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 Analysis of the structural diversity of β-arches 

 R. Basyrov ¹, L. Zhozhikov ², S. Bondarev ³ 

 ¹ Moscow Aviation Institute, Volokolamsk highway 4, 125993, Moscow, Russia 
 ² Institute of Medicine, North-Eastern Federal University, Kulakovsky st. 42, 677007, 

 Yakutsk, Russia 
 ³ Saint-Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint-Petersburg, 

 Russia 
   
 β-arches  are  the  common  structural  element  of  numerous  amyloid  aggregates. 

 These  aggregates  possess  specific  cross-β  structure.  Amyloids  were  discovered  as 
 pathological  protein  deposits  associated  with  different  human  diseases.  According  to 
 recent  data,  amyloid  fibrils  formed  by  a  long  (over  about  30  residues)  amyloidogenic 
 peptides  that  are  prone  to  have  β-arches.  β-arches  include  two  β-strands  united  by  a 
 turn  (β-arc)  between  them  [1].  In  amyloids  and  β-solenoid  proteins,  β-arches  stack 
 in-register  to  form  β-arcades.  Kajava’s  group  proposed  the  topological  classification 
 of  β-arches  according  to  the  conformation  of  β-arcs  [2].  In  the  current  research,  we 
 aimed  to  analyze  the  diversity  of  β-arches  organization  and  to  classify  β-arches  based 
 on  their  3D  structure.  Data  on  a  total  1324  β-arches,  which  made  up  319  types  of 
 arches,  were  taken  for  processing.  The  information  about  known  β-arches  was 
 provided  by  A.V.  Kajava.  After  filtration  and  exclusion  of  not  representative  types  of 
 arches  (n  <  5),  a  total  880  β-arches  with  17  types  of  them  remained.  A  script  was 
 written  to  align  two  β-arches  and  calculate  RMSD  (root-mean-square  deviation)  of 
 atomic  positions  using  python3.  To  describe  the  three-dimensional  organization  of 
 β-arches  for  all  possible  structures,  clustering  of  β-arches  based  on  torsion  angles  of 
 amino  acids  in  β-strands  using  DBSCAN  for  python3  and  on  RMSD  using 
 hierarchical  clustering  with  R  was  performed  [3,4].  These  parameters  were  calculated 
 for  the  atomic  positions  of  the  first  three  and  the  last  three  C  atoms  of  β-strands, α
 because such residues are present in all β-arches.  

 The  DBSCAN  clustering  of  torsion  angles  gave  no  significant  results  -  only 
 two  clusters  were  obtained,  and  the  remaining  β-arches  were  marked  as  noise.  Also,  a 
 pairwise  comparison  of  angles  using  the  Wilcoxon  signed-rank  test  showed  their 
 weak  diversity  depending  on  the  type  of  arch.  Further,  the  dendrogram  was  obtained 
 as  a  result  of  hierarchical  clustering  by  RMSD.  It  showed  similarity  with  the  clusters 
 proposed  in  the  previous  articles.  But  also,  breakdown  of  some  clusters  into  smaller 
 groups  was  observed.  Hence,  it  can  be  concluded  that  RMSD,  in  contrast  to  torsion 
 angles, is well suited for assessing the structural diversity of β-arches. 

 Presented  results  have  potential  implementation  in  the  development  of  amyloid 
 fibril  assembly  software,  in  sequence-based  detection  and  structural  prediction  of 
 other  β-solenoid  proteins,  for  identification  of  amyloidogenic  sequences  and 

 8 



 elucidation  of  amyloid  fibril  structures.  Amyloidosis  is  a  fairly  common  disease  in 
 the  medical  practice  of  neurological,  cardiological,  nephrological  and 
 endocrinological  services,  the  diagnosis  of  these  conditions  is  at  a  low  level.  Further 
 progress  made  in  the  classification  and  prediction  of  such  structures  will  help 
 researchers  from  medical  practice  to  elucidate  approaches  in  the  diagnostics  and  in 
 the speculative future in finding the treatment of these conditions. 

 Detailed  description  of  the  analysis  is  available  at  the  Bitbucket  repository: 
 stanislavspbgu/fibrils_3d/  . 

 References 

 1.  Hennetin  J.  et  al.  Standard  conformations  of  β-arches  in  β-solenoid 
 proteins //Journal of molecular biology. – 2006. – Т. 358. – №. 4. – С. 1094-1105. 

 2.  Kajava  A.  V.,  Baxa  U.,  Steven  A.  C.  β  arcades:  recurring  motifs  in 
 naturally  occurring  and  disease‐related  amyloid  fibrils  //The  FASEB  journal.  –  2010. 
 – Т. 24. – №. 5. – С. 1311-1319. 

 3.  DeLano  WL  (2002)  The  PyMOL  molecular  graphics  system. 
 http://www.pymol.org 

 4.  Pedregosa  F.  et  al.  Scikit-learn:  Machine  learning  in  Python  //the  Journal 
 of machine Learning research. – 2011. – Т. 12. – С. 2825-2830. 
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 "Split" repeat resolution for long reads 

 G. Bukley  1  , D. Antipov  2 

 1  National Research University Higher School of Economics,  Pokrovskij bul'var 11, 109028, 
 Moscow, Russia 

 2  Center for Algorithmic Biotechnology, St. Petersburg  St  ate University, Universitetskaya emb. 
 7/9, 199034, St. Petersburg, Russia 

 De  Bruijn  graphs  are  widely  used  in  genome  assembling  problems.  These  graphs 
 are  built  on  the  basis  of  sequencing  of  the  genome.  However,  some  of  the  information 
 from the original reads remains unused in the graph. 

 Due  to  inaccuracies  of  reads  and  insufficient  read  length,  unresolved  repeats 
 occur  in  the  de  Bruijn  graph.  Different  assemblers  try  to  resolve  repeats  using 
 additional  information  from  the  reads.  Widely  used  SPAdes  [1]  genome  assembler 
 uses a method based on iterative expansion of paths in a graph supported by reads. 

 Recently,  another  method  for  resolving  repeats,  Multiplex  de  bruijn  graph  [2]  in 
 the  LJA  assembler,  has  been  proposed.  Previously,  SPAdes  used  a  different  method  of 
 resolving  repeats,  based  on  the  idea  of  splitting  vertices  (split).  Split  was  quite 
 inconvenient  to  work  with  paired  reads  of  Illumina.  However,  with  long  Hi-Fi  reads 
 this method seems potentially more powerful than Multiplex De Bruijn graph. 

 The  purpose  of  this  project  was  to  implement  the  "split"  repeat  resolution 
 method  and  compare  it  with  Multiplex  De  Bruijn  graph.  As  a  result,  two  approaches 
 were  introduced:  “Split  one-to-many”  and  “Explicit  split”.  If  a  vertex  has  one 
 incoming  edge  and  several  outgoing  edges,  then  it  can  be  splitted  into  several,  —  one 
 copy  for  each  outgoing  edge  (one-to-many).  If  the  reads  path  through  the  incoming 
 and  outgoing  edges  from  the  vertex  can  be  unambiguously  splitted,  then  a  vertex 
 should be splitted with a copy for each such path through the vertex (explicit). 

 However,  this  is  just  the  beginning  and  other  methods  have  not  yet  been 
 implemented.  There  are  other  ideas,  hence  there  is  still  a  hope  that  the  “split” 
 approach  will  surpass  multiplex  De  Bruijn  graph.  Further  development  of  the  work 
 may  be  the  implementation  of  more  advanced  methods  of  vertex  split.  After  that,  it 
 will  be  possible  to  compare  the  results  obtained  with  the  Multiplex  De  Bruijn  graph 
 method.  If  the  results,  as  expected,  turn  out  to  be  better,  then  this  module  can  be 
 rewritten from Python to C++ and be implemented in LJA assembler. 

 References 

 1.  Bankevich  A,  Nurk  S,  Antipov  D,  Gurevich  AA,  Dvorkin  M,  Kulikov  AS, 
 Lesin  VM,  Nikolenko  SI,  Pham  S,  Prjibelski  AD,  Pyshkin  AV,  Sirotkin  AV,  Vyahhi  N, 
 Tesler  G,  Alekseyev  MA,  Pevzner  PA.  SPAdes:  a  new  genome  assembly  algorithm 
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 2.  Bankevich,  A.,  Bzikadze,  A.V.,  Kolmogorov,  M.  et  al.  Multiplex  de  Bruijn 
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 Introduction 

 One  of  the  problems  in  systems  biology  remains  the  lack  of  understanding  of  the 
 large-scale  biological  relationships  between  genes  and  the  proteins  they  encode.  The 
 wide  availability  of  system-level  gene  expression  datasets  makes  it  possible  to 
 reconstruct  hidden  regulatory  relationships  between  gene-gene  and  gene-protein,  or  to 
 reverse-engineered  gene  regulatory  networks  (GRNs)  [1].  GRN  comprises  nodes  (the 
 genes  and  their  regulators)  and  edges  (the  regulatory  relationships  between  the 
 nodes).  It  is  usually  represented  mathematically  as  an  oriented  graph.  The  nature  of 
 the  interactions  in  GRNs  distinguishes  it  from  other  networks  in  biological  systems. 
 The  interactions  between  molecules  in  GRNs  usually  involve  the  indirect  regulatory 
 interaction  through  the  biological  molecules,  which  are  hard  to  detect  and  quantify. 
 Consequently, GRNs are harder to validate. 

 The  GRNs  we  know  are  the  result  of  a  long  biological  evolution.  The 
 phylogenomic  analysis  makes  it  possible  to  classify  genes  based  on  the  oldest  species 
 that  carry  orthologous  genes  [2,  3].  For  protein-protein  interaction  (PPI)  networks  in 
 yeast  and  human,  it  was  shown  that  proteins  of  the  same  age  tend  to  interact  more  [4, 
 5]. 

 This  project  aims  to  explore  if  gene  interaction  preference  for  genes  of  similar 
 age  holds  in  gene  regulatory  networks,  particularly  in  those  that  describe  direct 
 regulatory  interaction  (transcription  factor-target  gene).  Existing  network  prediction 
 methods  rely  primarily  on  expression  data.  If  gene  interaction  preference  for  genes  of 
 similar  age  holds  in  gene  regulatory  networks,  incorporating  biological  knowledge 
 into  network  inference  methods  could  help  to  improve  the  reliability  of  the  GRNs 
 inferred from expression data. 

 Materials and methods 

 For  the  analysis,  we  used  three  gene  regulatory  networks.  Yeast  GRN  is  a 
 complete  transcriptional  regulatory  network  (Tnet)  [6].  The  other  two,  Mouse  GRN 
 and  Human  GRN,  are  manually  curated  databases  (TRRUST  v2)  [7].  Data  contain 
 the  list  of  links  between  transcription  factors  (TF)  and  corresponding  target  genes 
 (TG). All edges have been experimentally confirmed earlier. 
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 First,  we  studied  the  GRNs  structure  using  NetworkX  2.8.1  [8]  and  pandas  1.4.2 
 Python 3.10.1 libraries [9]. 

 Yeast  GRN  has  4  441  genes  with  12  873  interactions.  Of  these,  157  genes  are 
 TF,  and  4  410  are  targets.  The  average  number  of  interactions  for  nodes  is  2.8987. 
 Mouse  GRN  has  2  456  genes  with  7  057  interactions.  Of  these,  827  genes  are  TF,  and 
 2  092  are  targets.  The  average  number  of  interactions  for  nodes  is  2.6425.  Human 
 GRN  has  2  862  genes  with  8  427  interactions.  Of  these,  795  genes  are  TF,  and  2  492 
 are  targets.  The  average  number  of  interactions  for  nodes  is  2.9444.  We  used  three 
 methods  to  obtain  age  classes:  protein  age  classes  [2],  GenOrigin  database  [10]  and 
 calculated using a phylostratigraphy approach [3]. 

 Protein  age  classes  [2]  were  translated  into  gene  age  classes  using  protein-gene 
 name  matching  from  the  YeastGenome  [11]  and  UNIPROT  [12]  databases. 
 Interaction  maps  of  TF  and  targets  and  TG/TF  heatmaps  were  built  for  each  GRN. 
 Finally,  the  "difference"  of  ages  in  relationships  was  calculated.  The  number  is  the 
 difference between the ages; the smaller, the closer the ages of the interacting genes. 

 We  used  the  gene  ages  from  the  GenOrigin  [10]  database  to  calculate  the  same 
 parameters  as  for  protein  classes  for  Yeast  GRN  parameters.  We  used  the  GenOrigin 
 phylogenetic tree to convert a numerical age into an age class. 

 We  used  a  phylostratigraphy  approach  [2]  to  determine  the  age  of  yeast  genes  in 
 GRN.  The  iTOL  tree  [13]  phylogeny  was  used  in  the  analysis  to  truncate  the  swiss 
 DB.  We  compared  4  184  yeast  gene  sequences  by  BLAST  (blastx)  against  truncated 
 the Swiss-prot [14] database (94 268 sequences, (10-3 E-value cutoff). 

 We  tested  the  possibility  of  randomly  obtaining  the  derived  age  class  ratios  in 
 the  gene  regulation  network.  We  randomly  reassigned  age  classes  to  1000  yeast, 
 mouse,  and  human  GRNs  to  do  this.  The  percentage  of  each  "age"  interaction 
 distance  for  each  network  was  calculated.  For  each  resulting  age  distance  distribution, 
 the standard deviation was counted. 

 The  workflow  is  represented  in  the  .ipynb  files  and  available  in  the  GitHub 
 repository  https://github.com/Freddsle/age_patterns  . 

 Results and Discussion 

 After translation and mapping protein age classes to GRNs, age was determined 
 for 3 437 (77.4%) genes in Yeast GRN, for 2 287 - (93.1%) in Mouse GRN, and 2 
 855 (99.8%) - in Human GRN. For the genes, 8 age classes were identified for each 
 GRN. Cellular_organisms, Euk+Bac, Euk_Archaea, Eukaryota, Opisthokonta classes 
 were found in all three networks. Dikarya, Ascomycota, Saccharomyceta classes 
 present in Yeast GRN, and Eumetazoa, Mammalia, Vertebrata in Mouse and Human 
 GRNs. 
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 The proportion of the 'Eumetazoa->Eumetazoa' and 'Eumetazoa->Vertebrata' 
 interactions are the largest among all interactions for mouse and human GRNs (each 
 is more than 10%). On average one TF controls more targets (maximum up to 25) in 
 the yeast network than in mouse (up to 6) and human GRN (up to 8). For yeast GRN, 
 younger nodes have more edges to different age nodes in the network than older 
 nodes. For mouse and human GRNs, the differences are less noticeable. There is no 
 such drop in the number of connections with increasing age. 

 Human and mouse GRNs have demonstrated a tendency for genes from similar 
 age groups to interact more with each other than with more "distant" age groups. For 
 the yeast GRN, this does not seem to be the case. 

 The gene ages calculated from the protein ages gave different results for human 
 and mouse, and yeast GRNs. Therefore, we decided to use the gene ages from the 
 GenOrigin. After mapping, we determined the age class for 4 184 genes (94.2%) in 
 Yeast GRN. 

 TF of the 'Dikarya' age class control fewer targets than other TF classes; there 
 are less than six targets per 'Dikarya' TF. Also, targets of 'Dikarya' and 'Opisthokonta' 
 classes are controlled by m0000ore TF than other target classes. There are less than 5 
 'Opisthokonta' targets per TF. For 'Dikarya' TF and 'Opisthokonta' targets, the 
 proportion of links among all links in the network is minimal for any edges (less than 
 0.3% for any combination). 

 Using gene ages from the GenOrigin, there is no significant predominance of 
 interactions between similar age classes in the yeast network. Edges with age 
 distances 0 ("same age") and 1 ("close age") account for less than 35% of all edges. 

 When using phylostratigraphy, the fraction of "same age" interactions (distance 
 between ages is 0) has increased. However, this observation may be caused by the 
 truncated tree, in which all age classes older than eukaryotes also received the label 
 eukaryotes. Also, even though the 'Opisthokonta' class was sufficiently represented in 
 the truncated Swiss database, the number of targets of this age class turned out to be 
 less than expected. Therefore, we plan to blast GRNs genes to a fine-grained tree 
 with a more uniform representation of nodes across gene classes. 

 Was it possible to obtain preferences in the interaction in a random network? 
 We determined interaction preference only for certain age distances (distances are 2, 
 7 or 8) using the method with randomly assigned classes in Yeast GRN. 

 Conclusion 

 Unfortunately, we cannot confidently say that our hypothesis about gene 
 interaction preference in GRN has been confirmed. None of the three methods used 
 to obtain gene ages showed that interactions of "same" and "close" age are dominated 
 in yeast GRN. There are no significant differences compared to the model where the 
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 age categories are randomly assigned. We need a more correctly formulated null 
 hypothesis (a method for obtaining a random network) or a more correct phylogenetic 
 resolution (a fine-grained tree with a more uniform representation of nodes across 
 gene classes). 
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 Introduction 

 Reparative  regeneration,  i.e.  the  ability  to  regrow  lost  body  parts  or  structures 
 after  natural  ablation  or  amputation  is  considered  to  be  an  ancestral  feature  of  all 
 metazoans  [2].  Regenerative  capacities  have  been  lost  multiple  times  during 
 evolution  in  variable  groups  of  animals  and  the  reasons  for  this  loss  are  mostly 
 unknown  [1].  One  of  the  important  steps  of  reparative  regeneration  is  to  correctly 
 integrate  the  regrowing  body  part  or  structure  with  the  existing  tissue  [9].  This  can  be 
 reached  by  establishing  and  maintaining  the  positional  information  in  the  body  which 
 can  be  reorganized  after  injury  in  consistency  with  the  new  proportions  and  size  of 
 the  body.  Positional  information  is  the  set  of  molecular  signals  which  is  gradientally 
 spread  in  the  body  thus  each  cell  of  the  body  responds  to  a  certain  level  of  a  certain 
 molecule [11]. 

 The  gradients  like  this  were  described  for  a  number  of  animals  [5,7,8,10].  In 
 planarians,  the  posterior-anterior  gradient  of  Wnt-signaling  is  maintained  in  the  adult 
 body  and  its  insufficiency  correlates  with  the  absence  of  head  regeneration  [5],  [8].  In 
 Danio  rerio  a  number  of  factors  establish  the  gradiental  expression  along  the  fin  rays 
 and  probably  maintain  its  ability  to  regenerate  through  the  lifespan  [7].  Similarly,  the 
 gradiental  expression  of  a  number  of  Hox  genes  was  demonstrated  in  the  juvenile 
 annelid  Alitta  virens  (Nereididae)  and  those  gradients  are  reorganized  after  the  “tail” 
 amputation  and  its  further  restoration  [8].  Thus,  the  ability  to  establish  and  maintain 
 positional  information  in  the  juvenile  or  adult  body  seems  to  correlate  with  good 
 regeneration  capacities.  Annelids,  or  ring  worms,  possess  remarkable  ability  to 
 restore  anterior  and  posterior  parts  of  the  body,  although  this  ability  varies  a  lot  in 
 different  annelid  families  [4].  For  example,  the  spinoid  Pygospio  elegans  can  easily 
 restore  head  and  tail  parts  after  amputation  sometimes  form  a  single  segment  [6].  On 
 the  contrary,  the  arenicolid  Arenicola  marina  can  only  heal  the  wound  and 
 compensate  for  the  loss  of  the  size  by  hypertrophic  growing  of  the  remaining 
 segments  [3].  We  suggest  that  the  system  of  maintaining  molecular  gradients  can 
 exist  in  P.  elegans  body  and  is  probably  absent  in  A.  marina  .  To  test  this  hypothesis, 
 we  cut  the  worms  into  12  parts,  isolated  total  RNA  and  created  the  transcriptome  for 
 each  body  piece.  Here,  in  this  paper  we  describe  the  processing  of  the  raw  reads  and 
 further transcriptome assembly. 

 Methods 
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 Paired-end  Illumina  reads  were  preprocessed  before  analyzing  the  data  in  the 
 following  way:  quality  control  was  performed  using  FastQC  [12],  and  sequencing 
 errors  were  corrected  via  Karect  [13].  Then,  low-quality  and  adapter  sequences  were 
 clipped  with  Trimmomatic  (with  parameters  sliding  window:5:20,  leading:25, 
 trailing:25, minlen:25) [14]. 

 The  prepared  reads  were  assembled  with  Trinity  [15].  We  then  checked  statistics 
 of  the  assembly  with  rnaQUAST  in  order  to  perform  the  quality  assessment  [16]. 
 Trinity  de  nov  o  assembly  has  artificial  redundancy  due  to  the  use  of  De  Bruijn 
 graphs.  To  get  rid  of  that  we  used  CD-HIT  that  clusters  similar  sequences  into 
 clusters [17]. 

 Next,  we  predicted  the  location  of  ribosomal  RNA  genes  using  Barrnap  [18]. 
 Decontamination  was  removed  via  MCSC  [19].  This  method  is  based  on  a 
 hierarchical  clustering  algorithm  and  uses  the  UniRef90  database  to  identify 
 contaminant clusters. We ran  MCSC  setting taxon to  keep as '  Annelida  '. 

 After  having  clustered  and  decontaminated  data,  we  analyzed  gene  expression. 
 For  this  purpose,  we  used  Salmon  [20]  to  produce  transcript-level  quantification 
 estimates  from  our  data.  We  were  then  able  to  use  a  library  tximport  for  R  to 
 summarize  expression  to  genes  [21].  Then,  we  identified  candidate  coding  regions 
 within  transcript  sequence  via  TransDecoder  [22].  We  first  extracted  the  long  open 
 reading  frames  and  next  searched  the  peptides  for  protein  domains  using  Pfam  and 
 Hmmer3  [23]. 

 Results 

 FastQC  revealed  failures  in  following  sections:  per  base  sequence  content,  GC 
 content,  sequence  duplication  levels,  overrepresented  sequences,  adapter  content. 
 Some  of  them  are  just  a  feature  of  RNA  data,  but  low  quality  and  adapter  sequences 
 needed  to  be  clipped.  After  running  Karect  and  Trimmomatic  approximately  10%  of 
 reads  were  dropped.  rnaQUAST  showed  that  Trinity  assembly  of  Pygospio  elegans 
 had  910828  contigs,  while  assembly  of  Arenicola  marina  had  355266  contigs. 
 Moreover,  the  report  indicated  that  Arenicola  marina  assembly  had  higher  average 
 contig length and better Nx statistics. 

 After  getting  rid  of  artificial  redundancy  with  CD-HIT  we  obtained  615358 
 contigs  for  Pygospio  elegans  and  271748  clusters  of  contigs  for  Arenicola  marina  . 
 Next  step  of  the  assembly  post-processing  was  decontamination.  We  used  Barrnap 
 and  then  searched  the  results  against  the  NCBI  database.  This  revealed  contamination 
 with  Selenidium  pygospionis  .  MCSC  was  used  to  get  rid  of  the  contamination  and  as 
 a  result  we  obtained  423597  and  185289  sequences  for  Pygospio  elegans  and 
 Arenicola  marina  respectively. 

 Based  on  the  results  of  Salmon  and  TransDecoder  ,  we  were  ready  to  get  protein 
 coding  genes  with  significant  expression.  Out  of  all  genes  we  selected  those  that  have 
 >1  TPM  expression.  Finally,  we  chose  genes  that  encode  proteins  longer  than  100 
 amino  acids.  Two  sets  of  protein-coding  genes  selected  with  significant  expression: 
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 54315 (  Pygospio elegans  ) and 33530 (  Arenicola marina  ). 

 Discussion 

 The  task  of  correctly  identifying  contamination  and  removing  such  data  from 
 future  analysis  can  be  solved  using  one  of  the  two  approaches:  by  direct  comparison 
 sequences  with  the  database  and  removing  those  that  have  the  greatest  similarity  or 
 through  the  classification  of  sequences  using  distinctive  features.  Comparison  with 
 the  database  has  an  important  limitation.  The  database  itself  can  miss  data  for  the 
 species  that  might  interest  us.  That  is,  some  sequences  (large  or  small  -  depending  on 
 the  studied  group  or  species)  will  be  identified  incorrectly,  or  will  not  have  any 
 annotation  at  all.  For  this  reason,  MCSC  algorithm  was  chosen.  According  to  the 
 publication  [12]  describing  the  program,  the  algorithm  analyzes  properties  of  the 
 sequences,  isolating  some  specific  patterns  and  classifying  all  sequences  in  a 
 transcriptome  based  on  similarities  and  differences  in  their  patterns.  This  approach  is 
 justifiable,  but  does  not  always  guarantee  that  the  output  is  completely 
 decontaminated. However, it is the best solution we were able to find. 

 We  should  mention  that  Arenicola  marina  assembly  has  significantly  less 
 contigs.  However,  statistics  like  average  contig  length  and  Nx  are  better.  Moreover, 
 the  resulting  gene  sets  that  were  obtained  also  vary  in  number.  There  are  almost  twice 
 as  many  obtained  Pygospio  elegans  genes  as  Arenicola  marina  genes  .  This  might 
 imply  that  such  a  difference  comes  from  the  initial  sequencing  data  we  had  at  hand. 
 In  order  to  solve  this  issue,  more  samples  should  be  considered.  There  are  two  more 
 samples  of  considered  annelids  available  with  sequencing  data.  The  same  process  can 
 be  applied  in  order  to  validate  the  results.  Prepared  data,  Pygospio  elagans  and 
 Arenicola  marina  assemblies  and  sets  of  genes,  can  be  further  analyzed  in  order  to 
 determine gene-candidates responsible for positional information concept. 

 The research was supported by RSF grant # 21-14-00304. 
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 Introduction 

 Demographic  history  is  the  reconstructed  record  of  the  population  in  the  past. 
 The  demographic  history  of  populations  is  determined  by  a  number  of  parameters 
 such  as:  the  time  of  split,  the  rate  of  migration,  the  size  of  subpopulations  after  split, 
 and others. 

 The  allele  frequency  spectrum  is  a  statistic  of  demographic  history  data:  it  is  the 
 distribution  of  the  allele  frequencies  of  a  given  set  of  loci  (often  SNPs)  in  a 
 population  or  sample.  For  two  populations,  such  statistics  can  be  represented  by  a 
 two-dimensional tensor. 

 Currently  existing  optimization  methods  that  allow  for  optimizing  the 
 parameters  of  demographic  history  by  its  allele  frequency  spectrum  have  a  substantial 
 running  time,  although  one  of  the  approaches  [1]  uses  a  genetic  algorithm  that  allows 
 you  to  accelerate  optimization.  We  would  like  to  get  predictions  in  a  faster  and  more 
 accessible way using a machine learning model. 

 The  goal  of  this  exploration  is  to  study  the  effectiveness  of  machine  learning 
 methods  for  quickly  predicting  the  parameters  of  a  demographic  history,  understand 
 how  to  validate  such  a  model,  and  draw  conclusions  about  the  effectiveness  of  the 
 metrics used. 

 Materials and methods 

 The  2_DivMig_5_Sim  model  [2]  was  chosen  as  a  demographic  history  model 
 for  study.  Then,  by  changing  the  parameters,  allele-frequency  spectrum  datasets  were 
 generated  for  training,  validation,  and  testing  of  the  machine  learning  model.  The 
 vector  of  demographic  history  parameters  was  used  as  the  target  function.  As  a 
 consequence, we needed a multi-output regression model. 

 A  random  forest  [3]  was  taken  as  a  machine  learning  model,  since  this  model  is 
 quite  simple  on  the  one  hand  and,  on  the  other  hand,  is  a  good  regressor,  since  it  can 
 build  quite  complex  regression  curves  and  at  the  same  time  is  an  ensemble  model, 
 which increases the accuracy of predictions, unlike, for example, a decision tree. 
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 For  the  implementation  of  the  multi-output  regression  model  we  used  two 
 approaches.  The  first  is  to  predict  the  parameters  independent  of  each  other  (model  I). 
 The  second  is  to  predict  parameters  correlated  to  each  other,  while  the  order  of 
 dependence  is  determined  by  the  order  of  parameters  in  the  parameter  vector  (model 
 II). 

 We  also  used  metrics  for  validation  of  our  machine  learning  model.  The  first 
 metric  we  used  was  the  coefficient  of  determination  (R  2  metric)  [4].  The  second 
 metric  is  the  random  search  metric.  To  get  the  averaged  value,  it  is  necessary  to 
 perform  this  algorithm  for  each  spectrum  from  the  test  sample;  the  predicted 
 spectrum  is  the  spectrum  generated  by  the  parameters  predicted  using  the  ML  model. 
 Averaging over all test spectrums, we get the random search metric. 

 Results 

 We  have  developed  a  pipeline  for  conducting  such  research,  which  includes 
 generating  datasets,  storing  them  as  files,  preprocessing  data,  training  and  validating 
 models,  testing  models  and  using  a  random  search  algorithm.  A  small  Python  script 
 was also developed that allows you to make predictions based on pre-trained models. 

 All  developed  scripts  and  pipelines  can  be  found  here: 
 https://github.com/lisosoma/ML-for-demographic-inference  . 

 Discussion 

 As  a  result  of  our  exploration,  we  found  that  a  machine  learning  model  such  as  a 
 random  forest  copes  well  enough  with  predictions  of  demographic  history  parameters 
 on  the  allele  frequency  spectrum.  In  general,  it  can  be  concluded  that  the  studied 
 approach  allows  you  to  quickly  assess  the  parameters  of  demographic  history,  while 
 losing accuracy. 

 For  the  two  datasets  we  generated,  we  got  quite  good  metrics:  for  all  models, 
 R  2  shows  results  of  more  than  0.89.  As  for  random  search,  its  metric  for  all  models 
 exceeds  850.  This  means  that  we  need  at  least  850  random  points  to  achieve  the  same 
 likelihood  (with  a  certain  accuracy)  as  a  random  forest  gives.  It  is  worth  noting  that 
 the  more  such  random  points  are  required,  the  better  the  machine  learning  model 
 works for these kinds of predictions. 

 It  is  worth  noting  that  there  is  no  strong  difference  in  metrics  between  the  two 
 approaches  to  predictions:  with  independent  parameters  and  correlated  ones.  Based 
 on  this,  it  can  be  assumed  that  the  parameters  of  demographic  history  are  weakly 
 dependent on each other. 

 For  further  research,  it  is  proposed  to  try  other  machine  learning  models,  in 
 particular,  a  convolutional  neural  network  or  generative-adversarial  models.  It  is  also 
 worth  trying  to  use  other  demographic  history  models.  As  for  the  software 
 implementation,  one  can  develop  a  class  and  use  pre-trained  machine  learning  models 
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 for  each  demographic  history  model  in  it.  This  will  automate  the  forecasting  process. 
 It  is  also  worth  suggesting  some  normalization  of  the  random  search  metric.  Also,  a 
 metric  based  on  random  search  needs  a  lot  of  computing  costs,  so  it  is  better  to  use 
 the GPU to perform this pipeline. 
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 Genome  editing  using  CRISPR/Cas9  enables  the  study  and  the  production  of 
 plants  with  improved  traits  for  agriculture.  The  CRISPR/Cas9  system  consists  of  two 
 components:  the  Cas9  protein  and  the  guide  RNA  (gRNA).  The  gRNA  is  a  small  20 
 nt  long  RNA  that  provides  sequence  specificity,  forms  a  complex  with  Cas9  and 
 guides  the  Cas9  protein  to  its  target  sequences.  Cas9  is  an  RNA-dependent  DNA 
 endonuclease  that  produces  double-stranded  breaks  at  the  target  sites.  The  DNA 
 repair  systems  in  host  cells  are  typically  induced  after  cleavage  by  Cas9.  Constitutive 
 promoters  such  as  the  35S  promoter  or  promoters  of  housekeeping  genes  have  been 
 used  for  genetic  engineering  in  plants,  as  they  have  high  levels  of  expression  in  all 
 cell  types.  However,  transgenic  lines  with  these  promoters  have  been  mainly  mosaic 
 in  the  first  generation.  Usage  of  egg  cell-specific  promoters  has  been  shown  to  enable 
 the  creation  of  non-mosaic  T1  mutants  for  multiple  target  genes  with  high  efficiency 
 [1].  EC1.1  and  EC1.2  are  Arabidopsis  thaliana  genes  from  the  egg  cell-specific  gene 
 family  that  are  specifically  and  highly  expressed  in  egg  cells.  Assuming  that 
 homologous  genes  have  similar  functions,  we  supposed  that  EC  homologs  could  have 
 similar  expression  patterns  in  other  plants  and  using  their  promoters  could  improve 
 genome  editing  in  corresponding  plants.  Thus,  the  aim  of  our  project  is  to  find 
 functional  analogs  of  EC  genes  in  different  crops  and  model  plants  and  explore  their 
 expression patterns and regulatory elements. 

 In  this  study  we  used  genomes,  annotations  and  amino  acid  sequences  of  53 
 plant  species  from  different  public  databases  (  Plant  Ensemble  ,  PLAZA  ,  MBKBASE 
 and  Phytozome  ).  We  used  the  Orthofinder  v.2.5.4  .  to  find  EC1  gene  orthologs.  In 
 Orthofinder,  EC1.1  and  EC1.2  genes  were  grouped  into  one  orthogroup.  Protein 
 sequences  of  all  genes  that  were  in  the  same  orthogroup  as  EC1  genes  (201  genes) 
 were  taken  for  further  phylogenetic  analysis.  Alignment  obtained  by  Clustal  Omega 
 v1.2.3  was  used  to  construct  the  phylogenetic  tree  using  IQ-TREE  v2.0.3a  by 
 maximum  likelihood  method  using  ultrafast  bootstrap  approximation.  Amborella 
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 trichopoda  was  chosen  as  the  outgroup.  Two  clades  with  very  high  bootstrap  support 
 formed  on  the  tree,  which  roughly  correspond  to  the  EC1.1  and  EC1.2  gene  families. 
 Inside  the  clades  genes  are  grouped  according  to  species  phylogeny.  These  clades 
 contain  the  majority  of  genes  of  both  dicots  and  monocots.  This  could  imply  that  the 
 duplication  leading  to  the  emergence  of  EC1.1  and  EC1.2  occurred  in  the  early  stages 
 of  the  evolution  of  flowering  plants,  even  before  divergence  of  dicots  and  monocots. 
 The  structure  of  the  tree  within  each  of  the  clades  is  consistent  with  the  phylogeny  of 
 flowering  plants.  However,  genes  from  monocots  are  present  in  only  one  clade, 
 EC1.1.  This  suggests  that  the  common  ancestor  of  the  monocots  lost  one  of  the 
 paralogs  corresponding  to  EC1.2  The  outside  group  probably  contains  genes  that  are 
 not EC1.1 or EC1.2 orthologs (and are there due to, e.g., long branch attraction). 

 Based  on  Orthofinder  results,  some  species  had  several  orthologs  of  EC1 
 genes.  In  order  to  determine  the  genes  that  most  probably  have  functions  most  similar 
 to  Arabidopsis  egg-cell  specific  genes,  the  expression  patterns  of  the  orthologs  were 
 examined.  Due  to  the  absence  or  bad  quality  of  openly  accessible  RNA-seq  data, 
 only  20  species  and  53  orthologs  of  these  organisms  were  taken  for  further  analysis. 
 According  to  their  expression  profiles,  genes  were  divided  into  three  groups.  The  first 
 group  contained  23  genes  with  expression  profiles  similar  to  the  EC1  gene  family  in 
 A.  thaliana.  They  were  highly  and  specifically  expressed  in  female  reproductive 
 organs.  The  second  group  contained  29  genes  that  have  expression  in  female 
 reproductive  organs  as  well  as  other  plant  tissues.  Here,  the  expression  in  the  female 
 reproductive  organs  was  not  the  highest.  Finally,  the  third  group  contained  genes  that 
 have  no  expression  in  female  generative  organs,  only  in  vegetative  parts  of  plants  and 
 contains 5 genes. 

 For  each  group,  we  searched  for  characteristic  motif  sequences  in  the  upstream 
 regions  of  the  genes.  From  the  Jaspar  2022  database  we  took  all  known  motif 
 sequences  specific  for  plants  (656  motifs)  and  used  the  FIMO  v5.4.1  to  search  for 
 these  motifs  in  the  500  bp  upstream  of  found  orthologs.  Using  custom  python  scripts, 
 we  generated  heatmaps  to  search  for  patterns  in  the  occurrences  of  the  motifs.  We 
 also  looked  at  motifs  that  are  present  in  more  than  50% genes  in  groups  1  (only 
 female  reproductive  organs)  and  groups  2  (female  reproductive  organs  and  other  plant 
 tissues).  However,  no  specific  motif  was  found  that  universally  accounts  for  the 
 specific  expression  in  female  reproductive  organs.  Possibly,  it  is  only  enabled  by  a 
 specific combination of different motifs and for each gene this combination is unique. 
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 Hydrozoans  are  a  group  of  cnidarians  that  are  noted  for  their  complexity  and 
 diversity  in  life  cycles.  In  many  hydrozoan  species,  the  life  cycle  consists  of  a 
 free-living  planula  larva  that  transforms  into  a  primary  polyp.  The  primary  polyp 
 buds  other  polyps  to  produce  a  benthic  colonial  stage.  Upon  reproductive  maturity, 
 the  polyps  bud  pelagic  medusae  that  ultimately  form  gametes  and  spawn  in  the  water 
 column  [1].  Within  hydrozoans  there  exists  an  extraordinary  variation  in  this  life 
 cycle  that  is  reflected  in  a  wide  range  of  diversity  of  polyp,  colony,  and  medusa 
 morphologies,  as  well  as  complete  loss  or  reduction  of  the  polyp  or  medusa  stage  in 
 some  species.  The  molecular  mechanisms  of  speciation  in  hydroids  have  never  been 
 studied,  neither  has  the  relationship  between  the  evolution  of  the  life  cycle  and 
 speciation  ever  been  considered.  The  hydroid  Sarsia  lovenii  from  the  White  Sea  was 
 chosen  as  the  object.  Recently,  in  S.  lovenii  ,  breeding  season  polymorphism  has  been 
 found  to  be  associated  with  life  cycle  polymorphism  [2].  Colonies  of  the  first  morph 
 produce  normally  developed  free-floating  medusas,  while  colonies  of  the  second 
 morph  produce  attached  gonophores  -  medusoids.  The  morphs  identified  represent 
 phenological  populations:  in  the  example  of  S.  lovenii  ,  we  can  observe  the  initial 
 stage  of  sympatric  speciation.  Thus,  due  to  the  aforementioned  features  of  the  object 
 we  have  chosen,  we  can  study  the  molecular  mechanisms  of  speciation  associated 
 with  the  divergence  of  populations  in  breeding  time  and  associated  with  the  evolution 
 of the life cycle. 

 Transcripts  of  two  morphotypes  -  medusa  and  medusoids  were  assembled  de 
 novo  and  annotated.  Assembled  transcriptome  size  was  50  Mbp  and  58  Mbp, 
 respectively.  Next,  analysis  of  differential  gene  expression  was  performed.  We  used 
 12  libraries  with  sequences  from  big  and  small  medusa  and  medusoids  buds  samples, 
 respectively  (100  nt,  single  end)  and  analyzed  the  differential  expression  of  the  50 
 most  up  and  down  regulated  genes.  Since  the  medusa  stage  is  considered  to  be  the 
 ancestral  state  of  hydrozoan,  we  focused  on  genes  that  could  be  a  marker  of  the 
 difference  between  medusa  and  medusoid  stages.  Thus,  we  identified  5  homeobox 
 genes  for  the  related  genus  Clytia  ,  that  are  assumed  to  be  specific  to  the  medusas 
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 stage  -  Tlx,  Pdx,  DRGX,  CnoxA,  Cnox4  .  Then  we  searched  for  selected  genes  in 
 medusa  and  medusoid  buds  samples,  respectively.  It  was  found  that  all  five  genes 
 were  expressed  in  all  medusa  buds  samples  and  only  two  genes  were  expressed  in 
 medusoid  buds  samples  -  CnoxA  and  DRGX  .  We  found  in  the  new  preprint  article 
 authors  suggest  that  the  Tlx  homeobox  genes  play  a  key  role  in  medusa  development 
 and  the  loss  of  this  gene  is  probably  related  to  the  loss  of  the  medusa  life  cycle  stage 
 [3].  Expression  of  CnoxA,  DRGX  genes  in  samples  that  have  lost  medusa  stage  and 
 the  absence  of  Tlx  gene  expression  may  support  the  assumption  that  we  are  observing 
 the  initial  stage  of  sympatric  speciation.  Data  that  we  obtained  can  be  a  source  for 
 further  studies  of  mechanisms  that  are  associated  with  the  loss  of  the  medusa  stage  in 
 the life cycle of hydrozoa. 
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 Introduction 

 Cancer  has  been  known  and  feared  for  more  than  two  thousand  years,  but 
 mechanisms  of  its  genesis  seemed  mysterious  for  most  of  the  time.  Now  it  is  known 
 that  cancer  is  caused  by  genetic  changes.  There  are  numerous  mutations  in  tumor  cells 
 including  single  nucleotide  polymorphisms  (SNPs),  insertions,  deletions,  inversions, 
 translocations,  and  chromosomal  aberrations  [10].  Small  mutations  have  been  studied 
 thoroughly  using  short  read  sequencing.  However,  big  structural  variations  are  hard  to 
 be  determined  using  only  short  reads  due  to  read  mapping  ambiguities  [9,  11].  Recent 
 advances  in  long  read  sequencing  present  an  opportunity  to  solve  this  problem.  There 
 are  still  many  problems  to  cope  with,  such  as  the  heterogeneity  of  tumor  cells  and  loss 
 of  information  about  haplotypes  present  in  a  read  (one  read  may  consist  of  parts  from 
 different haplotypes if there is a breakpoint inside it). 

 In  this  study,  we  use  long  read  data  to  determine  complex  rearrangements  in 
 cancer,  including  information  about  haplotypes  that  form  “new”  cancer  chromosomes. 
 In  particular,  we  focus  on  automatically  determining  possible  breakage-fusion-bridge 
 events  and  investigate  these  regions  more  thoroughly.  We  combine  finding  structural 
 variations  breakpoints  and  analyzing  read  coverage  change  (corresponding  to  copy 
 number change) to solve this problem. 

 Methods and materials 

 Data 

 We  used  an  alignment  of  Oxford  Nanopore  reads  to  GRCh38  human  reference 
 in  bam  format.  Each  read  was  already  phased  according  to  its  primary  alignment  (this 
 information was stored in the HP tag). 

 Methods 

 For  finding  breakpoints,  we  used  Sniffles  [1,  2]  and  a  tool  adapted  from  the 
 source  code  of  HapDup  [3,  4,  5].  Sniffles  provided  a  less  accurate  result,  so  we 
 focused on the HapDup result. 

 After  that,  we  developed  a  Python3  script  for  visualizing  read  coverage  by 
 haplotype  and  breakpoints.  We  also  developed  a  script  for  automatically  determining 
 possible  breakage-fusion-bridge  events  by  analyzing  coverage  profile  and 
 breakpoints.  We  analyzed  these  locations  and  performed  local  assembly  with  Flye 
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 assembler  (version  2.9)  [6,  7]  around  the  breakpoints  to  support  or  contradict  our 
 hypothesis.  We  chose  Flye  assembler  because  it  was  specially  designed  for  ONT 
 reads. 

 The  alignments  were  then  examined  in  the  IGV  genome  browser  (version 
 2.11). 

 Results 

 We  developed  a  Python3  script  for  visualizing  read  coverage  by  haplotype  and 
 breakpoints.  It  works  on  a  BAM  file  and  produces  pictures  in  PNG  format.  It  creates 
 visualizations  of  every  chromosome  and  also  a  zoom-in  of  all  possible 
 breakage-fusion bridge events. 

 The  script  can  be  found  here: 
 https://github.com/madshuttlecock/structural-variations  .  The  script  can  be  used  as  a 
 console  script  (script.py)  and  also  all  functions  can  be  imported  in  Python3  separately 
 (just import counter.py). 

 We  also  created  a  script  for  automatically  determining  possible 
 breakage-fusion-bridge events. There are possible events on chromosomes 3 and 15. 

 Discussion 

 We  found  possible  breakage-fusion-bridge  events  on  two  chromosomes. 
 However,  these  variations  usually  happen  on  the  ends  of  chromosomes,  and  in  our 
 case  they  are  observed  closer  to  the  middle.  We  suppose  that  it  is  due  to  the  loss  of  a 
 part  of  the  chromosome.  We  are  planning  to  verify  this  hypothesis.  Another  possible 
 explanation  is  the  formation  of  an  extrachromosomal  DNA  (ecDNA),  but  we  believe 
 it to be less likely. 

 We  are  currently  working  on  combining  all  our  tools  to  automatically 
 determine all structural variations and the full chromosomal structure in cancer cells. 
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 Introduction 

 Synucleinopathies  are  neurodegenerative  diseases  that  include  Parkinson's 
 disease,  multiple  system  atrophy,  and  dementia  with  Lewy  bodies  (Coon  and  Singer, 
 2020).  In  the  course  of  pathogenesis,  protein  aggregates,  in  particular, 
 alpha-synuclein,  are  formed  in  neurons  of  some  subcortical  nuclei  of  the  brain,  which 
 leads  to  loss  of  control  of  voluntary  and  involuntary  movements  in  patients. 
 According  to  bioinformatics  predictions,  the  adapter  protein  of  nitric  oxide  synthase  1 
 (NOS1AP)  is  also  capable  of  forming  protein  aggregates  in  neurons  (unpublished 
 data).  NOS1AP  is  a  cytosolic  protein  that  binds  to  neuronal  nitric  oxide  synthase 
 (NOS1),  which  is  responsible  for  nitric  oxide  production  in  neurons.  Besides  NOS1, 
 NOS1AP  interacts  with  a  number  of  other  proteins  and  could  be  involved  in  various 
 processes:  Hippo  signaling  pathway  (controls  cell  proliferation  and  differentiation) 
 (Clattenburg  et  al.,  2015),  dendrite  development  (Candemir  et  al.,  2016;  Carrel  et  al., 
 2009),  control  of  circadian  rhythms,  iron  homeostasis  in  neurons,  and 
 NMDA/NO-mediated  neurotoxicity  (Wang  et  al.,  2016).  NOS1AP  also  participates  in 
 the  nNOS-p38MAPK  signaling  pathway  involved  in  excitotoxicity  (toxicity  of 
 excitatory  neurotransmitters  such  as  glutamate),  a  phenomenon  described  for  many 
 neurodegenerative  processes  (Li  et  al.,  2013).  NOS1AP  is  known  to  be  implicated  in 
 neuropsychiatric  disorders  such  as  post-traumatic  stress  disorder  (Lawford  et  al  ., 
 2013  ),  bipolar  disorder  (Freudenberg  et  al.,  2015),  and  schizophrenia  (Brzustowicz  et 
 al.,  2004;  Miranda  et  al.,  2006;  Zheng  et  al.,  2005).  An  increase  in  NOS1AP 
 expression  occurs  in  response  to  spinal  cord  injury  in  rats.  It  was  assumed  that  this 
 fact  might  be  related  to  the  subsequent  death  of  neurons.  At  the  same  time, 
 accumulations  of  this  protein  are  detected  on  histological  sections  of  nerve  fibers  at 
 the  site  of  injury  (Cheng  et  al.,  2008).  This  result  may  confirm  the  formation  of 
 NOS1AP  aggregates  in  vivo,  as  well  as  their  neurotoxic  effect.  In  addition,  there  is 
 evidence  allowing  to  link  NOS1AP  with  neurodegeneration  in  the  development  of 
 Huntington's  and  Alzheimer's  diseases  (Wang  et  al.,  2016).  Furthermore  ,  it  has 
 recently  been  shown  that  an  increase  in  NOS1AP  induces  tau  protein  aggregation  as 
 well  as  neurodegeneration  (Hashimoto  et  al.,  2019).  Finally,  the  ability  of  this  protein 

 31 

https://onlinelibrary.wiley.com/doi/10.1111/jnc.13857#jnc13857-bib-0038


 to  directly  interact  with  alpha-synuclein  allowed  us  to  assume  that  NO  signaling 
 could  be  involved  in  the  pathogenesis  of  synucleinopathies.  The  aim  of  this  project 
 was  to  evaluate  changes  in  expression  level  of  the  NOS1AP  gene  and  other 
 NO-signaling genes in brain samples from patients with synucleinopathies. 

 Materials and methods 

 Four  sets  of  RNA  sequencing  data  of  patients  with  synucleinopathies  were 
 selected  from  the  open  SRA  database:  i)  SRP058181  ,  Brodmann  area  prefrontal 
 cortex,  Parkinson’s  disease  (n=29),  control  (n=42);  ii)  SRP148970,  substantia  nigra, 
 ventral  tegmental  area  (VTA),  Parkinson’s  disease  (n=5),  control  (n=18),  iii) 
 SRP215213,  putamen,  multiple  system  atrophy  (n=10),  control  (n=12),  iv) 
 SRP324001,  anterior  cingulate  cortex,  dementia  with  Lewy  bodies  (n=7),  Parkinson’s 
 disease  (n=7),  Parkinson’s  disease  with  dementia  (n=7),  control  (n=7).  Available 
 metadata  of  samples,  such  as  gender  and  age  of  patients,  were  extracted  from  SRA 
 database  and  corresponding  publications  .  The  quality  of  raw  reads  was  assessed  in 
 FastQC  v0.11.5  (Andrews,  2010)  and  summary  reports  were  created  in  MultiQC 
 v1.12  (Ewels  et  al.,  2016).  Alignment  against  the  GRCh38  human  genome  was 
 performed  with  STAR  v2.7.10a  (Dobin  et  al.,  2013)  using  GeneCounts  option. 
 Principal  component  analysis  (PCA)  with  rlog  transformed  counts  was  performed  to 
 confirm  the  clustarization  of  groups.  Two  protocols  were  used  to  deal  with  technical 
 replicates,  where  ones  were  summarized  or  averaged,  neither  of  which  affecting 
 results  obtained  in  further  analysis.  Variant  calling  in  genes  associated  with 
 synucleinopathies  (SNCA,  LRRK2,  GBA,  PRKN)  was  performed  via  S  amtools  htslib 
 1.10.2-3  (Danecek  et  al.,  2021).  Clinical  significance  of  mutations  was  assessed  with 
 Ensembl Variant Effect Predictor (VEP) (  McLaren et  al., 2016  ). 

 DESeq2  library  (Love  et  al.,  2014)  was  chosen  to  perform  differential 
 expression  analysis  with  Log2FoldChange  (lfc)  correction  using  apeglm  method  (Zhu 
 et  al.,  2019).  The  following  thresholds  for  significant  differential  expression  were 
 chosen:  s-value  <  0.005,  |lfc|  >  1.  Lists  of  genes  with  significantly  changed 
 expression  were  uploaded  to  Gene  Ontology,  gsea  and  kobas  databases  to  reveal  main 
 signaling  pathways  upregulated  and  downregulated  in  synucleinopathies.  The 
 EnchancedVolcano  (Blighe  et  al.,  2019)  and  VennDiagram  R  packages  were  used  to 
 draw volcano plots and Venn’s diagrams, respectively. 

 To  reveal  expression  changes  of  certain  genes  we  used  the  table  with  normalized 
 counts  corrected  for  library  size.  Normalized  counts  for  NOS1AP  were  compared  in 
 controls  and  patients  independently  within  four  datasets  (Mann-Whitney  test)  using 
 GraphPad  Prism  8  v8.0.0.  To  reveal  other  genes  of  NO-signaling  with  changed 
 differential  expression,  the  list  of  NO  related  genes  was  obtained  from  Gene 
 Ontology  by  the  key  word  “nitric  oxide”  and  crossed  with  the  lists  of  genes  with 
 significantly changed expression from each of brain tissues. 
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 Results and Discussion 

 PCA  analysis  of  differential  expression  data  obtained  from  four  RNA  seq 
 datasets  has  revealed  two  outliers  in  SRP058181  dataset,  which  were  excluded  from 
 the  analysis.  No  clinically  significant  variants  (according  to  the  ClinVar  database) 
 were  found  within  variant  calling,  and  stratification  of  patients  by  sex  and  age  did  not 
 change the pattern of group clustering assessed by the PCA. 

 Our  analysis  revealed  the  following  rates  of  differential  expressed  genes 
 (DEGs):  0.3%  (SRP058181,  Parkinson’s  disease  (PD),  prefrontal  cortex);  1.0%  and 
 1.1%  (SRP148970,  substantia  nigra  and  ventral  tegmental  area  (VTA),  respectively); 
 0.1%,  0.008%,  0.04%  (SRP324001,  PD,  PD  with  dementia,  and  dementia  with  Lewy 
 body,  respectively),  1.8%  (SRP215213,  multiple  system  atrophy,  putamen). 
 According  to  GO  terms,  biological  processes  significantly  altered  in  analyzed 
 samples,  were:  i)  response  to  unfolded  protein,  response  to  topologically  incorrect 
 protein,  cellular  response  to  ultraviolet  in  Parkinson’s  disease,  Brodmann  area  9, 
 prefrontal  cortex  (  SRP058181  );  ii)  cytoskeletal  protein  binding,  negative  regulation 
 of  cell  death  in  Parkinson’s  disease,  substantia  nigra;  protein  containing  complex 
 organization,  intracellular  transport,  nitrogen  compound  transport  in  Parkinson’s 
 disease,  VTA  (SRP148970)  ;  iii)  cellular  response  to  copper,  cadmium,  zinc  ions, 
 inflammatory  response,  negative  regulation  of  transport,  specification  of  symmetry, 
 aerobic  respiration,  regulation  of  transcription  by  RNA  polymerase  II  in  multiple 
 system  atrophy  ,  putamen  (SRP215213).  No  biological  processes  were  found  to  be 
 altered in gene enrichment analysis of  SRP324001 dataset  (anterior cingulate cortex). 

 Expression  of  NOS1AP  did  not  differ  significantly  in  brain  tissues  of  patients 
 with  synucleinopathies,  although  a  decrease  in  expression  is  observed  in  prefrontal 
 cortex  (p  =  0.08)  and  substantia  nigra  (p  =  0.09)  of  patients  with  Parkinson's  disease, 
 as  well  as  in  the  anterior  cingulate  cortex  (p  =  0.142  )  in  patients  with  dementia  with 
 Lewy  bodies.  However,  among  the  obtained  differentially  expressed  genes,  genes 
 involved  in  NO  signaling  were  found:  i)  FOXJ1,  LINC01338,  KCNE4,  HSPA1B_4, 
 HSPA6,  HSPA1B_2  in  Parkinson’s  disease,  Brodmann  area  9,  prefrontal  cortex 
 (  SRP058181  );  ii)  DNM3,  SNTG1,  JAK2  in  Parkinson’s  disease,  substantia  nigra 
 (SRP148970);  iii)  IFNG,  TLR2,  SPR,  CCL2,  CD36,  AQP1  in  multiple  system 
 atrophy,  putamen  (SRP215213)  iv)  TNFSF12,  ADH5  in  Parkinson’s  disease,  VTA 
 (SRP324001). 

 Obtained  Venn's  diagram  showed  that  only  a  few  common  differentially 
 expressed  genes  were  found  for  different  tissue  types;  patterns  of  DEGs  differed 
 tissue- and disease-specifically. 

 Thus,  the  results  of  our  work  demonstrate  that  the  expression  of  some  genes 
 involved  in  NO  signaling  significantly  changes  in  patients  with  synucleinopathies. 
 The  possible  role  of  these  genes  and  their  products  in  the  pathogenesis  of  these 
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 diseases  requires  further  study.  It  has  been  also  shown  that  the  differential  expression 
 of  genes  in  synucleinopathies  is  tissue-specific,  since  an  almost  unique  set  of 
 differentially  expressed  genes  was  obtained  for  the  transcriptome  of  each  studied 
 brain  area.  However,  it  should  be  pointed  out  that  this  result  requires  further 
 verification using new data with greater sample size. 
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 Non-small-cell  lung  carcinoma  (NSCLC)  is  any  type  of  epithelial  lung  cancer 
 other  than  small-cell  lung  carcinoma.  NSCLC  accounts  for  about  85%  of  all  lung 
 cancers  and  is  known  to  be  relatively  insensitive  to  chemotherapy,  comparing  to 
 small-cell carcinoma [1, 2]. 

 NSCLC  employs  multiple  ways  to  avoid  apoptosis  and  gain  chemoresistance, 
 that  makes  the  treatment  more  challenging  [3].  But  despite  broad  interest  and  active 
 research  in  this  area,  the  progress  with  identifying  the  effective  treatment  is  still 
 limited. 

 One  of  the  molecular  characteristics  of  NSCLC  is  a  frequent  loss  of  the 
 tumor-suppressor  kinase  LKB1  (liver  kinase  B1).  LKB1  is  known  for  its  ability  to 
 induce  apoptosis,  regulate  cell  polarity  and  differentiation  and  suppress  the  growth, 
 invasion, and metastases of tumor cells [4, 5]. 

 Although  the  inhibition  of  tumor-suppressors,  such  as  LKB1,  gives  an  advantage 
 in  avoiding  the  apoptosis,  it  also  affects  the  normal  pathways  and  thus  the  tumor  cells 
 may  have  to  rely  on  alternative  means  of  survival.  This  gives  us  an  opportunity  to 
 identify  effective  targets  in  these  alternative  pathways  that  we  can  inhibit  and  by  this 
 affect  only  tumor  cells  without  damaging  normal  tissues  [6],  an  approach  commonly 
 referred to as synthetic lethality. 

 The  main  goal  of  this  project  was  to  identify  genes  in  alternative  pathways  of 
 cancer  survival  in  condition  of  LKB1  loss  and  analyze  identified  genes  for  their 
 safety and success as potential drug target candidates. 

 To  discover  these  alternative  pathways,  open  data  from  DepMap  (the  Broad 
 Institute  cancer  Dependency  Map  project,  version  22Q1)  and  TCGA  (Cancer 
 Genome Atlas Project) databases with defective and functional LKB1 was compared. 

 In  Phase  1  the  data  on  sensitivity  to  genetic  targeting  (survival  of  cell  lines  under 
 condition  of  knockout  by  shRNA  or  CRISPR),  mutations  and  gene  expression  in 
 cancer  cell  lines  from  the  DepMap  project  was  analyzed.  Lung  cancer  cell  lines  were 
 divided  into  2  groups:  NSCLC  cell  lines  with  loss  of  LKB1  (LKB1-)  and  all  other 
 types  of  lung  cancer  cell  lines  with  functional  LKB1  (LKB1+).  NSCLC  cell  lines 
 insensitive  to  LKB1  knockout  and  with  either  reduced  expression  or  damaging 
 mutations  in  LKB1  ,  were  determined  as  LKB1-  group.  In  the  obtained  two  groups  of 
 cell  lines,  expression  and  sensitivity  to  knockout  was  compared  for  each  gene, 
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 excluding  cell  lines  containing  damaging  mutations  in  these  genes.  As  a  result  of 
 Phase  1  analysis,  4  candidate  genes  were  identified:  ONECUT3  (EntrezGene  ID: 
 390874),  AHR  (EntrezGene  ID:  196),  ERF  (EntrezGene  ID:  2077),  and  NR2F6 
 (EntrezGene ID: 2063). 

 In  Phase  2  of  the  project,  the  clinical  data  from  the  TCGA  database  was 
 explored.  The  cases  from  the  TCGA-LUAD  project  (lung  adenocarcinoma)  with 
 “lung” primary site were taken into analysis. 

 The  clinical  data  was  divided  by  mutation  status.  Cases  containing  damaging 
 mutations  in  the  LKB1  gene  were  identified  as  the  LKB1-  cohort,  while  all  other 
 cases  -  as  the  LKB1+  cohort.  Gene  expression  was  compared  between  cohorts  using 
 the  RNA-seq  data.  As  a  result  of  the  analysis  and  comparison  of  clinical  data,  one 
 candidate gene (  NR2F6  ) obtained in the Phase 1 of  the project, was confirmed. 

 The  goal  of  Phase  3  was  to  deeply  analyze  the  results  of  the  first  two  phases  of 
 the project using literature search and scientific databases. 

 The  results  of  literature  analysis  supported  the  role  of  NR2F6  as  a  novel 
 therapeutic  target  for  lung  adenocarcinoma  treatment.  The  inhibition  of  NR2F6  was 
 shown  to  suppress  proliferation,  migration  and  invasion  of  lung  adenocarcinoma  [7, 
 8]. 

 Despite  the  fact  that  other  candidate  genes  from  Phase  1  were  not  confirmed  by 
 clinical  data,  there  are  multiple  studies  showing  a  significant  role  of  the  AHR  [9,  10] 
 and  ERF  [11,  12]  genes  in  the  development  of  lung  adenocarcinoma.  And  thus,  these 
 genes  might  also  constitute  promising  drug  target  candidates  in  the  context  of  LKB1 
 loss. 

 To  identify  the  molecular  pathways  affected  by  the  loss  of  LKB1  in  NSCLC,  the 
 following analysis was performed: 

 -  detection  of  the  overexpressed  genes  associated  with  the  loss  of  LKB1  (548 
 genes were detected); 

 -  identification  of  the  common  group  of  downstream  genes  indirectly  regulated 
 by  both  LKB1  and  the  confirmed  candidate  gene,  NR2F6,  using  MetaCore™  network 
 reconstruction toolkit (61 genes were identified); 

 -  the  GO  process  enrichment  analysis  was  made  for  both  gene  sets 
 (overexpressed  genes  and  common  downstream  genes)  and  the  resultant  GO 
 processes were overlapped to obtain the intersection. 

 As  a  result  of  the  intersection,  13  common  processes  were  identified  that  might 
 be  grouped  into  3  logical  high-level  groups  of  processes  associated  with:  cellular 
 response, regulation of cellular metabolism and regulation of apoptosis: 

 ●  response to organic substance 

 ●  cellular response to chemical stimulus 
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 ●  response to oxygen-containing compound 

 ●  cellular response to organic substance 

 ●  response to endogenous stimulus 

 ●  response to lipid 

 ●  positive regulation of biological process 

 ●  cellular nitrogen compound biosynthetic process 

 ●  positive regulation of cellular process 

 ●  positive regulation of metabolic process 

 ●  negative regulation of biological process 

 ●  regulation of cell death 

 ●  regulation of apoptotic process 

 Thus,  the  processes  that  are  affected  by  the  loss  of  LKB1  and  that  are 
 compensated by the increase in the expression of substitute genes were identified. 

 In  conclusion,  the  successfully  confirmed  gene-candidate  NR2F6  is 
 recommended  for  further  research  as  a  drug  target  for  the  NSCLC.  Two  other  genes 
 identified  in  Phase  1  (AHR  and  ERF)  are  also  interesting  candidates  for  future 
 research.  The  identified  commonly  regulated  processes  should  be  taken  into 
 consideration  during  the  future  drug  toxicity  research  and  compensatory  therapy 
 development. 

 Details  on  the  results  and  workflow  can  be  found  in  the  GitHub  repository: 
 https://github.com/Tatiana-kik/NSCLC_dependencies_LKB1  . 
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 Modern  methods  for  in  silico  predicting  the  structure  of  3D  genome  organization 
 are  mostly  based  on  proteins  associated  with  DNA.  These  proteins  are  crucial  factors 
 in  chromatin  formation  and  therefore  in  3D  genome  organization,  but  there  are  a  lot 
 of  information  kept  in  primary  DNA  structure  that  can  be  relevant  to  chromatin 
 formation.  In  this  work  we  tried  to  answer  the  question  whether  DNA  sequence  itself 
 can be a predictor of 3D nuclear structure. 

 Today,  Hi-C  is  considered  a  state-of-the-art  method  for  analyzing  3D  genome 
 organization.  We  chose  to  predict  the  Hi-C  matrix  (degree  of  interaction  between  two 
 sites) as a reflection of the 3D genome. 

 DNA  sequence  contains  a  lot  of  information  such  as  repetitive  DNA,  genes, 
 GC-content,  distance  between  sites,  etc.  It  is  known  that  euchromatin  is  localized  in 
 the  nuclear  interior  and  heterochromatin  at  the  nuclear  periphery,  and 
 heterochromatin  is  made  up  of  repetitive  DNA  mainly  [1].  Formation  of  topologically 
 associating  domains  (TADs)  depends  on  distance  between  different  sites  of  DNA  (if 
 sites  are  close  there  are  most  likely  in  the  same  TAD)  and  sequence  in  DNA,  genes 
 with  similar  function  which  activity  depends  on  the  same  enhancer  more  often  are  in 
 the  same  TAD  [2].  There  is  evidence  that  identical  DNA  sequences  (30-60 
 nucleotides  in  length)  play  a  key  role  in  ectopic  pairing  of  different  chromosomes  of 
 Drosophila  melanogaster  [3].  These  assumptions  allowed  us  to  create  a  program 
 called NAP – 3D genome organization predictor. 

 We  worked  with  the  Anopheles  merus  genome  and  Hi-C  data.  First,  we  used 
 RepeatModeler  and  RepeatMasker  to  annotate  the  genome  for  different  types  of 
 repetitive  DNA  [4].  We  used  Augustus  to  annotate  the  genome  for  genes  and  other 
 structural  elements  [5].  The  Homology  Segment  Analysis  program  was  chosen  to 
 create  a  similarity  matrix  [3].  Having  all  these  data  for  the  genome  of  Anopheles 
 merus  we created a ML-model. 

 This  model  predicted  the  interaction  between  two  DNA  sites  in  the  nucleus, 
 based  only  on  data  that  can  be  obtained  from  the  primary  DNA  sequence.  We  have 
 built  a  table,  each  row  of  which  contains  information  about  different  types  of 
 repetitive  DNA,  gene  annotation  and  other  structural  elements  annotation  in  two  bins 
 (sites),  as  well  as  information  about  the  degree  of  homology  between  them.  Gradient 
 boosting  was  chosen  as  the  machine  learning  method,  namely  the  catboost  library  [6]. 
 We  trained  and  tested  all  ml-models  at  the  beginning  on  chromosome  2R  of 
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 Anopheles  merus  ,  which  contains  many  repeats,  and  then  tested  it  on  chromosome  3L 
 of  Anopheles  merus  .  We  have  built  a  binary  classification  model  that  predicts  either 
 the  presence  or  absence  of  interaction  between  2  bins,  while  obtaining  an  f1-score 
 equal  to  0.88.  We  also  divided  the  range  of  interaction  values  into  4  classes:  no 
 interaction,  low  interaction,  medium  interaction,  high  interaction.  After  that,  we  built 
 a multiclass classification model that covers one of these 4 classes. 

 Among  the  results  of  the  model  analysis,  it  can  be  noted  that  with  an  increase  in 
 the  distance  between  the  bins,  the  degree  of  interaction  decreases.  We  also  noticed 
 that  the  length  of  the  coding  region  and  the  degree  of  homology  in  bins  positively 
 correlates  with  the  degree  of  interaction.  On  this  model,  for  these  4  classes  of 
 interactions,  we  got  f1-score:  not:  0.96,  little:  0.63,  middle:0.79,  high:  0.84.  The 
 regression  model  ignores  all  features  except  the  distance  between  the  bins,  which  is 
 conceptually wrong - which we are going to fix in the future. 

 Summing  up,  we  can  say  that  the  primary  DNA  sequence  is  certainly  a 
 qualitative predictor of the 3D organization of chromatin. 

 Repetitive  elements,  encoding  regions  and  the  degree  of  homology  play  an 
 important role in chromatin interactions. 
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 The  development  of  multiplex  target  panels  for  polymerase  chain  reaction 
 means  that  highly  specific  primers  are  designed  to  minimize  the  number  of  amplicons 
 for  target  regions.  The  panels  are  always  validated  in  vitro  ,  but  in  silico  validation 
 would improve the existing pipeline. 

 The  goal  of  this  project  was  to  test  the  existing  tool  called  DegenPrimer,  which 
 was  initially  developed  to  use  on  small  prokaryotic  genomes  and  small  amount  of 
 primers,  and  try  to  adjust  it  for  in  silico  validation  of  designed  target  panels  and  check 
 the output correlation with the real data. 

 DegenPrimer,  developed  in  2015  by  Evgeniy  Taranov 
 (  https://github.com/allista  ),  performs  sophisticated  analysis  of  degenerate  primers, 
 including  calculation  of  melting  temperatures,  prediction  of  stable  secondary 
 structures  and  primer  dimers,  cycle-by-cycle  PCR  simulation  with  any  number  or 
 primers  and  matrices,  primer  specificity  checks  with  automated  BLAST  queries  and 
 consequent  PCR  simulation  using  BLAST  results  as  matrices,  simulation  of 
 electrophoresis and automated optimization of PCR conditions. 

 We  successively  launched  the  tool  on  two  pools  of  primers  and  an  amplicons 
 sequence,  gene  (CFTR)  and  chromosome  (7th  chromosome)  with  additional 
 pseudogene  sequence  from  the  20th  chromosome.  To  primarily  check  the  accuracy  of 
 the  tool  alignment  mechanism  and  search  engine,  we  launched  the  tool  also  using 
 BLAST  queries  to  the  NCBI  database.  Then  we  compared  the  results  of  the 
 DegenPrimer  predictions  with  our  real  lab  data  and  checked  correlation  between  the 
 concentrations of the products and the amplicons coverage profiles. 

 Our  results  show  that  the  predicted  primers,  duplexes  and  PCR  products  do  not 
 fully  match  the  real  data  -  the  accuracy  of  the  predictions  varied  from  60  to  75%. 
 When  using  real  primers  concentrations  for  the  analysis,  the  tool  predicts  quick  and 
 full  saturation  of  the  system,  which  is  not  confirmed  by  the  laboratory  data.  We  did 
 not  find  any  correlation  between  the  predicted  product  concentrations  and  amplicons 
 coverage  profiles.  Consequently,  it  was  decided  that  this  tool  is  not  suitable  for  in 
 silico  validation of the multiplex target panels. 
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 Motivation 

 There  are  several  public  databases  that  collect  data  on  clinically  relevant  genetic 
 variants  that  cause  phenotype  changes  and  monogenic  disease.  Of  these,  ClinVar  is 
 the  most  widely  used  database.  Variants  in  the  coding  regions  of  the  human  genome, 
 especially  missense  substitutions,  are  the  most  common  cause  of  genetic  pathology. 
 However,  not  all  clinically  significant  variants  have  been  identified  and  described. 
 This  complicates  the  identification  of  the  molecular  cause  of  a  genetic  disorder  in 
 people  with  a  suspected  hereditary  disease.  Given  this  limitation,  we  aimed  to  create 
 a  tool  for  generation  possible  new  pathogenic  variants  in  well-known  disease  genes 
 (from  the  OMIM  database)  by  creating  a  comprehensive  list  of  all  single-nucleotide 
 variants  that  results  in  the  same  amino  acid  substitution  as  known  pathogenic 
 variants.  This  tool  expands  the  list  of  possible  pathogenic  variants  and  can  be  used  to 
 improve the molecular genetic diagnosis of hereditary diseases. 

 Materials and methods 

 For  this  project  we  used  publicly  available  software  (Ensembl  Variant  Effect 
 Predictor  (VEP)  [1],  IGV  2.11.9  [4])  and  databases  (ClinVar  [2],  OMIM  [3], 
 gnomAD  2.1.1  [5])  and  own  Python  script.  The  script  is  available  at 
 https://github.com/OxanaKolpakova/new_SNP  . 

 The  VCF  file  provided  by  ClinVar  (GRCh38-based)  has  been  VEP-annotated 
 with  the  following  flags:  --cache  --refseq  --canonical  (12858671  annotations  were 
 obtained).  Using  a  Python  script  we  extracted  variants  in  OMIM  genes  that  were 
 missense  variants  in  canonical  isoforms.  The  resulting  dataset  contained  the 
 following  numbers  of  variants  by  pathogenicity  class:  pathogenic  -  2420,  likely 
 pathogenic  -  2750,  benign  -  1510,  likely  benign  -  2367,  others  -  54336.  A  custom 
 script  was  used  for  creation  of  new  missense  variants  leading  to  the  same  amino  acid 
 substitution as known ones (63383 variants were created) 

 Results and Discussion 

 We  created  the  tool  for  generation  of  possibly  pathogenic  variants  that  lead  to 
 the  same  amino  acid  substitutions  as  known  ones.  The  script’s  accuracy  was  validated 
 on coordinates of reference SNPs by visual inspection in IGV. 

 44 

https://github.com/OxanaKolpakova/new_SNP


 New  clinically  significant  variants  belonged  to  the  following  classes  (according 
 to  the  source  variant’s  class):  benign  -  815,  likely  benign  -  1609,  pathogenic  -  876, 
 likely  pathogenic  -  994.  The  mean  gnomAD  frequency  of  generated  possibly 
 pathogenic  and  likely  pathogenic  variants  was  significantly  lower  than  of  possible 
 new  benign  and  likely  benign  variants:  0.035,  0.05  and  0.005,  0.0001,  respectively. 
 This  indicates  that  selection  is  directed  against  these  variants,  validating  their 
 possible role in hereditary diseases 

 New  generated  SNPs  could  increase  the  accuracy  of  molecular  genetic  diagnosis 
 of  diseases  associated  with  OMIM  genes.  This  tool  can  be  used  to  create  missense 
 SNPs for other gene lists and variant databases, such as HGMD. 

 In  the  future,  we  plan  to  expand  the  capabilities  of  the  tool  by  improving 
 handling  of  the  exon/intron  boundaries,  DNA  strand,  and  splicing.  We  are  also 
 planning to apply the script to real medical data to identify new pathogenic SNPs. 
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 Genetic  protein  truncation  variants  (PTVs)  often  lead  to  diseases  if  the  protein  is 
 functionally  important.  Catalogs  of  human  exome  and  genome  variation  have  been 
 recently  constructed,  which  is  of  great  importance  in  clinical  diagnostic:  for  example, 
 these  resources  could  be  used  to  find  clinically  significant  genes  as  such  genes  are 
 typically  enriched  with  de  novo  mutations  and  have  a  low  frequency  of  PTVs  in  the 
 population  (Cassa  et  al.,  2017).  At  the  same  time,  confident  classification  of  PTVs  as 
 pathogenic  is  compromised  by  the  fact  that  PTV  variants  are  also  found  in  large 
 numbers  in  healthy  people's  genomes.  Approaches  based  on  the  search  for  genes  that 
 do  not  tolerate  the  presence  of  PTV  allow  to  identify  potentially  harmful  mutations: 
 the  absence  of  functional  variants  may  indicate  the  presence  of  evolutionary 
 constraint  leading  to  the  removal  of  such  variants  from  the  population  by  purifying 
 selection. 

 In  this  work,  we  focused  on  genes  that  could  not  be  accurately  classified  as 
 conserved  (that  is,  under  selection)  or  non-conserved  (that  is,  free  from  selection). 
 These  mostly  comprise  cases  when  non-conserved  regions  are  found  in  relatively 
 conserved  genes.  This  work  is  devoted  to  implementation  of  algorithm  to  the  search 
 for  such  sequences.  We  built  a  hidden  Markov  model  (HMM),  which  allows  to 
 determine  the  degree  of  conservation  of  individual  regions  of  the  protein-coding 
 sequence (CDS). 

 HMM  is  a  statistical  model  in  which  a  system  is  represented  as  a  Markov 
 process  with  hidden  states  generating  observable  states.  For  the  sake  of  simplicity,  we 
 have  built  a  model  in  which  only  two  states  are  possible:  conserved  (  Cons  )  and 
 non-conserved  (  Not  )  (in  the  future,  the  number  of  states  can  be  increased).  We  divide 
 the  CDS  of  a  gene  into  regions  of  fixed  length  (windows).  We  did  not  fix  window 
 size for all genes, because the length of genes varies greatly. . 

 We  choose  the  PTVs  allele  count  per  window  obtained  from  the  gnomAD 
 database  v.2.1.1  (Karczewski  et  al.,  2020),  ,  as  observations  in  this  model  (since  it  is  𝑛 
 finite,  we  can  consider  this  quantity  discrete).  To  assess  the  constraint,  we  used  an 
 estimation  of  the  selective  effect  against  heterozygous  PTVs  (  )  that  considers  for  𝑠 

 ℎ𝑒𝑡 
 each  region  the  observed  count  of  protein  truncation  variants  (PTV)  ,  the  allele  𝑛 
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 number  or  sample  size  (  ),  and  the  expected  mutation  rate.  The  mutation  rate  was  𝑁  𝑈 
 calculated  considering  the  trinucleotide  context  for  each  codon.  The  choice  is 
 motivated  by  earlier  findings  published  by  Samocha  et  al.,  2014,  who  showed  that  the 
 best  context  for  determining  the  variability  of  a  single  nucleotide  is  the  inclusion  of 
 both  5’  and  3’  flanking  nucleotides.  We  used  mutation  frequencies  for  each  possible 
 variant  (G,  T,  C  for  A),  specified  in  Supplement  Materials  to  the  work  of  Karczewski 
 et  al.,  2020.  For  each  nucleotide  in  the  window,  we  considered  all  three  possible 
 substitutions.  If  the  corresponding  substitution  leads  to  a  PTV,  its  expected  rate  in  a 
 given trinucleotide context is summed up to yield per-window value of  U  . 

 Similarly,  to  the  work  of  Cassa  et  al.,  2017,  we  assumed  the  observed 
 distribution of PTV counts across  -th region:  𝑖 

 𝑃 ( 𝑛 
 𝑖 
    |     α ,     β ; ν

 𝑖 
)   = ∫  𝑃 ( 𝑛 
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 |  𝑠 
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 Further,  because  PTV  mutations  are  rare  events  for  genes  under  negative 

 selection,  observed  numbers  of  PTV  obey  a  Poisson  distribution: 
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 by  inversive  Gaussian  distribution  with  mean  and  shape  parameters  𝐼𝐺 ( 𝑠 
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;  α ,     β ) α β
 which  calculated  for  the  gene  as  a  whole.  using  gnomAD  data  (values  were  taken 
 from Skitchenko et al., 2020). 

 Thus, 
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 where  for  and  for  .  𝑎 ,     𝑏    = [ 0 ,        0 .  01 ]    𝑘 =  𝑁𝑜𝑡  𝑎 ,     𝑏    =    [ 0 .  01 ,     1 ]  𝑘 =  𝐶𝑜𝑛𝑠 
 The  choice  of  such  values  is  also  due  to  the  results  obtained  in  the  work  Cassa,  et  al., 
 2017. 

 Since  we  had  no  assumptions  about  the  transition  probabilities,  we  used  the 
 Baum–Welch  algorithm  to  find  transition  probabilities  corresponding  to  the 
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 maximum  likelihood  of  the  model.  The  decoding  of  the  path  of  states  was  carried  out 
 using  the  Viterbi  algorithm,  it  consists  in  finding  a  path  that  also  meets  the  maximum 
 likelihood of the model. 

 As  a  result,  we  implemented  a  complete  pipeline  for  finding  conserved  regions 
 for  one  gene  using  Snakemake  v6.10.0  (Köster  et  al.,  2021).The  algorithm  was  tested 
 on  a  set  of  genes:  mostly  conserved,  mostly  non-conserved,  presumably  possessing 
 non  conserved  regions.  Household  genes,  for  which  there  is  a  high  degree  of 
 constraint  were  selected  as  conserved  genes  (  TOP2A,  HSPB8  ).  The  genes  listed  as 
 genes  with  protein  changing  signature  in  the  PopHumanScan  catalog  (Murga-Moreno 
 et  al.,  2019)  were  selected  as  genes  with  high  variability  (like  ZNF69  ).  The  genes  that 
 were  found  earlier  in  the  work  of  Skitchenko  et  al.,  2020  were  selected  as  genes  with 
 non-conserved regions (  ARFGEF1, PAX3, GDNF  ). 

 Algorithm  successfully  solves  the  first  two  cases  and  turns  out  to  be  less 
 sensitive  for  the  third:  in  the  case  of  many  alleles,  the  algorithm  with  the  specified 
 parameters  copes  with  finding  the  most  non-conserved  region.  In  the  future,  we  plan 
 to  find  a  more  rigorous  approach  to  transition  probabilities  in  the  model,  and  improve 
 handling of regions where no PTV is observed. 
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 Introduction 

 Over  the  last  decade,  the  emergence  of   in  silico   tools  has  paved  the  way  to 
 rational  drug  discovery.  A  number  of  computational  protocols  have  been  developed 
 for  de  novo  design  of  high-affinity  binders  based  on  target  structure  alone.  In 
 response  to  COVID19  pandemic,  these  methods  were  used  to  engineer  mini-proteins 
 (MPs)  capable  of  blocking  the  receptor-binding  domain  of  spike  protein  from  the 
 wild-type  virus  (RBD-wt).  However,  since  the  initial  discovery  a  number  of 
 SARS-CoV-2  variants  have  emerged,  including  some  highly  transmissible  strains  that 
 proved  responsible  for  millions  of  deaths  around  the  globe.  In  this  study,  we  provide 
 the  computational  scheme  to  assess  the  binding  affinity  of  the  most  promising 
 mini-proteins,  MP1  and  MP3,  against  the  RBD  of  the  newer  variants  of  coronavirus, 
 delta+  and  omicron.  For  this  purpose,  we  applied  the  well-established  protocol  based 
 on  molecular  mechanics/generalized  Born  surface  area  (MM/GBSA)  method  to 
 calculate  the  difference  in  binding  energy  ΔΔG  between  RBD  of  the  new  variants 
 (delta+,  omicron)  and  RBD-wt  in  complex  with  MP1  or  MP3.  As  a  step  further,  we 
 also  proposed  the  optimized  version  of  MP3  carrying  a  single  point  mutation  D37R, 
 which  shows  increased  affinity  to  RBD-delta+.  This  suggestion  is  supported  by  ΔΔG 
 predictions  using  Flex  ddG  module  from  the  modeling  suite  Rosetta,  as  well  as  by 
 MM/GBSA calculation using Amber 20 platform. 

 Methods 

 The  starting  coordinates  for  complexes  of  MP1  and  MP3  with  the  RBD-wt 
 have  been  taken  from  the  PDB  structures  7JZU  and  7JZM,  respectively.  To  produce 
 models  of  complexes  of  MP1  and  MP3  with  newer  RDB  variants  (delta+,  omicron), 
 we  performed  in  silico  mutagenesis  using  Biobb  python  library  (v  3.9.4).  All 
 coordinates  were  than  regularized  by  geometry  minimization  tool  from  the  Phenix 
 software  (v  1.19.2).  The  resulting  models  were  used  to  start  molecular  dynamic  (MD) 
 trajectories  in  TIP4P-Ew  water.  All  trajectories  were  recorded  under  ff14SB  force 
 field  using  Amber  20  MD  simulation  package.  The  simulations  were  conducted  using 
 NPT  ensemble  with  Bussi  thermostat.  The  length  of  each  trajectory  was  1.5  μs.  All 
 complexes  modeled  in  this  study  remain  structurally  unchanged  during  the  course  of 
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 simulations  (rmsd  of  C  α  atomic  coordinates  does  not  exceed  ~2Å).  The  first  500  ns  of 
 each  trajectory  were  interpreted  as  an  equilibration  period  and  discarded.  The  1000 
 frames  from  the  remaining  part  of  each  trajectory  (500-1500  ns)  were  used  as  an 
 input  for  MM/GBSA  calculations.  The  MD  data  were  extracted  from  the  restart  files, 
 unwrapped  and  centered  by  means  of  CPPTRAJ  utility  of  Amber.  The  topology  files 
 were  prepared  using  ante-MMPBSA.py  script  from  the  Amber  suite.  Free  energy 
 calculations  using  implicit  solvent  GBNeck2  (igb=8)  with  atomic  radii  set  mbondi3 
 were  conducted  using  the  script  MMPBSA.py  (employing  the  solvent  dielectric 
 constant  of  80,  surften  parameter  of  0.0072  kcal·mol  -1  ·Å  -2  and  salt  concentration  150 
 mM).  Finally,  a  pairwise  energy  decomposition  was  conducted  using  the  option 
 idecomp=4 in MMPBSA.py with the goal to identify key binding interactions. 

 To  optimize  the  sequence  of  MP1  and  MP3  proteins  for  stronger  binding  to 
 RBD-delta+  or  RBD-omicron,  we  used  the  in  silico  saturation  mutagenesis  as 
 implemented  in  the  Flex  ddG  protocol  of  Rosetta.  The  protocol  was  used  with  default 
 settings (35 structures, 35,000 backrub steps). 

 Structure  manipulations,  analyses  and  visualization  were  aided  by  in-house 
 python  scripts,  employing  the  libraries  pyxmolpp2  (v  1.6.0)  and  amber-runner  (v 
 0.0.8),  as  well  as  in-house  library  md-utils,  which  is  an  extension  of  pyxmolpp2  with 
 a number of additional functions for structure analyses. 

 Results 

 Our  MM/GBSA  calculations  predict  a  significant  drop  in  affinity  of  MP1  to 
 RBD-delta+  as  well  as  RBD-omicron  (ΔΔG  of  12.1  and  24.9  kcal/mol,  respectively). 
 The  pairwise  residue  energy  decomposition  has  revealed  that  the  weakened  binding 
 of  MP1  to  RBD-delta+  is  mainly  due  to  mutation  K417N.  This  mutation  causes  a  loss 
 of  the  two  salt  bridges,  involving  residues  R403  and  K417  on  the  target  side  and 
 residue  D30  on  the  ligand  side.  In  addition  to  K417N  mutation,  the  RBD-omicron 
 carries  several  other  mutations,  of  which  N501Y  has  the  most  pronounced  effect.  The 
 insertion  of  large  aromatic  residue  in  this  position  leads  to  a  slight  shift  of  MP1 
 relative  to  RBD.  As  a  result,  the  geometry  of  all  contacts  changes  and  they  generally 
 become  less  favorable.  The  saturation  mutagenesis  scan  using  Flex  ddG  failed  to 
 identify  any  single-point  MP1  mutation  that  could  potentially  improve  its  affinity  to 
 RBD-delta+ or RBD-omicron. 

 As  for  the  MP3  mini-protein,  the  MM/GBSA  calculations  predict  only  a 
 moderate  decrease  in  binding  affinity  to  RBD-delta+  (ΔΔG  =  3.3  kcal/mol).  Pairwise 
 residue  energy  decomposition  suggests  that  the  effect  stems  from  the  RBD  mutation 
 K417N,  which  disrupts  the  original  polar  interaction  with  residue  D11  in  MP3.  Of 
 interest,  in  our  calculations  the  MP3  mini-protein  shows  an  increase  in  binding 
 affinity  to  RBD-omicron  (ΔΔG  =  -4.9  kcal/mol).  This  effect  is  mainly  due  to  Q493R 
 mutation in RBD, leading to a highly stabilizing interaction with residue D37 in MP3. 

 To  improve  the  binding  affinity  of  MP3  to  RBD-delta+,  we  conducted  an  in 
 silico  saturation  mutagenesis  scan  using  Flex  ddG  module  of  the  popular  program 
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 Rosetta.  By  doing  so,  we  have  identified  the  mutation  D37R  that  appears  to  be  one  of 
 the  most  stabilizing  and  does  not  compromise  the  solubility  of  the  mini-protein.  We 
 have  further  investigated  the  binding  of  MP3  (D37R)  to  RBD-delta+  by  means  of  the 
 MD-based  MM-GBSA  analysis.  These  calculations  predicted  a  substantial 
 improvement  in  binding  (ΔΔG  =  -4.8  kcal/mol  for  MP3  containing  D37R  mutation 
 vs.  3.3  kcal/mol  for  the  original-sequence  MP3).  Residue  pairwise  decomposition 
 analysis  indicated  that  the  gain  in  binding  affinity  is  due  to  the  newly  formed  salt 
 bridge, R37-E484. 

 This  work  demonstrates  that  the  integrative  in  silico  approaches  can  be  used 
 for  fast  assessment  and  optimization  of  protein  therapeutic  leads.  In  particular,  the 
 consistency  between  the  predictions  of  Flex  ddG  and  MM/GBSA  methods  give  us  a 
 high  degree  of  confidence  that  these  predictions  are  accurate.  We  currently  plan  to 
 test  this  hypothesis  experimentally  by  measuring  the  binding  affinity  of  MP3  (D37R) 
 to RBD-delta+. 

 This  study  has  been  supported  by  grant  72777155  from  St.  Petersburg  State 
 University. 
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 Analysis of the effects of combinations of single nucleotide polymorphisms 
 within a single codon 
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 Multi-nucleotide  variants  (MNVs)  are  defined  as  clusters  of  two  or  more  nearby 
 variants  existing  on  the  same  haplotype  in  an  individual.  When  variants  in  an  MNV 
 are  found  within  the  same  codon,  the  overall  impact  may  differ  from  the  functional 
 consequences  of  the  individual  variants.  Modern  publicly  available  tools  incorrectly 
 annotate  polymorphisms  in  the  same  codon,  considering  their  contributions 
 independently. It would be useful to create a tool to properly annotate MNVs. 

 The  aim  of  the  study  was  to  create  a  tool  that  correctly  predicts  the  effects  of 
 polymorphisms within a single codon. 

 We  implemented  MNVFinder,  a  command-line  tool  for  searching  MNVs  and 
 annotating  them.  It  reads  a  VEP  annotation  result  in  a  VCF  format  and  creates  a 
 pandas.DataFrame  with  the  data.  Then  it  searches  for  SNPs  within  a  single  codon  and 
 annotates  them  with  their  combined  effect  on  the  coding  sequence.  The  output  is  a  tab 
 file  with  the  annotation  if  the  MNVs.  One  can  also  save  the  tab  files  with  annotated 
 SNPs  which  are  not  found  in  the  same  codon  with  other  SNPs,  as  well  as  wrongly 
 annotated  ones.  We  performed  validation  on  gnomAD  data  (selected  SNPs  with 
 population frequency 5% or more) and ClinVar data (2022-05-07 18:17). 

 The  code  and  all  our  results  can  be  found  in  the  GitHub  repository: 
 https://github.com/Kravchuk-Ekaterina/MNVFinder 
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 Introduction 

 Salmonella  enterica  is  one  of  the  most  common  types  of  enteropathogenic 
 bacteria  on  Earth  with  more  than  2500  serovars.  It  is  known  to  be  the  cause  of 
 nontyphoidal  foodborne  infections  (one  of  four  key  global  causes  of  diarrheal 
 diseases)  and  enteric  fever  in  humans  as  well  as  salmonellosis  in  animals  [1,  2].  In 
 enteric  bacteria,  DNA  supercoiling  is  very  sensitive  to  various  environmental 
 conditions  and  is  a  sensor  of  various  stress  factors.  The  antibiotic  novobiocin  is  an 
 inhibitor  of  the  ATPase  domain  of  DNA  gyrase;  its  action  affects  the  global  topology 
 of  cell  DNA.  The  aim  of  this  work  was  to  study  the  effect  of  novobiocin  on  gene 
 expression  in  Salmonella  enterica  subsp.  enterica  serovar  Typhimurium  str.  14028S  at 
 various  time  points.  To  study  the  dynamics  of  changes  in  gene  expression  under  the 
 influence  of  novobiocin,  weighted  gene  coexpression  network  analysis  was  used  in 
 this  work.  Gene  co-expression  networks  are  increasingly  used  to  explore  the 
 system-level  functionality  of  genes.  The  network  construction  is  conceptually 
 straightforward:  nodes  represent  genes  and  nodes  are  connected  if  the  corresponding 
 genes  are  significantly  co-expressed  across  appropriately  chosen  tissue  samples  [3].  In 
 this  work,  we  studied  the  effect  of  an  antibiotic  that  changes  the  degree  of  DNA  helix, 
 which  triggers  various  intracellular  processes  [4],  so  the  construction  of  gene 
 coexpression networks makes biological sense. 

 Methods and materials 

 Data 

 In  this  work  we  analyzed  publicly  available  RNA-seq  data  of  Salmonella 
 enterica  bacterial  cultures  treated  with  500  µg  of  novobiocin,  as  well  as  control 
 cultures  5  .  Samples  were  taken  at  several  time  points:  0,  10,  20,  60  minutes  for  control 
 samples;  10,  20,  60  minutes  for  samples  treated  with  500  µg  of  novobiocin;  60 
 minutes  for  samples  treated  with  100  µg  of  novobiocin.  For  each  time  point,  3 
 biological  replicates  were  made  with  a  total  of  24  samples.  Analyzed  data  was 
 processed  as  described  in  the  article  of  Gogoleva  et.  al,  2020  [5]  and  checked  for  read 
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 quality  using  FASTQC  version  0.11.9.  During  the  analysis  we  did  not  take  into 
 account  control  samples  at  0  time  point  to  ensure  that  the  time  points  were  equal 
 between  the  novobiocin  treated  group  and  controls.  Thus,  for  further  processing,  a 
 total  of  18  samples  were  examined.  Genome  sequence  of  the  Salmonella  enterica 
 subsp.  enterica  serovar  Typhimurium  strain  14028S  assembly  GCA_000022165.1 
 was  used  as  a  reference 
 (  ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/022/165/GCF_000022165.1_ASM2 
 216v1/GCF_000022165.1_ASM2216v1_genomic.fna.gz  ).  The  genome  sequence  and 
 annotation  file  are  available  at 
 (  https://www.ncbi.nlm.nih.gov/nuccore/NC_016856.1  ). 

 Methods 

 HISAT2  version  2.2.0  was  used  to  build  index  of  the  reference  genome  and  align 
 clean  reads  to  the  genome  with  the  following  parameters:  hisat2  -p  --dta  -x  -U  –S. 
 SAM  files  of  alignments  created  by  HISAT2  were  converted  to  BAM  files  using 
 SAM-tools  sort.  Mapped  reads  were  summarized  at  the  transcript  level  into  a  count 
 matrix  using  the  assembler  of  RNA-Seq  alignments  StringTie  version  2.2.1. 
 Converting  the  alignment  results  to  a  matrix  of  read  counts  mapped  to  particular 
 genomic  features  was  done  using  the  python  script  provided  in  the  StringTie  tutorial 
 (  http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual  ). 

 DESeq2  version  1.34.0  was  used  to  estimate  the  variance  between  groups  of 
 samples  and  repeated  samples  using  principal  component  analysis  (PCA),  as  well  as 
 to  normalize  the  number  of  reads.  DESeq2  analysis  was  performed  for 
 Transcript_counts_matrix.  The  DESeq  object  was  created  using  the  formula:  ~ 
 Treated+Time+Treated:Time.  Genes  with  log2FoldChange  <  1.5  and  FDR  <  0.05 
 were considered significant. 

 The  WGCNA  version  1.70-3  package  has  been  used.  Modules  of  co-expressed 
 genes  were  built;  topological  matrix  type  was  chosen  "signed";  the  power  parameter 
 was  calculated  using  the  pickSoftThreshold()  function  as  the  smallest  one,  at  which 
 the  resulting  network  had  a  similarity  index  with  the  scale-free  network  of  more  than 
 0.8.  The  relationship  of  modules  with  the  time  of  cultivation  and  treatment  with 
 novobiocin  was  determined;  Spearman's  correlation  coefficient  was  used  for 
 calculation.  The  key  genes  (hub  genes)  for  the  modules  associated  with  antibiotic 
 treatment  were  determined  by  relationships  with  the  module's  own  genes  (the  first 
 major  component  for  the  genes  included  in  the  module).  Genes  were  recognized  as 
 key for the module if the correlation with the module's own genes was more than 0.9. 

 ClusterProfiler  version  4.2.2  was  used  to  perform  the  KEGG  enrichment 
 analysis.  The  significance  threshold  for  pathways  was  chosen  as  0.05.  The  modules 
 associated  with  "Treated"  and  "Time"  were  mapped  to  the  chromosome  using  the 
 WoPPER online tool [6]. 
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 To  perform  reproducible  analysis  we  wrapped  the  existing  code  into  snakemake 
 pipeline  [7].  The  full  code  and  results  can  be  found  on  Github 
 (  https://github.com/ValeriiaLadyhina/BI_Project_analysis_of_effect_of-novobiocin_o 
 n_Salmonella.git  ). 

 Results 

 Biological  replicas  cluster  best  with  each  other;  according  to  the  first 
 component,  the  samples  are  best  separated  in  time;  according  to  the  second 
 component,  the  samples  are  separated  by  the  presence  of  novobiocin.  Genes  for 
 which  log2FoldChange  <  1.5  and  FDR  <  0.05  were  considered  insignificant;  a  total 
 of  789  significantly  differentially  expressed  genes  were  identified.  out  of  which  there 
 are  370  upregulated  genes  and  419  downregulated  genes.  The  processed  samples  at 
 the  time  points  of  10  and  20  minutes  and  the  control  samples  at  the  same  time  points 
 were  grouped  into  two  separate  groups  while  both  the  control  and  experimental 
 samples  at  time  point  60  minutes  were  allocated  into  a  separate  group.  The  data 
 demonstrate  an  increase  in  the  similarity  of  gene  expression  profiles  of  treated  and 
 untreated samples at 60 minutes. 

 After  building  the  network  of  gene  co-expression,  10  connected  modules  and  1 
 zero  module  were  defined.  Number  of  genes  in  modules  were  154,  56,  937,  927,  462, 
 425,  294,  179,  176,  72,  and  47.  Modules  associated  with  the  “Treated”  variable: 
 brown,  turquoise,  black,  yellow.  Modules  associated  with  the  “Time”  variable:  green, 
 blue,  red.  Modules  black,  brown,  yellow  with  a  strong  positive  correlation  with  the 
 “Treated” variable were combined into one group by hierarchical clustering. 

 Several  pathways  were  found  in  both  the  DESeq2  assay  and  the  modules 
 associated with novobiocin treatment: 

 ●  C5-Branched dibasic acid metabolism; 
 ●  2-Oxocarboxylic acid metabolism; 
 ●  Two-component system; 
 ●  Ascorbate and aldarate metabolism; 
 ●  Glycolysis / Gluconeogenesis. 

 One  of  the  key  concepts  of  WGCNA  is  the  concept  of  hub  genes;  hub  genes  are 
 genes  that  have  a  large  number  of  connections  with  other  genes  in  the  module  [3]; 
 such  genes  are  most  similar  to  the  module's  eigengene  (first  principal  component)  and 
 they  have  the  greatest  relationship  with  the  variable  under  study;  hub  genes  were 
 considered  to  have  a  correlation  coefficient  with  the  eigengene  of  more  than  0.9.  We 
 obtained  hub  genes  for  modules  associated  with  novobiocin  and  time.  Number  of  hub 
 genes  for  different  modules  were:  black  -  42;  brown  -  167;  yellow  -  108;  turquoise  - 
 284;  red  -  94;  blue  -  147;  green  -  160.  Biological  pathways  identified  by  both 
 DESeq2 and hub genes analysis: 

 ●  C5-Branched dibasic acid metabolism; 
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 ●  2-Oxocarboxylic acid metabolism; 
 ●  Two-component system; 
 ●  Glycolysis / Gluconeogenesis. 

 These  pathways  are  the  most  sensitive  to  novobiocin  treatment;  they  were  used 
 to visualize the dynamics of their expression. 

 The  topological  state  of  DNA  influences  its  affinity  for  some  DNA  binding 
 proteins,  especially  in  DNA  sequences  that  have  a  high  A  +  T  base  content.  For 
 example,  H-NS  nucleoid-associated  transcription-silencing  protein  has  been 
 described  to  bind  to  the  region  of  A  +  T-rich  DNA  into  the  promoter  Pleu-500  [8].  We 
 compared  the  AT  composition  of  the  hub  gene  sequences  associated  with  novobiocin 
 treatment  with  the  AT  composition  of  the  nodal  genes  associated  with  time.  The  AT 
 composition  was  calculated  as  the  sum  of  A  and  T  divided  by  the  length  of  the 
 sequence.  This  value  was  calculated  for  each  gene  from  the  list  of  hub  genes.  The 
 results  for  the  “Treated”  and  “Time”  modules  were  combined.  The  distributions  for 
 the  values  were  significantly  different  from  normal  (p-value  =  2.2e-16  and  p-value  = 
 1.273e-12  for  the  "Treated"  and  "Time"  modules,  respectively;  Shapiro-Wilk  test),  so 
 the  nonparametric  Mann-Whitney  test  was  used.  The  groups  were  significantly 
 different  from  each  other  (p-value  =  6.823e-11),  although  the  difference  between  the 
 means  was  small  (0.496  and  0.470  for  "Time"  and  "Treated",  respectively).  The  slight 
 difference  in  the  AT  composition  can  be  explained  by  the  fact  that  it  is  important  for 
 supercoiling  for  the  promoter  regions  of  genes,  so  we  studied  it  in  the  initial  segments 
 of  the  sequence  using  the  sliding  window  method.  A  "window"  of  30  nucleotides 
 long  (the  approximate  length  of  a  promoter)  was  iteratively  shifted  one  nucleotide 
 from  the  beginning  of  the  gene  sequence.  The  AT  composition  was  calculated  within 
 the  limits  of  the  window  according  to  the  above  method.  For  each  module,  a 
 sequence  of  values  of  the  AT  composition  averaged  for  the  hub  genes  of  the  module 
 within the "window" is calculated. 

 Discussion 

 Salmonella  enterica  is  Gram-negative,  food-borne  pathogen  that  causes  animal 
 and  human  diseases  ranging  from  mild  to  severe  systemic  infections.  It  was  shown 
 that  GyrA  of  Salmonella  enterica  influences  DNA  supercoiling  and  as  the  result 
 affects  expression  of  stress  response  pathways  [9].  In  this  work  we  investigated 
 fluctuations  of  Salmonella  enterica  gene  expression  over  time  under  treatment  by 
 novobiocin  -  an  antibiotic  that  can  relax  DNA  supercoiling  and  by  this  alter  the 
 expression  of  supercoiling-sensitive  genes  .  Biolo  gical  pathways  may  have  different 
 dynamics  over  time.  Two-component  system  genes  increase  their  expression  by  20 
 minutes  with  a  subsequent  decrease.  C5-Branched  dibasic  acid  metabolism  and 
 2-Oxocarboxylic  acid  metabolism  genes  increase  expression  over  time. 
 Glycolysis/Gluconeogenesis  genes  increase  their  expression  over  time  in  control 
 samples,  however,  when  treated  with  novobiocin,  they  do  not  show  any  noticeable 
 dynamics.  Two-component  system  is  a  system  for  perceiving  changes  in  the 
 environment  [10];  this  system  can  also  be  associated  with  a  change  in  supercoiling, 
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 which  also  responds  to  a  large  number  of  stress  stimuli  (pH,  osmotic  composition, 
 etc.)  [11].  The  lack  of  dynamics  in  the  expression  of  glycolysis  pathway  genes  may 
 be  associated  with  the  bacteriostatic  effect  of  novobiocin  (these  processes  are 
 associated  with  anabolic  pathways);  C5-Branched  dibasic  acid  metabolism  and 
 2-Oxocarboxylic  acid  metabolism  may  be  involved  in  some  of  the  signaling  pathways 
 associated with changes in supercoiling. 

 The  co-expression  modules  show  a  diffuse  distribution  along  the  length  of  the 
 chromosome  (mapping  by  WoPPER),  which  may  correspond  to  the  influence  of  a 
 systemic  process,  such  as  a  change  in  supercoiling.  Genes  in  co-expressed  modules 
 are  located  at  significant  distances  from  each  other  (more  than  1Mp).  This  can  be 
 explained  by  the  topology  of  the  chromosome,  but  does  not  exclude  the  influence  of 
 DNA supercoiling on the activation of modules. 

 The  composition  of  A  and  T  in  the  genes  sensitive  to  novobiocin  treatment  was 
 significantly  greater  than  in  the  genes  sensitive  to  time  dynamics  (although  the 
 difference  was  small).  The  averaged  AT  composition  in  the  initial  regions  of  the 
 genes  (the  first  300  nucleotides)  was  higher  in  the  genes  associated  with  novobiocin, 
 although  it  showed  a  similar  distribution  pattern  (graphs  can  be  viewed  in  the  project 
 Gighub  repository 
 https://github.com/ValeriiaLadyhina/BI_Project_analysis_of_effect_of-novobiocin_o 
 n_Salmonella  ).  Thus,  the  AT-composition  of  genes  sensitive  to  novobiocin  treatment 
 significantly  differs  from  other  genes.  This  is  consistent  with  the  data  that  the 
 chemical  composition  of  genes  affects  their  sensitivity  to  DNA  superspiralization  8  . 
 During  transfer,  such  genes  interact  with  other  genes  sensitive  to  superspiralization, 
 which  allows  them  to  be  included  in  regulatory  networks.  This  can  play  a  big  role  in 
 changing  the  functioning  of  cells.  Therefore,  the  identification  of  genes  sensitive  to 
 DNA  superspiralization  can  be  a  useful  tool  for  studying  the  adaptability  of 
 organisms.  The  determination  of  AT-composition  has  some  potential  for  the  detection 
 of such genes. 
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 Structure-based modeling of cysteine and serine disease variants of human 
 proteome 
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 Introduction 

 During  the  early  1980s,  the  ability  to  rationally  design  drugs  using  protein 
 structures  was  an  unrealized  goal  for  many  structural  biologists.  The  first  projects 
 were  underway  in  the  mid-80s,  and  by  the  early  1990s  the  first  success  stories  were 
 published.  Today,  even  though  there  is  still  quite  a  bit  of  fine-tuning  necessary  to 
 perfect  the  process,  structure-based  drug  design  is  an  integral  part  of  most  industrial 
 drug  discovery  programs  and  is  the  major  subject  of  research  for  many  academic 
 laboratories. 

 The  completion  of  the  human  genome  project,  the  start  of  both  the  proteomics 
 and  structural  genomics  revolutions,  and  developments  in  information  technology  are 
 fueling  an  even  greater  opportunity  for  structure-based  drug  design  to  be  part  of  the 
 success  story  in  the  discovery  of  new  drug  leads.  Excellent  drug  targets  are  identified 
 at  an  increased  pace  using  developments  in  bioinformatics.  The  genes  for  these 
 targets  can  be  cloned  quickly,  and  the  protein  expressed  and  purified  to  homogeneity. 
 Advances  in  high-throughput  crystallography,  such  as  automation  at  all  stages,  more 
 intense  synchrotron  radiation,  and  new  developments  in  phase  determination,  have 
 shortened  the  timeline  for  determining  structures.  Faster  computers  and  the 
 availability  of  relatively  inexpensive  clusters  of  computers  have  increased  the  speed 
 at which drug leads can be identified and evaluated in silico [1]. 

 There  are  many  disease-associated  mutations  that  endow  pharmacological  target 
 (typically  a  protein)  with  drug  resistance,  e.g.  G12C  amino  acid  substitution  in 
 oncogenic  target  KRAS  [10].  People  carrying  such  mutations  may  need  the 
 development  of  personalized  drugs  that  take  into  account  structural  peculiarities  of 
 the  mutated  protein.  One  of  the  promising  strategies  is  to  develop  covalent  drugs  that 
 are specific for a given mutation [9]. 

 The  goal  of  this  project  is  to  model  structures  of  human  proteins  with 
 disease-associated  amino  acid  substitutions.  Two  types  of  amino  acid  substitutions 
 are  selected:  X  to  cysteine  or  X  to  serine  (X  is  any  amino  acid  residue)  –  these 
 residues are often used as the attachment points for covalent drugs. 

 Materials and methods 

 We used the following software: 
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 1. Conda [4] 

 2.  Ensembl  Variant  Effect  Predictor  (VEP)  to  predict  amino  acid  substitution 
 based on single nucleotide polymorphism [11] 

 3. Rosseta ddg_monomer to model mutant proteins [2] 

 4. SCons to install Rosetta ddg_monomer [6] 

 5.  UniProt  Retrieve/ID  mapping  to  map  VEP-annotated  proteins  ID  to  UniProt 
 ID [12] 

 We used the following databases: 

 1.  gnomAD  2.1.1  ExAC  (a  database  of  single  nucleotide  polymorphism)  with 
 9362318 variants (60705 exomes) for human genome assembly GRCh37/hg19 [7] 

 2. VEP human database GRCh37/hg19 for VEP-annotation 

 3. ClinVar database for disease detection [8] 

 4. AlphaFold2 database – normal sturcture-based models of human proteins [5] 

 Results 

 We  annotated  all  9362318  gnomAD  variants  using  VEP  and  then  also  used  VEP 
 to  filter  these  variants  and  leave  only  missense  mutations  inside  coding  sequence  with 
 amino  acid  substitution  to  cysteine  or  serine.  Also,  we  chose  only  pathogenic  variants 
 that are reliably known for the disease. 

 After  this  we  got  1339  cysteine  and  serine  variants  associated  with  disease.  Then 
 each  variant  we  linked  with  the  AlphaFold2  model  and  using  Rosseta  ddg_monomer 
 modeled mutant protein. 

 We  also  carried  out  statistical  processing  of  the  results.  Most  diseases  are 
 associated  with  proteins:  DYHC2  (8.36  %),  USH2A  (7.84  %),  VWF  (3.36  %).  The 
 most  frequently  substituted  amino  acid  is  arginine  (52.05  %),  also  commonly 
 substituted  amino  acids  are  glycine  (14.71  %)  and  tyrosine  (10.9  %).  In  66.69  %,  the 
 substitution  led  to  the  appearance  of  cysteine,  in  33.31  %  -  of  serine.  Most  frequent 
 diseases  associated  with  amino  acid  substitution  in  proteins  are  asphyxiating  thoracic 
 dystrophy  (6.05  %),  primary  ciliary  dyskinesia  (4.03  %)  and  retinal  dystrophy  (4.03 
 %). 

 All  our  results  and  pipeline  of  this  work  can  be  found  in  the  GitHub  repository: 
 DmitriiPodgalo/POP. 

 Discussion 

 61 



 The  obtained  structural  models  will  be  used  as  the  starting  conformations  for  the 
 structure-based drug design pipelines [3]. 

 Structure-based  drug  design  is  a  powerful  method,  especially  when  used  as  a 
 tool  within  an  armamentarium,  for  discovering  new  drug  leads  against  important 
 targets.  After  a  target  and  a  structure  of  that  target  are  chosen,  new  leads  can  be 
 designed  from  chemical  principles  or  chosen  from  a  subset  of  small  molecules  that 
 scored  well  when  docked  in  silico  against  the  target.  After  a  preliminary  assessment 
 of  bioavailability,  the  candidate  leads  continue  in  an  iterative  process  of  reentering 
 structural  determination  and  reevaluation  for  optimization.  Focused  libraries  of 
 synthesized  compounds  based  on  the  structure-based  lead  can  create  a  very  promising 
 lead which can continue to phase I clinical trials. 

 As  structural  genomics,  bioinformatics,  and  computational  power  continue  to 
 explode  with  new  advances,  further  successes  in  structure-based  drug  design  are 
 likely  to  follow.  Each  year,  new  targets  are  being  identified,  structures  of  those  targets 
 are  being  determined  at  an  amazing  rate,  and  our  capability  to  capture  a  quantitative 
 picture of the interactions between macromolecules and ligands is accelerating [1]. 
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 Marine  sponges  (phylum  Porifera)  and  associated  microbial  communities  are 
 classical  and  at  the  same  time  underexplored  examples  of  host-microbial  interactions. 
 Depending  on  the  properties  of  the  sponge  mesohyl,  bacteria  can  occupy  up  to  40% 
 of  the  sponge  biomass  [1].  These  sponge  residents  can  be  either  symbionts,  food  for 
 phagocytic  sponge  cells  or  pathogens.  Sponge-specific  symbionts  can  provide 
 chemical  defense,  supply  the  host  with  essential  nutrients  and  also  remove 
 contaminants  or  metabolic  waste  products.  However,  cultivation  of  the  obligate 
 symbionts  is  a  challenging  task  [2].  In  many  cases,  the  only  way  to  investigate  their 
 properties  are  sequencing  and  comparative  genomics.  We  explored  three  marine 
 sponges  from  the  Russian  Arctic  collected  in  2016  and  2018:  Isodictya  palmata  , 
 Halichondria  panicea  and  Halichondria  sitiens  .  Analysis  of  bacterial  diversity  by 
 16S  rRNA  metagenomics  (V3-V4  region)  revealed  the  presence  of  dominant 
 sponge-specific  microorganisms  for  each  sponge,  which  we  consider  as  presumable 
 symbionts.  Using  shot-gun  metagenomics,  we  recovered  metagenome-assembled 
 genomes  (MAGs)  of  these  bacteria  from  metagenome  assemblies.  Sponge-specific 
 MAG  from  H.  panicea  was  classified  as  Amylibacter  ,  a  bacterium  which  was 
 previously  found  in  the  same  sponge  species  from  other  habitats  [3].  Analyses  of 
 metabolic  features  showed  the  presence  of  a  complete  biosynthetic  pathway  of 
 cobalamin  (vitamin  B12).  Eukaryotes  cannot  synthesize  B12  themselves  and  have  to 
 get  it  from  food  or  from  symbiotic  bacteria.  B12  biosynthetic  pathway  was  previously 
 found  in  several  bacterial  symbionts  from  different  sponges,  highlighting  it  as  a 
 symbiotic  feature  [4].  We  performed  fluorescence  in  situ  hybridization  (FISH) 
 experiments  to  localize  the  symbiotic  bacteria  in  a  sponge  tissue.  Preliminary  data 
 indicates  that  bacteria  are  localized  in  the  cell  matrix  in  mesohyl.  We  also  made  an 
 attempt  of  cultivation  of  homogenized  fresh  sponge  tissue  on  marine  broth  plates  and 
 obtained  small  slow-growing  colonies,  which  are  to  be  further  classified  and 
 characterized. 

 The  work  was  supported  by  a  grant  from  the  Ministry  of  Science  and  Higher 
 Education of Russian Federation (agreement №075-10-2021-114 from 11.10.2021). 
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 Acute  myeloid  leukemia  (AML)  represents  a  group  of  oncohematological 
 neoplasms,  which  are  characterized  by  uncontrolled  proliferation  of  immature 
 myeloid  cells  and  their  accumulation  in  bone  marrow,  leading  to  inhibition  of  normal 
 hematopoiesis.  AML  is  the  most  common  form  of  acute  leukemia  in  adults  having 
 the  shortest  survival  (5-year  survival  =  24%)  and  high  rates  of  relapse  as  well  as  the 
 high  level  of  heterogeneity  (Shallis  et  al.,  2019).  One  of  the  possible  reasons  for  the 
 malignant  transformation  of  hematopoietic  cells  are  mutations,  translocations,  or 
 aberrant  activity  of  transcriptional  factors  (TFs)  that  are  involved  in  normal 
 hematopoiesis  maintenance  (Khan  et  al.,  2021).  Therefore,  a  better  understanding  of 
 transcriptional  regulation  mechanisms  can  help  to  develop  new  therapeutic  strategies 
 and to identify promising prognostic markers. 

 The  aim  of  the  current  project  was  to  investigate  signaling  pathways  activity 
 alteration  and  TFs  expression  in  the  AML  patients  cells  using  RNAseq  analysis. 
 Publicly  available  datasets  from  Gene  Expression  Omnibus  (GEO)  were  used:  1)  bulk 
 RNA-seq  from  AML  patients  and  healthy  donors  (HDs)  bone  marrow  (GSE138702); 
 2)  single  cell  RNA-seq  (scRNA)  from  AML  patients'  (GSE116256)  and  HDs'  bone 
 marrow  (GSE120221).  Also  AML  dataset  with  overall  survival  data  was  used  to 
 perform Kaplan-Meier analysis of survival (dbGaP phs001657.v1.p1). 

 For  this  research  the  tools  developed  in  the  Saez  lab  for  the  pathway  and  TF 
 activity  investigation  were  chosen:  PROGENy  and  DoRothEA  programs,  available  as 
 R  packages  (Garcia-Alonso  et  al.,  2019,  Schubert  et  al.,  2018).  The  authors  describe 
 the  advantages  of  PROGENy  as  the  ability  to  infer  the  transcriptomic  consequences 
 of  the  processes  not  by  direct  mapping  of  the  expression  levels  of  involved  genes  but 
 by  the  ‘footprints’  -  consistently  deregulated  genes  with  the  known  impact  (‘weight’) 
 on  the  pathway,  which  also  allows  to  take  into  account  the  post-translational  protein 
 modifications.  In  the  case  of  DoRothEA  program  development  several  resources  of 
 TFs  activity  estimation  were  compared  and  integrated  regulons  for  each  TF  were 
 derived.  The  authors  proved  both  these  tools  outperformed  the  existing  methods 
 being more accurate and informative. 
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 All  the  tutorials  for  bulk  and  pseudo-bulk  RNA-seq  data  analysis  were  taken 
 from the open GitHub page of Saez Lab (  https://github.com/saezlab/transcriptutorial  ). 

 At  the  first  stage  of  the  work,  we  downloaded  the  bulk  RNA  sequencing  data 
 (GSE138702),  preprocessed  the  data  according  to  the  tutorials,  and  analyzed  the 
 activity  of  signaling  pathways  using  the  PROGENy  method  (detailed  description  of 
 these  steps  will  be  provided  below).  However,  we  found  a  discrepancy  with  the 
 literature  data  and  subsequently  found  that  there  were  not  enough  genes  in  this 
 dataset  for  correct  further  processing  (for  calculating  pathway  activity  scores). 
 Moreover,  one  of  the  AML  samples  showed  extreme  scores  and  could  change  the 
 whole  picture  of  pathways  activity  estimation.  Thus,  we  decided  to  change  the 
 dataset. 

 Therefore,  at  the  next  step  we  downloaded  another  open  source  dataset  -  bone 
 marrow  scRNA-seq  data  of  AML  patients  and  HDs.  Only  untreated  AML  patients 
 were  taken  into  the  analysis.  Thus,  the  work  was  carried  out  with  16  AML  patients 
 and  with  25  HDs.  Firstly,  scRNAseq  data  was  transformed  to  pseudo-bulk.  Then 
 log2-transformed  pseudo-bulk  RNAseq  counts  were  visualized  using  violin  plots  to 
 choose  the  threshold  for  low  expressed  genes  cutoff.  We  chose  the  threshold  for 
 log2-transformed  gene  expressions  at  a  level  of  1.5.  Genes  with  expression  lower 
 than  the  threshold  in  less  than  a  half  of  patients  from  each  group  were  removed.  After 
 low  expressed  genes  removal,  9897  genes  remained.  Pseudo-bulk  RNAseq  counts 
 were  normalized  with  the  VSN  package,  in  which  the  variance  stabilization  and 
 calibration  method  of  normalization  was  implemented  (Huber  et  al.,  2002).  After  that, 
 principal  components  analysis  (PCA)  was  carried  out  and  visualized.  The  obtained 
 plot showed that AML patients and HDs were well separated. 

 Next,  we  performed  differential  expression  analysis  (DEA)  on  normalized  data 
 using  the  limma  R  package  (Matthew  E.  Ritchie  et  al.,  2015).  We  received  a  table  of 
 genes  sorted  by  p-value,  which  contains  DEA  main  statistics  such  as  logFC,  adjusted 
 p-value.  We  also  plotted  qqplot  (observed  p-value  distribution  plotted  against  uniform 
 distribution  corresponding  to  null  hypothesis),  which  demonstrated  that  the  data  of 
 healthy and AML samples differed quite a lot. 

 For  estimating  the  pathway  activity,  we  ran  PROGENy  (Pathway  RespOnsive 
 GENes),  a  program  which  allows  to  infer  the  pathway  activity  indirectly,  based  on 
 consensus  gene  signatures  (Schubert  et  al.,  2018;  Holland  et  al.,  2019;  Holland  et  al., 
 2020).  PROGENy  was  installed  as  a  Bioconductor  package.  At  the  first  step  we 
 downloaded  normalized  counts  and  DEA  table  results  obtained  in  the  previous  steps 
 to  compute  PROGENy  scores  for  each  sample.  The  200  most  responsible  genes  per 
 pathway  were  chosen  for  the  program  running.  However,  not  all  of  these  genes  were 
 found  in  the  dataset,  which  can  explain  the  following  possible  misaccordance  of  the 
 results  with  the  literature  data.  To  assess  the  significance  of  the  pathway  activity 
 scores  we  ran  the  enrichment  analysis  and  found  out  the  pathways  PI3K,  MAPK  and 
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 VEGF  got  the  highest  normalized  enrichment  scores  (NES)  and  the  pathways  Trail, 
 EGFR, TNFa got the lowest. 

 The  obtained  PROGENy  scores  for  each  AML  patient  and  HDs  were  performed 
 at  the  heatmap,  which  illustrated  a  good  separation  of  pathway  activities  between  two 
 groups.  The  most  activated  (PI3K)  and  deactivated  (Trail)  pathways  correspond  to  the 
 literature  data  about  pathway  activity  alteration  during  AML.  PI3K,  or,  the 
 phosphatidylinositol-3-kinase  pathway,  is  described  as  important  in  normal  and 
 malignant  hematopoiesis,  involved  in  cell  proliferation,  differentiation  and  survival 
 (Salihanur  Darici  et  al.,  2020).  The  PI3K  pathway  is  often  detected  as  constitutively 
 activated  in  AML  cells,  with  FLT3  mutations  as  one  of  the  driving  mechanisms.  This 
 matches  our  dataset’s  genetic  landscape  (38%  of  patients  carry  FLT3  mutations).  Trail 
 is an apoptosis pathway and often deactivated during cancer. 

 To  determine  TFs  activity  alteration  in  AML  compared  to  healthy  controls,  we 
 used  DoRothEA  program  (Garcia-Alonso  et  al.,  2019).  DoRothEA  was  installed  as  a 
 Bioconductor  package.  After  running  DoRothEA  we  obtained  249  TFs  whose  activity 
 significantly  differed  in  AML  patients  compared  with  HDs.  As  a  result,  we  identified 
 the  top  75  most  activated  and  deactivated  TFs  according  to  NES  values  including  the 
 previously characterized TFs during AML as well as the new ones. 

 DoRothEA  is  a  comprehensive  resource  containing  a  curated  collection  of  TFs 
 and  their  transcriptional  targets.  The  set  of  genes  regulated  by  a  specific  TF  is  known 
 as  regulon.  Thus,  we  also  built  the  volcano  plots  for  regulon  genes  of  the  most 
 differentially  activated  TFs  to  identificate  the  genes  of  interest  for  the  future  deep 
 literature analysis. 

 At  the  next  step  we  preprocessed  the  single  cell  data  (detailed  steps  are 
 described  in  the  notebook  scRNAseq_AML.ipynb  at  the  GitHub  repository 
 https://github.com/theCastleBuilder/Acute-myeloid-leukemia  )  and  using  the  author's 
 markup  by  cell  types  looked  at  the  expression  of  transcription  factors  in  different 
 bone  marrow  cell  types  (van  Galen  et  al.,  2019).  The  TFs  having  the  most  interesting 
 pattern  of  expression  between  cell  types  were  visualized  on  the  dotplot.  For  instance, 
 MAFB  gene  was  shown  to  be  overexpressed  preferentially  in  monocytes  and 
 monocyte-like  cells  which  was  also  displayed  at  the  UMAP  plot.  Another  example  is 
 HOXA9  ,  which  is  predominantly  expressed  in  malignant  cells  (proMonocyte-like, 
 cDC-like, GMP-like). 

 We  began  our  literature  research  by  studying  publications  that  discuss  the 
 relationship between AML and TFs that we found using the DoRothEA package. 

 For  the  most  activated  TF,  NCOA1  (nuclear  receptor  coactivator  1),  along  with 
 other  active  NCOA3  and  NCOA2,  encoded  by  paralogous  genes,  no  literature 
 evidence  about  the  expression  during  AML  were  found.  Some  authors  describe  the 
 rearrangements  involving  these  genes  resulting  in  generating  the  functionally  aberrant 
 fusion  proteins  (S  Esteyries  et  al.,  2009).  Also  for  NCOA1  TF  the  direct  interaction 
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 with  ASXL1  protein  encoded  by  one  of  the  most  frequently  mutated  genes  in 
 malignant myeloid diseases was described (M Katoh, 2013). 

 The  controversial  literature  data  was  obtained  about  the  most  deactivated  TF  - 
 FOXP1  -  the  transcriptional  repressor  involved  in  regulation  of  monocyte 
 differentiation.  By  Nicolas  Duployez  et  al.,  the  loss-of-function  of  the  FOXP1  gene 
 was  proposed  as  likely  promoting  the  leukemogenesis  mostly  in  the  cases  of 
 inv(16)-AML  (Duployez  et  al.,  2018).  In  our  dataset  there  was  one  patient  with 
 inv(16)  aberration  (van  Galen  P  et  al.,  2019,  Table  S1).  However,  the  increased 
 FOXP1  gene  expression  was  also  considered  as  not  a  favorable  prognostic  predictor 
 in cases of intense chemotherapy (Seipel Katja et al., 2020). 

 One  of  the  interesting  chosen  TFs  was  MAFB  -  a  bZip  transcriptional  factor 
 specific  for  the  monocytic  lineage  differentiation.  This  corresponds  to  our  results  of 
 MAFB  visualization  on  dot  plot  and  UMAP.  Li  Yang  et  al  showed  the  connection 
 between  DNMT3A  R882  mutation  and  MAFB  overexpression  (Li  Yang  et  al.,  2015), 
 which  correspond  to  our  dataset  genetic  properties  (44  %  of  AML  patients  carried 
 DNMT3A  mutations).  Mutations  in  DNMT3A  gene,  coding  the  DNA 
 methyltransferase  and  responsible  for  the  de  novo  DNA  methylation,  considered  as 
 driver  mutations  of  AML.  This  research  also  demonstrated  a  positive  impact  of 
 elevated  MAFB  expression  on  the  overall  survival  of  the  patients  with  DNMT3A 
 R882  mutation.  Nonetheless,  MAFB  was  described  playing  a  controversial  role  in 
 leukemogenesis depending on the hematopoietic cells context. 

 Among  the  top  100  differentially  activated  TFs  we  also  selected  AHR  - 
 ligand-activated  transcription  factor  involved  in  cellular  metabolism,  HSC 
 differentiation  and  immune  regulation.  There  is  the  literature  evidence  of  the 
 correlation  of  high  AHR  expression  with  FLT3-ITD  mutation,  as  well  as  the 
 association  with  monocytic  phenotype  (Jennifer  N.Saultz  at  al.,  2021).  The  authors 
 also  showed  that  using  the  AHR  antagonist  can  facilitate  the  NK  cell  mediated  killing 
 FLT3-ITD AML cells. 

 NR4A1  activation  can  explain  the  downregulation  of  MYC  and  NFkB  pathway 
 activities  which  we  observed  after  PROGENy  and  DoRothEA  run  (Salix  Boulet  et 
 al., 2022). 

 One  of  the  most  activated  TF  in  our  research  (top  25  by  DoRothEA)  was 
 MEIS1,  a  transcriptional  regulator  participated  in  hematopoiesis,  megakaryocyte 
 lineage  development  that  also  can  act  as  cofactor  of  HOX  genes  especially  in  the 
 induction  of  myeloid  leukemias.  Both  MEIS1  and  HOXA9  were  activated  in  our 
 AML  samples  which  conforms  to  most  literature  sources  about  their 
 co-overexpression,  associated  with  poor  prognosis  (Cailin  T.  Collins  and  Jay  L.  Hess, 
 2016). 

 It  is  worth  noting  that  we  did  not  find  any  controversial  data  about  MEIS1 
 activation  during  AML.  That’s  why  we  chose  MEIS1  for  subsequent  Kaplan-Meier 
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 survival  analysis.  For  doing  this  we  took  an  AML  dataset  with  overall  survival  data. 
 Patients  with  NA  values  were  excluded,  and  finally  123  patients  were  taken  into 
 analysis.  Then  the  patients  were  divided  in  two  groups  depending  on  the  level  of 
 MEIS1 expression (the median value was chosen as the threshold). 

 The  Kaplan-Meier  curves  showed  the  difference  in  survival  between  two  groups 
 with  decreased  survival  for  the  group  expressing  MEIS1  above  median  (p-value  = 
 0.005).  Thus,  MEIS1  can  be  considered  as  a  possible  prognostic  marker  at  the 
 significance  level  of  𝛼  =  0.01.  However,  this  result  should  be  validated  on  the  bigger 
 AML patient’s cohort. 

 Of  course,  not  for  each  of  the  TFs  there  were  references  in  the  literature  about  its 
 association  with  AML.  Therefore,  there  is  a  large  space  for  studying  the  involvement 
 of  not  previously  mentioned  in  AML  context  TFs  in  gene  regulatory  networks  and 
 signaling  pathways  in  order  to  build  hypotheses.  In  the  future  perspective,  it  will  be 
 also  interesting  to  apply  the  SCENIC  framework  for  the  TFs  analysis  and  gene 
 regulatory  network  (GRN)  reconstruction  on  the  scRNA  data  and  compare  it  with  the 
 results we obtained running PROGENy and DoRothEA (Van de Sande et al., 2020). 
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 A  key  step  in  the  molecular  diagnosis  of  hereditary  diseases  is  the  interpretation 
 of  genetic  variants  found  during  genome  or  exome  sequencing.  At  the  moment, 
 however,  interpretation  is  quite  a  challenge,  and  the  cumulative  efficiency  of 
 molecular  diagnostics  ranges  from  30  to  50%.  This  is  partly  due  to  the  lack  of  good 
 methods  for  annotating  different  classes  of  genetic  variants  that  do  not  involve 
 changes of the amino acid sequence of a protein. 

 This  work  is  a  part  of  a  large  project  aimed  at  enhancing  genetic  variant 
 annotation.  This  part  is  devoted  to  predicting  effects  of  genetic  variants  on 
 intra-intron  sequences  involved  in  splicing  (primarily,  in  the  region  of  the 
 branchpoint).  The  aim  of  the  work  is  to  determine  the  effects  (like  pathogenicity)  of 
 variants located in branchpoints. 

 In  the  course  of  the  study,  the  project  was  divided  into  two  main  parts:  variant 
 annotation based on existing annotators and new predictive model development. 

 The  first  part  of  the  current  study  was  based  on  the  previous  paper  which 
 evaluated  the  prediction  accuracy  for  branchpoint-predicting  tools  [1].  According  to 
 this  paper,  the  highest  accuracy  was  shown  by  the  combination  of  two  predictors: 
 Branchpointer  [2]  and  BPP  [3].  We  used  both  of  them  in  order  to  predict  the 
 branchpoints  of  introns  in  two  databases:  ClinVar  and  gnomAD.  The  ClinVar 
 database  provides  information  about  the  clinical  impact  of  variation  while  the 
 gnomAD  database  described  the  natural  variation  in  healthy  individuals.  We 
 suggested  that  variants  found  in  gnomAD  should  have  lower  impact  on  branchpoint 
 efficiency  compared  to  pathogenic  variants  from  ClinVar.  Prior  to  analysis,  we 
 removed  indels  from  both  databases  as  indels  change  genomic  coordinates  of  the 
 analyzed regions. 

 We  found  out  that  Branchpointer  was  significantly  slower  and  memory 
 consuming  than  BPP,  therefore  it  might  be  inconvenient  to  use  Branchpointer  with  a 
 large  dataset.  However,  we  managed  to  analyze  the  separate  impact  of  9,240  ClinVar 
 and  208,550,834  gnomAD  SNPs  on  the  branchpoint  prediction  via  both  BPP  and 
 Branchpointer. 

 Both  algorithms  have  shown  the  significant  difference  between  branchpoint 
 scores  (or  probabilities)  of  ClinVar  and  gnomAD  databases  (p-value  <  0.05  in 
 Wilcoxon-Mann-Whitney  test)  which  demonstrated  the  study  importance. 
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 Expectedly,  we  discovered  that  ClinVar  mutations  more  often  showed  the  reference 
 branchpoint  score  reducing  according  to  both  predictors.  At  the  same  time,  we  found 
 certain  ambiguity  of  predictions  by  BPP  and  Branchpointer  which  did  not  allow  us  to 
 draw confident conclusions regarding the magnitude of the differences. 

 Thus,  we  realized  that  it  is  necessary  to  create  our  own  branchpoint  predictor.  To 
 do  this,  we  decided  to  use  the  ML  architecture.  High-confidence  branchpoints  [4] 
 were  used  as  training  data,  on  which  the  Branchpointer  was  also  trained.  The  main 
 idea  of  the  model  is  to  use  k-mers  and  distance  to  3'  ends  to  predict  the  position  of 
 branchpoints.  Our  implementation  is  motivated  by  the  typical  location  and  structure 
 of  branchpoint  regions  that  includes  polypyrimidine  tract.  The  model  has  two  main 
 components: 

 First,  we  calculate  branchpoint  probabilities  for  all  intron  position  based  on 
 k-mers  in  (position-n,  position+n)  area.  The  probabilities  are  calculated  by  a 
 pre-trained  model.  To  train  the  model,  we  used  both  positive  and  negative  examples 
 of  branchpoints.  Experiment-based  high  confidence  branchpoints  were  used  as 
 positive  examples,  whereas  as  negative  examples  included  random  positions  from 
 introns that are not high confidence branchpoints. 

 The  parameters  k,  n  and  the  classification  method  (lightgbm,  catboost,  xgboost, 
 random  forest,  naive  bayes  and  SVM)  were  chosen  by  selecting  the  highest  value  of 
 AUC  and  accuracy.  Notably,  the  prediction  accuracy  did  not  depend  strongly  on  n  but 
 was  strongly  affected  by  changes  in  the  value  of  k  .  We  chose  n  =  70,  k  =  5  and 
 Random Forest Classifier as showing the optimal results. 

 The  accuracy  of  the  constructed  model  was  much  better  compared  to  other 
 predictors  [2].  The  average  score  for  all  chromosomes  was  99.75  for  our  method 
 versus  94.73  for  for  branchpointer,  88.8  for  Naive  Bayes,  82.8  for  HSF  and  74.9  for 
 SVM-BPFinder. 

 After  obtaining  per-base  branchpoint  probabilities,  positions  of  branchpoints 
 were  selected  within  the  last  50  positions  of  every  intron  by  choosing  the  one  with  the 
 largest  probability  of  branchpoint.  Exact  matches  to  known  locations  of 
 high-confidence  BPs  were  obtained  in  only  25%  of  cases,  73%  of  cases  were  in  the 
 vicinity  of  5  from  the  known  position.  Thus,  we  have  obtained  a  model  that  can 
 determine  the  positions  of  branchpoints  with  good  accuracy,  but  new  functions  can  be 
 added to further improve it. 

 Therefore,  our  future  plan  is  to  develop  an  annotator  similar  to  BBP  and 
 Branchpointer  that  will  predict  the  pathogenicity  of  all  variants  in  introns.  This  stage 
 would  require  further  development  of  the  constructed  model.  We  also  plan  to 
 compare  predictions  of  our  model  with  BBP  and  Branchpointer  and  eventually  create 
 a  common  tool  that  most  reliably  predicts  the  effects  of  genetic  variants.  We  hope  that 
 we  will  be  able  to  create  the  most  accurate  branchpoint  annotator  that  includes  the 
 best of the three models. 
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 The  type  I-E  CRISPR-Cas  system  of  Escherichia  coli  includes  a  CRISPR  array 
 and  cas  genes  (Brouns  et  al.,  2008).  The  CRISPR  array  is  composed  of  28-bp  DNA 
 repeats  separated  by  unique  33-bp  spacers.  Spacers  acquired  from  phage  genomes 
 provide  bacteria  with  immunity  against  bacteriophages  (Barrangou  et  al.,  2007).  The 
 immunity  is  achieved  by  the  cleavage  of  phage  sequences  complementary  to  spacers 
 (protospacers)  by  the  Cas3  protein  (Westra  et  al.,  2012).  Due  to  its  helicase  and 
 endonuclease  activities,  Cas3  cleaves  DNA  around  the  protospacer  into  fragments  of 
 unknown  size.  Other  cellular  nucleases  further  degrade  these  fragments  (Kurilovich 
 et al., 2019). 

 The  protospacer  cleavage  leads  to  acquisition  of  new  spacers  from  the 
 protospacer-flanking  regions  during  a  process  called  primed  adaptation  (Datsenko  et 
 al.,  2012).  The  first  step  of  spacer  acquisition  is  excision  of  a  short  spacer  precursor 
 called  a  prespacer  (Shiriaeva  et  al.,  2019).  The  prespacer  is  partially  double-stranded 
 and  consists  of  a  33-nt  strand  and  a  37-nt  strand.  It  is  currently  not  clear  how 
 prespacers  are  generated.  Based  on  our  previous  findings  we  suggested  a  model 
 where  a  complex  of  two  Cas  proteins,  Cas1  and  Cas2,  binds  to  a  sequence  of  a  future 
 spacer  within  a  long  DNA  molecule  and  protects  it  from  degradation  by  Cas3  and 
 other  nucleases.  The  unprotected  ends  are  trimmed  by  single-strand  specific 
 nucleases,  such  as  the  5’-3’  RecJ  exonuclease.  If  the  ends  are  double-stranded,  the 
 RecBCD  helicase/nuclease  unwinds  them  to  provide  access  to  the  5’  ends  for  RecJ. 
 Surprisingly,  only  a  3-fold  decrease  in  spacer  acquisition  efficiency  is  observed  in 
 ∆recB  cells.  We  suggest  that  another  helicase,  RecQ,  substitutes  for  the  RecBCD 
 helicase activity during prespacer generation in  ∆recB  cells. 

 To  test  this  hypothesis,  we  studied  primed  adaptation  in  wt  ,  ∆recQ,  ∆recB,  and 
 ∆recB  ∆recQ  strains.  Since  new  spacers  are  integrated  into  the  beginning  of  CRISPR 
 arrays,  amplification  of  this  region  using  PCR  gives  products  of  various  lengths.  The 
 shortest  product  corresponds  to  initial,  nonexpanded  CRISPR  arrays.  The  longer 
 products  correspond  to  CRISPR  arrays  with  one  or  several  newly  acquired  spacers. 
 Using  high-throughput  sequencing  of  resulting  amplicons,  spacer  acquisition 
 efficiency  can  be  calculated  as  the  number  of  newly  acquired  spacers  divided  by  the 
 total  amount  of  sequenced  CRISPR  arrays.  Six  biological  replicates  of  the  primed 
 adaptation  experiment  were  performed  for  each  of  the  four  strains,  and  spacer 
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 acquisition  efficiency  was  calculated  based  on  the  sequencing  data.  Levene's  test 
 showed  that  variances  are  not  equal.  Therefore,  Welch’s  t-test  was  applied  to  compare 
 means  between  the  pairs  of  strains,  and  p-values  were  adjusted  using  Benjamini  and 
 Hochberg's  p-adjustment  method.  The  results  confirm  a  3-fold  decrease  in  primed 
 adaptation  efficiency  in  the  ∆recB  mutant  compared  with  the  wt  (p  adj  =0.00005).  No 
 significant  differences  were  observed  between  the  wt  and  ∆recQ  cells  (p  adj  =0.07). 
 However,  a  7-fold  decrease  in  spacer  acquisition  efficiency  was  observed  in  ∆recB 
 ∆recQ  compared  to  ∆recB  cells  (p  adj  =0.003).  This  result  supports  our  hypothesis  that 
 RecQ  is  involved  in  primed  adaptation  in  the  absence  of  RecBCD,  though  further  in 
 vitro  and  in  vivo  studies  are  required  to  elucidate  the  exact  role  of  RecQ  in  this 
 process. 
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 Genome-Wide  Association  Study  (GWAS)  is  a  technique  used  to  look  for 
 genome  sequence  variations  that  affect  the  development  of  complex  traits.  In  recent 
 years,  GWAS  results  have  been  published  for  thousands  of  different  traits,  including 
 two  of  the  world's  largest  datasets,  UK  Biobank  and  Finngen.  It  is  known  that 
 changes  in  gene  expression  levels  are  one  of  the  main  mechanisms  that  determine  the 
 small  effects  of  genetic  variants  detected  during  GWAS.  In  this  project,  we  sought  to 
 test  the  hypothesis  that  not  only  the  level  of  gene  expression,  but  also  the  degree  of 
 expression  variability,  is  associated  with  the  influence  of  a  gene  on  complex  human 
 traits. 

 GWAS  for  pulse  rate  from  UKBB  was  used  as  a  test  dataset.  LD-based  clumping 
 was  performed  to  identify  lead  SNPs  with  p-value  <  10  -8  ,  with  LD  information  taken 
 from  HapMap2  data.  Genes  closest  to  lead  SNPs  were  identified  by  intersection  with 
 GRCh37  RefSeq  Reference  Genome  Annotation  gff3  file.  GTEx  Analysis  V8  was 
 used  to  obtain  gene  expression  data.  For  each  gene  in  each  of  the  54  tissues  we 
 calculated  ranges  of  expression  normalized  by  median  value.  Then,  inter-tissue  mean 
 and maximum ranges of variability expression were calculated. 

 Among  56200  genes  from  GTEx  we  selected  44025  genes  with  non-zero 
 expression  at  least  in  one  tissue.  329  lead  SNPs  identified  in  the  pulse  rate  GWAS 
 were  annotated  with  363  closest  genes.  After  deduplication  and  retrieval  of  variability 
 metrics  for  genes  with  non-zero  expression  presented  in  GTEx,  87  genes  were  left.  . 
 Distribution  of  expression  variability  metrics  for  this  subset  and  a  total  set  of  GTEx 
 genes  were  compared  by  t-test  for  two  distributions  with  unequal  variance. 
 Comparison  of  3  metrics  out  of  4  (mean  ranges,  mean  "centered"  ranges  and  maximal 
 ranges)  have  showed  significant  differences  (p-value<0.01)  and  one  metric  (maximal 
 "centered"  ranges)  have  showed  less  significant  difference  (p-value=0.06).  Therefore, 
 we  can  conclude  that  genes  at  GWAS  loci  tend  to  have  a  wider  average  range  of 
 expression.  In  future  research  we  plan  to  refine  our  statistical  approach  and  test  our 
 assumption for multiple GWAS datasets. 

 More  details  can  be  found  in  GitHub  repository 
 https://github.com/MShtol/expression_variability 

 78 

mailto:mikha.shtol@gmail.com
https://github.com/MShtol/expression_variability


 УДК 575.1, 575.85 

 Determining the effectiveness of momi2 for inferring demographic history in 
 GADMA 

 K. Struikhina  1,4  , V. Mikhalchuk  2  , E. Noskova  3 

 1  Bioinformatics Institute, Kantemirovskaya st. 2A,  197342, St. Petersburg, Russia 
 2  Peter the Great St. Petersburg Polytechnic University,  Polytechnicheskaya st. 29, 195251, St. 

 Petersburg, Russia 
 3  ITMO University, Kronverksky pr. 49A, 197101, St.  Petersburg, Russia 

 4  Higher School of Economics, Myasnitskaya st. 20,  101000, Moscow, Russia 

 GADMA  implements  methods  for  automatic  inference  of  the  joint  demographic 
 history  of  multiple  populations  from  genetic  data.  The  demographic  history  of 
 populations  is  the  history  of  their  development  with  parameters  such  as  the  size  of 
 populations,  the  time  of  their  divergence,  the  rate  of  migration  and  selection.  Based 
 on  genetic  data,  these  parameters  can  be  reconstructed  using  various  statistical 
 methods. 

 GADMA  is  based  on  the  three  open-source  packages  for  inferring  demographic 
 history:  dadi,  moments,  and  momi2.  This  project  determines  the  accuracy  of 
 demographic  history  output  using  the  momi2  engine  added  to  GADMA.  Our  aim  was 
 to  determine  the  effectiveness  of  momi2  for  inferring  demographic  history  in 
 GADMA. 

 We  simulated  genetic  data  for  the  selected  history,  then  restored  parameters 
 using  GADMA  with  momi2  engine  (for  one  chromosome  and  the  whole  genome)  and 
 compared the obtained parameters with the original ones. 

 As  a  result,  momi2  determined  the  parameters  of  the  demographic  population  on 
 the  entire  genome  better  than  on  one  chromosome.  However,  the  epoch  time 
 parameter still does not correspond to the real value. 
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 Introduction 

 Drug-target  interaction  prediction  (DTI)  task  plays  an  important  role  in  the  drug 
 discovery  process,  which  aims  to  identify  new  drugs  for  biological  targets. 
 Automation  of  prediction  will  speed  up  the  process  of  creating  new  drugs.  There  are 
 many  machine  learning  models  that  solve  this  problem  [3,  5,  7]  nowadays,  however, 
 due  to  the  presence  of  a  huge  number  of  different  datasets  and  testing  protocols,  it  is 
 difficult  to  compare  different  models  with  each  other.  And  so  one  unified  benchmark 
 is needed. 

 The  aim  of  this  project  was  to  create  a  benchmark  for  drug-target  interaction 
 (DTI)  prediction  task.  In  order  to  achieve  the  aim  we  needed  to  select  suitable 
 datasets  to  perform  pipeline  (potential  candidates  are  KiBA,  Yamanishi_08,  Davis), 
 create  an  evaluation  protocol,  and  finally  implement  several  most  relevant  models 
 and test them using the created evaluation protocol. 

 Materials and methods 

 Benchmark  was  implemented  using  Python  (version  3.7.13)  libraries  PyTorch 
 [6], DGL [11] and Sckit-Learn [12]. 

 BindingDB  and  Davis  are  chosen  as  two  main  datasets  [1,  4].  BindingDB  and 
 Davis  are  both  databases  of  measured  binding  affinities,  focusing  chiefly  on  the 
 interactions  of  proteins  considered  to  be  candidate  drug-targets  with  ligands  that  are 
 small,  drug-like  molecules.  As  of  May  4,  2022,  BindingDB  contains  41,296  Entries, 
 each  with  a  DOI,  containing  2,513,948  binding  data  for  8,839  protein  targets  and 
 1,077,922  small  molecules.  Davis  Kinase  binding  affinity  dataset  contains  the 
 interaction  of  72  kinase  inhibitors  with  442  kinases  covering  >80%  of  the  human 
 catalytic protein kinome. 

 DistMult,  TriModel  and  KGE_NFM  are  chosen  as  three  baseline  models. 
 DistMult  is  a  knowledge  graph  embedding  (KGE)  model  that  allows  to  learn  the 
 low-rank  representations  for  all  entities  and  relations  using  one  embedding  vector  [8]. 
 In  terms  of  current  task  entities  are  drugs  and  proteins,  whereas  relation  is  the 
 existence  of  interaction  between  them.  TriModel  is  a  KGE  model  based  on  tensor 
 factorization  that  extends  the  DistMult  and  ComplEx  models  [10].  It  represents  each 
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 entity  and  relation  using  three  embedding  vectors.  Neural  Factorization  Machine 
 (NFM)  combines  the  linearity  of  FM  in  modeling  second-order  feature  interactions 
 and  the  non-linearity  of  neural  network  in  modeling  higher-order  feature  interactions 
 [7].  KGE_NFM  model  allows  one  to  train  one  of  the  KGE  models  and  pass  its 
 embeddings into the NFM model as features (along with drugs and target features). 

 The code is stored at htps://github.com/Lemonnik/BI_2021_JB_benchmark 

 Results 

 In  the  current  work  two  baseline  datasets,  Davis  and  BindingDB,  and  three 
 baseline  models  were  implemented.  Python  script  that  uses  our  evaluation  protocol 
 was  created.  The  script  allows  the  user  to  train  and  test  one  of  the  implemented 
 models  on  one  of  the  implemented  datasets,  or  use  his  own  model/dataset.  As  a  result 
 of  the  script,  the  user  gets  evaluation  metrics,  such  as  AUROC,  AUPRC,  precision 
 and  recall,  in  order  to  quantify  the  performance  of  a  predictive  model.  We  hope  that 
 the proposed benchmark will standardize the model testing process in the future. 
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 Introduction 

 Metagenomic  binning  is  a  problem  of  restoring  microbial  species  from  the  given 
 metagenomic  samples  by  grouping  assembled  contigs  together  according  to  some 
 similarity  measure  among  contained  contigs  and  therefore  obtaining  bins  with 
 metagenome  assembled  genomes  (MAGs).  Some  state-of-the-art  technologies  from 
 deep  learning,  such  as  variational  autoencoders,  are  used  in  these  tools.  For  instance, 
 VAMB  (Variational  Autoencoder  for  Metagenomic  Binning)  is  a  binning  tool  that 
 allows  to  embed  contig  profiles  -  combined  data  from  TNF  and  coverage  profiles 
 (data  with  tetranucleotides  frequencies  and  coverage  metrics  per  contig)  -  in  the  latent 
 feature space and thus perform good-quality clustering [1]. 

 However,  despite  being  able  to  restore  high-quality  genomes  (genomes  with 
 >95%  completeness  and  <5%  contamination),  current  binning  strategies  are  still  not 
 perfect:  if  obtained  from  a  single  sample,  binning  results  can  be  erroneous,  and 
 additionally,  as  similarity  measure  derives  from  contig  profile,  it  is  hard  for  these 
 tools  to  distinguish  closely  related  species  and  strains  present  in  the  sample.  Thus,  it 
 can be not enough to rely only on contig profiles. 

 Hi-C  method  is  the  approach  aimed  at  reconstructing  chromosomal  structure 
 within  a  genome  [2].  It  allows  to  capture  genome  regions  in  close  spatial  proximity 
 which  could  have  been  far  in  the  strand  and  sequence  them  together.  This  technology 
 is  widely  used  for  exploring  three-dimensional  genome  interaction  and  architecture, 
 and  moreover,  it  can  be  used  as  a  starting  point  for  chromosome  and  genome  3-D 
 structure  reconstruction  [3].  Thus,  applying  fundamentals  of  method  to  binning 
 problem,  we  suppose  that  pair  of  contigs  from  the  same  genome  can  possess 
 significantly  more  Hi-C  links  between  each  other  than  pair  of  contigs  from  separate 
 genomes. 

 Hi-C  contact  map  is  a  set  of  pairwise  Hi-C  interactions  between  contigs,  and  its 
 usage  provides  us  with  several  benefits.  It  is  clear  that  a  contact  map  can  lead  to 
 additional  contigs  structure  reveal.  Contact  map`s  natural  representation  is  a  weighted 
 graph,  where  nodes  are  contigs  and  edges  represent  the  number  of  Hi-C  contacts 
 between  a  pair  of  contigs.  Thus,  graph  clustering  becomes  equal  to  the  metagenomic 
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 binning  problem,  and  graph  deep  learning  methods,  such  as  graph  neural  networks 
 (GNNs),  can  be  naturally  applied  for  this  task,  though  the  binning  tool  that  does  not 
 utilize  deep  learning  methods  –  bin3C  –  has  already  been  developed  and  showed 
 good  performance  [4].  Next  big  advantage  of  utilizing  Hi-C  contact  map  can  be 
 independence  from  the  number  of  samples  –  contact  map  can  be  obtained  from  single 
 sample  data  and  already  provide  accurate  and  complete  information  about  contigs 
 colocalization. 

 Thereby,  in  our  work  we  aimed  to  explore  opportunities  of  clustering  contig 
 contact  maps  using  graph  neural  networks.  For  our  project  we  have  chosen  to  work 
 with  2  recently  developed  GNN  models  –  DMoN  (Deep  Modularity  Network)  [5]  and 
 GraphMB  [6].  DMoN  utilizes  modularity  maximization  as  a  loss-function  in  learning 
 and  requires  prepared  features  and  doesn`t  support  edge  features,  while  GraphMB 
 uses  modified  GraphSAGE  as  a  working  net  and  also  provides  autoencoder  from 
 previously  mentioned  VAMB  for  efficient  features  extraction,  but  supports  edge 
 features as well. 

 We  have  created  binning  pipeline  involving  data  preparation,  clustering,  and 
 binning  results  evaluation.  We  chose  VAMB`s  performance  as  baseline  as  it  showed 
 its  efficiency,  and  moreover,  we  compared  GNN`s  binning  results  with  bin3C  results 
 where  it  was  possible.  We  ran  this  pipeline  on  3  datasets  –  Zymo,  IC9  and  synthetic 
 CAMI  AIRWAYS  [8]  –  which  differ  by  size  and  graph  sparsity.  Here  we  present  our 
 work protocol and current outcomes. 

 Materials and methods 

 We  used  3  input  datasets  with  different  assembly  size  and  presense  of  golden 
 standard: 

 1.  Zymo  –  supervised,  10  genomes  (size  from  2  to  27  mbp),  6625  contigs,  76799 
 Hi-C links; 

 2.  IC9  –  unsupervised,  approximately  16  genomes,  165712  contigs,  1150887 
 Hi-C links; 

 3.  Synthetic  CAMI  AIRWAYS  (was  simulated  by  Sim3C  [7]  from  CAMI)  – 
 unsupervised,  600  genomes  (size  from  500  bp  to  3  mbp),  728682  contigs,  70405 
 Hi-C links. 

 These  datasets  included:  assembled  contigs  in  .fasta  format,  contact  map  in  .tsv 
 format,  contig  depth  information  in  tab-separated  format,  and  ground  truth  for  contigs 
 with known MAG belongings (for supervised datasets) in  .tsv  format. 

 We  used  following  tools  for  clustering  contact  map:  i)  YAMB  (v.  3.0.3)  on  all 
 datasets;  ii)  GraphMB  (v.  0.1.3)  on  all  datasets;  iii)  DMoN  (v.  0.1)  on  Zymo  dataset; 
 iv) Bin3C (v. 0.1.1) on Zymo dataset. 
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 Binning results were evaluated by following tools: 

 1. AMBER (v. 2.0.3) – for supervised datasets (CAMI AIRWAYS, Zymo); 

 2. CheckM (v. 1.1.3) – for unsupervised IC9 dataset. 

 Binners`  output  were  transformed  to  proper  AMBER  format  for  Zymo  and 
 CAMI AIRWAYS datasets. 

 Main  metrics  comprised  the  tools  comparison  were:  completeness, 
 contamination,  purity  of  bins  and  number  of  restored  high-quality  genomes  (HQ 
 genomes – bins with >90% completeness, <5% contamination). 

 For  CAMI  AIRWAYS  dataset,  VAMB  and  GraphMB  was  run  with  minimal 
 contig  lengths  200,  500,  1000,  2000.  For  Zymo  dataset,  GraphMB  was  tested  with 
 default  parameters  in  first  case  and  with  additional  parameter  allowing  to  obtain 
 additional  features  for  latent  feature  transformation  –  TNF  profiles.  Input  contact  map 
 and  feature  matrix  for  DMoN  were  written  to  .npz  format  as  matrix  of  features  and 
 adjacency,  for  GraphMB  input  contact  map  was  transformed  and  written  in  .gfa 
 format.  Hi-C  score  values  for  edge  features  were  passed  log-scaled  and 
 squareroot-scaled. 

 While  GraphMB  was  obtaining  contig  features  on  a  run,  DMoN  required  them 
 already  prepared,  thus,  we  tried  TNF  profiles  of  contigs,  latent  features  from  VAMB 
 work  as  contig  features  and  empty  feature  vector  to  check  whether  it  is  capable  to 
 catch information only from adjacency matrix. 

 Additionally,  we  performed  sanity-check  for  DMoN  and  ran  it  on  synthetic 
 non-DNA  graph  consisted  of  10  disjoint  connected  components-cliques  each  of  size 
 10  and  according  features  as  one-hot  encoding  of  clique  belonging  –  it  was  done 
 because DMoN showed bad performance on Zymo dataset (see Results section). 

 Performed  pipeline  steps,  wide  instructions  for  each  one  and  tools  requirements 
 are available at GitHub pipeline page (can be accessed through link). 

 Results 

 DMoN  performance  was  evaluated  by  counting  number  of  restored  HQ 
 genomes.  It  turned  out  that  DMoN  showed  bad  performance  as  it  restored  0/10  HQ 
 genomes  in  Zymo  dataset  in  all  3  scenarios  (latent  features,  TNF  profiles,  empty 
 features).  Results  stood  the  same  on  a  row  of  repetitive  runs.  The  requirement  of 
 sanity-check  was  clear,  DMoN  was  tested  on  synthetic  graph  with  unambiguous 
 features  –  only  8/10  clusters  were  restored  correctly,  erroneous  bin  had  50%  purity  – 
 entire  non-overlapping  cluster  was  put  in  that  bin.  According  sanity-check  results,  we 
 considered  these  simple  sanity-check  as  failed,  DMoN  was  taken  out  of  further 
 experiment, work continued for GraphMB. 
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 On  Zymo  dataset  GraphMB  restored  7/10  HQ  genomes  without  using  TNF 
 profiles  and  8/10  with  usage  of  latter  whilst  VAMB  restored  10/10  and  bin3C  restored 
 6/10.  On  CAMI  AIRWAYS  dataset  GraphMB  restored  98/600  HQ  genomes  vs 
 VAMB`s  93/600  HQ  genomes.  On  IC9  dataset  GraphMB  restored  12  HQ  genomes  as 
 well  as  VAMB  restored  12.  No  significant  differences  between  log-scaling  and 
 squareroot-scaling of Hi-C score was observed. 

 Discussion 

 Insufficient  performance  of  DMoN  on  given  data  can  be  explained  by  2  things  – 
 firstly,  it  turns  out  that  DMoN  strongly  relies  on  given  features  and  leaves  the 
 adjacency  second  priority  (failed  sanity-check  indirectly  proves  it,  as  proposed  test 
 graph  was  clearly  splittable  on  10  clusters  only  by  looking  on  adjacency).  It  also 
 clean  from  the  formula  in  paper  [5]  that  features  must  nonempty  as  they  take  part  in 
 learning  and  gradient  step,  thus,  absent  features,  or  improper  features  lead  to  died 
 gradients  and  stop  of  a  training  process.  Secondly,  perhaps  developed  for  broader 
 usage  and  not  directly  for  bioinformatics  problems,  DMoN  postulates  flexibility  in 
 the  clusterization  problem  but  lacks  particular  solutions  for  metagenomic  binning 
 problem, where only single modularity metrics is not enough for correct clustering. 

 GraphMB,  as  well  as  VAMB,  doesn`t  possess  the  latter  drawback  –  they  were 
 initially  developed  for  metagenomic  binning  task.  While  VAMB  successfully 
 generates  informative  features  and  bins  contigs  relying  on  features  only,  GraphMB 
 tries  to  improve  binning  by  relating  contigs  between  each  other  through  Hi-C  contact 
 map  and  then  by  clustering  node  embeddings.  It`s  worth  noting  that  by  default 
 GraphMB  uses  VAMB  to  generate  latent  features  from  contigs,  thereby  it  strongly 
 relies  on  VAMB  and  its  similar  performance  is  explained  by  this  influence  in  some 
 extent.  As  can  be  seen  on  CAMI  AIRWAYS  dataset  (which  is  large  enough  to  make 
 VAMB  binning  less  successful  then  GraphMB  binning)  where  GraphMB  restored 
 more  HQ  genomes  then  VAMB,  contact  map  indeed  provides  additional  information, 
 crucial  for  further  clustering,  this  supports  our  suggestion  about  competitive  results  of 
 GraphMB,  though  it  restored  less  bins  on  Zymo  dataset  then  VAMB  did.  It  can  be 
 explained  by  the  nature  of  Hi-C  method:  it  captures  chromosome  interactions  within 
 single  cell,  that`s  why  accordance  on  Hi-C  contact  map  can  lead  to  binning  distinct 
 chromosomes  of  an  organism  to  distinct  bins  and  not  to  a  single  bin  containing  whole 
 genome.  And  it  turned  out  that  Zymo  dataset  does  indeed  have  genome  of  yeast  S. 
 cerevisiae,  which  has  17  chromosomes,  and  GraphMB  clustered  up  to  37%  of  its 
 genome  to  single  bin  and  left  other  ration  unclustered,  whereas  VAMB  succeeded 
 with  this  genome.  It  can  show  us  that  Hi-C  contact  map  can  provide  both  neat 
 information  for  binning  and  can  potentially  cause  misclustering  in  the  case  of  bad 
 Hi-C coverage between separated parts of a genome like chromosomes. 

 To  summarize,  Hi-C  contact  map  is  a  good  alternative  for  metagenomic  binning 
 problem,  it  captures  spatial  integration  information  of  contigs  and  can  further  been 
 clustered  by  graph  neural  networks.  One  of  our  tested  GNNs  –  GraphMB  –  showed 
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 good  performance  according  to  the  baseline  and  even  run  better  on  large  dataset. 
 Further study should be driven to investigating contact map implicit properties. 
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 Plasmids  are  extrachromosomal  DNA  molecules,  predominantly  circular  in 
 shape,  capable  of  autonomous  replication.  Although  plasmids  are  an  optional  part  of 
 bacterial  genomes,  their  acquisition  by  a  cell  often  provides  significant  adaptive 
 advantages  for  the  host  cell  through  the  acquisition  of  new  genes  providing  antibiotic 
 resistance,  the  ability  to  utilize  new  substrates  or  the  expression  of  virulence  factors. 
 Plasmids  are  also  significant  as  one  of  the  main  drivers  of  horizontal  gene  transfer  in 
 bacterial  evolution.  There  are  various  approaches  for  the  classification  of  plasmids: 
 based  on  the  phenotype  of  the  host  cell,  conjugative  transfer  systems  used  by 
 plasmids, and the ability to replicate in various taxonomic groups. 

 The  aim  of  our  work  was  to  create  an  approach  to  the  classification  of  plasmids, 
 which  could  be  used  further  to  determine  the  relationship  of  plasmids  first  obtained  in 
 metagenomic  projects.  The  approach  we  considered  is  based  on  the  clustering  of  Rep 
 protein sequences involved in the replication of the vast majority of circular plasmids. 

 The  main  sources  of  data  for  plasmids  protein  sequences  were  NCBI  RefSeq 
 plasmid protein database and unpublished data from the project supervisor. 

 Rep  proteins  inference  in  the  data  sequences  was  performed  with  hidden 
 Markov  models  for  Rep_1,  Rep_2,  Rep_3,  Duff1424  families  available  in  PFAM. 
 Sequences  of  Rep-proteins  were  obtained  from  plasmids  proteome  data  with 
 hmmsearch  from  HMMER  3.3.  The  gained  proteins  were  clustered  at  50%  similarity 
 using  MMseqs2  to  decrease  the  redundancy.  Derived  sequences  were  further  aligned 
 with  Mafft  aligner  tool  v.7.453.  Resulted  Rep-proteins  sequence  alignment  was  used 
 to  build  phylogeny  with  FastTree  2.1.11  and  IQ-TREE  1.6.12.  Another  method  for 
 studying  protein  sequence  relationships  was  graph  network  reconstruction  with  Gephi 
 0.9.2.  The  step  for  tree  reconstruction  was  automatized  with  the  script  gettree.py 
 (available in the repository). 

 As  a  result,  5288  proteins  with  Rep-like  domain  were  identified  in  NCBI 
 GenBank  plasmid  proteome  (over  1  500  000  non-redundant  sequences)  and 
 supervisor’s  sequencing  data  using  HMM-models  from  Pfam.  Clustering  at  50% 
 sequence  identity  level  reduced  combined  dataset  size  to  1255  proteins,  which  were 
 further used for reconstruction of graph and phylogeny. 

 Our  results  show  that  Rep-proteins  contain  only  one  type  of  the  Rep-domain. 
 The  most  numerous  types  were  the  Rep_3  family  (918  proteins  out  of  1255  total). 
 Acquired  phylogenetic  tree  and  graph  topology  demonstrate  sub-groups  existence 
 within Rep_3 family and sufficient level of credibility. 

 88 



 References 

 1. Brooks L, Kaze M, Sistrom M. A Curated, Comprehensive Database of 
 Plasmid Sequences. Microbiol Resour Announc. 2019;8:e01325-18. 

 2. Kirstahler P, Teudt F, Otani S, Aarestrup FM, Pamp SJ. A Peek into the 
 Plasmidome of Global Sewage. mSystems. 2021;6:e00283-21. 

 3. Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: 
 classification and identification based on replication and transfer systems and host 
 taxonomy. Front Microbiol. 2015;6. 

 4. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. 
 Mobility of Plasmids. Microbiol Mol Biol Rev. 2010;74:434–52. 

 5. del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. 
 Replication and Control of Circular Bacterial Plasmids. Microbiol Mol Biol Rev. 
 1998;62:434–64. 

 89 



 УДК 577.22, 57.08 

 Differential expression analysis of macrophage RNA sequencing data using the 
 Hobotnica tool 

 A. Zhelonkin  1  , A. Belyaeva  2  , E. Karpulevich  3 

 1  Saint-Petersburg State University, 7-9 Universitetskaya  Embankment, St Petersburg, Russia 
 2  Lomonosov Moscow State University, Leninskie Gory,  Moscow 

 3  Ivannikov Institute for System Programming of the  Russian Academy of Sciences, 25 Alexander 
 Solzhenitsyn st, Moscow 

 High-throughput  RNA-seq  is  widely  used  in  the  differential  expression  (DE) 
 analysis.  Differentially  expressed  genes  are  key  to  understanding  phenotypic 
 variation.  Wide  range  of  tools  have  been  developed  for  DE  analysis  [1].  Each  has  its 
 own  specificities  in  the  assumptions  on  the  statistical  properties  inherent  to  RNA-seq 
 data  [2].  Consensus  hasn`t  been  reached  as  to  the  best  pipeline  for  correctly 
 identifying differentially expressed genes from RNA-seq data. 

 Hobotnica  is  a  tool  that  was  developed  to  put  clarity  into  the  choice  of  the  best 
 DE  tool  for  a  given  RNA-seq  dataset.  Hobotnica  computes  and  visualizes  gene-level 
 RNA-seq  differential  expression  between  two  experimental  conditions  by  5  tools  with 
 different  statistical  methods  embedded  in  them:  DESeq,  EBSeq,  edgeR,  limma  voom 
 and  NOISeq.  Hobotnica  also  compares  results  and  calculates  the  best  differential 
 expression  tool  for  input  data  based  on  a  H-score  summary  statistic,  simultaneously 
 visualizing  intersection  of  top  gene  hits  [3].  The  aim  of  the  project  was  to  find  the 
 best  tool  for  DE  analysis  of  RNA-seq  data of  macrophages  using  Hobotnica.  As  part 
 of  the  project,  we  planned  to  add  additional  DE  tools  into  Hobotnica  docker  container 
 and compare the performance of several DE tools under Hobotnica`s hood. 

 We  complemented  original  Hobotnica  with  a  bayesian  differential  expression 
 tool  R  library  baySeq,  added  features  allowing  for  seamless  baySeq  volcano-plot  and 
 heatmap  visualizations  along  with  the  already  implemented  DE  analysis  tools.  Using 
 R  language  [4]  and  Rstudio  [5]  we  prepared  raw  RNA-seq  reads  GSM4973754  from 
 M0  and  M1  macrophages  to  get  thr  expression  matrix  of  un-normalised  reads  counts. 
 We then ran analysis on the prepared data with the new version of Hobotnica. 

 According  to  Hobotnica  based  on  the  summary  H-score  on  a  0  to  1  scale  the  6 
 DE  tools  performed  as  follows:  baySeq,  NOISeq,  EBSeq,  edgeR,  DESeq, 
 limma-voom  scored  0.39,  0.56,  0.58,  0.59,  0.92  and  1,  respectively.  Thus,  it  may  be 
 assumed  that  out  of  6  DE  tools  implemented  in  Hobotnica,  limma-voom  is  the  tool  of 
 choice  in  DE  analysis  of  RNA-seq  macrophage  data.  When  comparing  top  30  genes 
 marked  as  differentially  expressed  by  each  of  the  tool  only  one  gene  (Serine 
 Dehydratase)  was  intersected  between  limma-voom,  DESeq  and  NOISeq.  The  pattern 
 of differential variation revealed by each of the tool was rather variable. 

 Results  of  DE  tools  comparison  using  Hobotnica  expose  current  problems  of 
 existing  software  in  DE  analysis.  Hobotnica  is  intended  to  put  some  clarity  and  may 
 be  a  helpful  instrument  in  the  hands  of  a  thoughtful  bioinformatician.  In  the  future 
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 Hobotnica  may  be  complemented  by  more  DE  tools  and  features  of  comparison  DE 
 tools  on  simulated  counts  data.  Validation  of  Hobotnica  results  with  RT-PCR  and 
 proteomics data analysis is upcoming. 
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