. После этого компьютер находит решение,
приводящее к поставленной цели.

Таким образом, применение МДЦ содержит следующие этапы:
− построение множества возможных (достижимых) векторов,
− визуальный анализ полученного множества,
− выбор компромиссного вектора,
− определение решения, соответствующего выбранному век-

тору.
Остановимся подробнее на втором этапе. Как уже было ска-

зано, множество возможных векторов визуально представляется
своими двумерными сечениями (авторы метода называют их ди-
алоговыми картами решений). Для того чтобы задать некоторое
двумерное сечение многомерного множества, необходимо выб-
рать те два критерия, значения которых будут демонстрировать-
ся на дисплей компьютера (так называемые координатные кри-
терии). Затем следует зафиксировать некоторый набор значений
остальных (некоординатных) критериев. Фиксируя различные
наборы некоординатных критериев, будем получать соответству-
ющие им двумерные сечения. Аналогичную процедуру можно
осуществить для другой пары координатных критериев и т. д. По
построенным таким способом двумерным сечениям в случае не-
большого числа критериев (в основном, до пяти) можно полу-
чить наглядное представление обо всем многомерном множестве
возможных оценок для того, чтобы осуществить в нем наилуч-
ший выбор.

Рассмотрим подробно случай трех критериев. Здесь имеется
один некоординатный критерий. Задавая набор фиксированных
значений этого критерия (обычно эти значения распределяют
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− величина издержек,
− величины выбросов первого, второго, третьего и четвертого

ингредиентов,
− величина расхода газа,
− величина расхода кислорода,
− величина расхода мазута.
Все они принимают строго положительные значения, и каж-

дый из них необходимо минимизировать. В соответствии с этим
начало координат естественно рассматривать как идеальный
недостижимый вектор. Из параметрического семейства метрик
была выбрана квадратичная, причем минимизировался квадрат
расстояния, т. е. функция
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Как видим, все коэффициенты 

��  были выбраны равными еди-

нице, так как информация об относительной важности критери-
ев учитывалась на этапе применения метода последовательного
сужения области компромиссов. Информация об относительной
важности состояла в том, что первый критерий являлся более
важным, чем каждый из всех остальных с одним и тем же коэф-
фициентом относительной важности.

Решение задачи состояло из следующих четырех этапов:
− удаление из множества возможных векторов всех тех, ко-

торые не являются парето-оптимальными,
− учет информации об относительной важности критериев

(пересчет менее важных критериев и построение с его помощью
нового множества парето-оптимальных векторов),

− нормализация оставшихся векторов (т. е. деление всех ком-
понент векторов на максимальные возможные компоненты),

− нахождение наилучшего вектора (того, который следует
выбрать) в результате минимизации функции ρ (y, 08) на остав-
шемся множестве нормализованных векторов.

2. Метод достижимых целей при наличии информации об отно-
сительной важности критериев. Метод достижимых целей (МДЦ)
был разработан группой сотрудников вычислительного центра
РАН [12]. Основой метода является визуализация множества воз-
можных (достижимых — по терминологии авторов метода) век-
торов при сравнительно небольшом числе критериев, т. е. на-
глядное представление его на дисплее компьютера посредством
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вектор будет соответствовать значению второго (некоординатно-
го) критерия, равному 



� . Для того чтобы оценить полученный
результат с точки зрения исходного второго критерия f2, можно
рассмотреть два двумерных сечения, одно их которых отвечает
первому некоординатному вектору, когда его значение фиксиро-
вано и равно 


�� , а второе — соответствует случаю, когда некоор-
динатным является третий вектор и его значение равно 


	� . Ана-
лизируя два последних двумерных сечения, в случае необходи-
мости можно произвести коррекцию выбранного ранее вектора
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Подобным образом можно пытаться использовать МДЦ при
наличии сведений об относительной важности критериев в слу-
чае четырех и пяти критериев. При этом ясно, что некоторые
трудности применения МДЦ могут состоять в том, что после учета
имеющейся информации об относительной важности критериев
и пересчета менее важных критериев образуются новые крите-
рии, с которыми работа ЛПР может быть затруднена. Эти изме-
ненные критерии уже не имеют прежнего «физического» смысла
и с ними следует обращаться особо. Однако, как показывает при-
веденное выше рассмотрение для случая трех критериев, с такими
затруднениями иногда можно успешно справиться.

6.3. КОМБИНИРОВАННЫЕ МЕТОДЫ

равномерно), получим соответствующую совокупность двумерных
сечений, которую данный метод позволяет представить двумя
способами — рядом и наложением друг на друга. Наложение се-
чений дает возможность легко сравнивать их между собой. Распо-
ложение этих сечений в ряд оказывается удобным при изучении
структуры множества возможных оценок, когда границы двумер-
ных сечений пересекаются.

Если имеется четыре критерия, то к некоординатным сле-
дует отнести два из них. В этом случае получится двумерная
совокупность значений некоординатных критериев (двумерная
сетка, число узлов которой совпадает с произведением числа
выбранных значений каждого из некоординатных критериев).
Как и в случае трех критериев, двумерные сечения при желании
можно наложить друг на друга или представить их в виде двумер-
ной матрицы, соответствующей узлам сетки значений некоорди-
натных критериев. Для более подробного знакомства с представ-
лением многомерных множеств на основе двумерных сечений
рекомендуем обратиться к [12].

Теперь обсудим, каким образом МДЦ можно использовать
при наличии дополнительной информации об относительной
важности критериев в случае, когда множество возможных ре-
шений состоит из бесконечного числа элементов (например, за-
дано в виде множества решений некоторой системы линейных
неравенств). Для иллюстрации сначала рассмотрим самую про-
стую ситуацию, — когда имеется всего три критерия и первый
критерий важнее второго с некоторым коэффициентом относи-
тельной важности. Будем считать, что другой информации нет,
причем получающееся в результате учета этой информации мно-
жество парето-оптимальных векторов бесконечно. Спрашивается,
каким образом произвести дальнейшее сужение области поиска
или же более того — остановить выбор на каком-то одном из
возможных векторов? С этой целью можно по известной форму-
ле θ12 f1 + (1 − θ12) f2 пересчитать менее важный второй крите-
рий и, тем самым, образовать новый векторный критерий, в ко-
тором первый и третий остались прежними. Именно второй,
измененный критерий следует взять в качестве некоординатного
и задать определенный ряд его значений для получения соответ-
ствующих двумерных сечений. Сравнивая представленные на дис-
плее сечения, можно получить наглядное представление о струк-
туре множества Парето, соответствующем новому векторному
критерию, и попытаться выбрать из этого множества какой-то
один определенный (компромиссный) вектор 
 
 


� 
 	� �� � �� �. Этот



���

Итальянский экономист и социолог Вильфредо Парето,
V. Pareto, (15.7.1848–20.8.1923) родился в Париже. В 1855 г. его
семья вместе с ним вернулась в Италию, где он, окончив Турин-
ский политехнический институт в 1869 г., получил специальность
гражданского инженера. Первые два года его обучения были по-
священы, в основном, математике и физике, а его выпускная
работа называлась «Фундаментальные принципы равновесия твер-
дых тел». Впоследствии интерес к математике не ослабнет, что
сыграет важную роль в становлении В. Парето как крупнейшего
специалиста в области математической экономики. Кроме того,
он интересовался биологией, экономикой, знакомился с трудами
социальных мыслителей. После окончания института он двадцать
лет проработал в индустриальной сфере — сначала в Римской же-
лезнодорожной компании, став ее  первым директором, а с 1874 г. —
управляющим директором акционерного общества, которому
принадлежали металлургические заводы во Флоренции.

В начале 90-х годов В. Парето резко изменил свою жизнь, пе-
реехал в Швейцарию и с 1893 г. начал работать в Лозаннском уни-
верситете (Швейцария), замещая Л. Вальраса. С 1894 г. — он про-
фессор кафедры политической экономии этого университета.

Первая крупная работа В. Парето — это двухтомный «Курс
политической экономии» (1896–1897 гг.), основанный на читае-
мых им университетских лекциях.

В своей наиболее влиятельной книге «Руководство по поли-
тической экономии» он продолжил развитие теории чистой эко-
номики, заложил основы современной экономики благосостоя-
ния и ввел понятие «оптимума Парето», как состояния, которое
не может быть улучшено ни одним из участников экономики без
ухудшения положения по крайней мере какого-то одного из ос-
тальных участников. В настоящее время оптимум Парето играет
важную роль в экономических исследованиях, принятии реше-
ний и теории игр.

С середины 90-х годов В. Парето стала привлекать социоло-
гия. После длительных исследований в этой области он выпустил
в свет в 1916 г. четырехтомный «Трактат по общей социологии».
Умер он в 1923 г. близ Женевы.

Ф. ЭДЖВОРТ И В. ПАРЕТО (КРАТКАЯ СПРАВКА)

Английский экономист Френсис Эджворт, F. Edgeworth,
(8.02.1845–13.02.1926) родился в Ирландии и получил образование
в области античных и современных языков. В возрасте 17 лет он
поступил в Тринити Колледж в Дублине, где изучал французский,
немецкий, испанский и итальянский языки. Математику, скорее
всего, освоил самостоятельно и всегда считал, что современные
методы математики может постичь каждый. Его работы были насы-
щены математическими понятиями и формулами, уровень кото-
рых был выше понимания тех, кто занимался в то время этичес-
кими проблемами. Первая публикация — «Новые и старые мето-
ды этики» относится к 1877 г., а в 1881 г. он опубликовал работу
«Математическая физика: приложения математики в этике». Эта
работа, экономическая по своей сути, изобиловала математичес-
кими формулами и выглядела как «исчисление экономики». В ней,
например, формулировались такие понятия, как «способность
к счастью» и «способность к работе». В этой же работе были пред-
ставлены его оригинальные идеи, основанные на понятии обоб-
щенной функции полезности. К 1885 г. относится его работа «Ме-
тоды статистики», где были представлены приложения и интер-
претация тестов для сравнения средних величин. В 1888 г.
Ф. Эджворт получил место профессора политической экономии
в Королевском Колледже в Лондоне, а в 1891 г. он переехал в Окс-
форд и работал там до ухода на пенсию в 1922 г. С 1891 по 1926 г.
являлся первым редактором «Экономического журнала».

Ф. Эджворту принадлежат такие понятия как «кривая без-
различия», «контрактная кривая» и «ядро экономики». Специа-
листам в области математической экономики хорошо известен
так называемый «ящик Эджворта», с помощью которого можно
моделировать процесс «чистого» обмена товарами между двумя
участниками. По сути дела, этот анализ опирается на понятие
парето-оптимального решения, которое Ф. Эджвортом в случае
двух критериев использовалось до того, как его в общем виде
ввел В. Парето.

Ф. ЭДЖВОРТ И В. ПАРЕТО

(краткая справка)
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