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Abstract: We combine numerical modeling and analytical design techniques to study several of
the most common localized topological structures in frustrated chiral nematic liquid crystal cells.
An energy minimization procedure is applied to the lattice model to simulate the director field
distributions. These distributions are also approximated using the suitably designed analytical ansatz.
We present both simulated and approximated results for optical polarizing microscopy textures and
different visualizations of director field structure such as distributions of the azimuthal director angle
and isolines for the normal component of the director in coordinate planes. The ansatz correctly
mimicked the geometry and optical properties of the solitonic structures under consideration.

Keywords: localized topological structures; chiral liquid crystals; 3D soliton; skyrmion; optical imaging

1. Introduction

Chiral nematic (cholesteric) liquid crystals (CLCs) host numerous topological solitons
represented by localized chiral liquid crystal structures. In experiments, the localized chiral
structures manifest themselves as optically inhomogeneous patterns. For the structures
known as cholesteric spherulites or cholesteric bubbles, such patterns have long been
observed in CLCs [1,2].

In cholesteric liquid crystal cells, solitonic structures may appear as a result of frustra-
tion. The latter comes into play when chirality favoured effects leading to a macroscopic
twist in the orientation of the liquid crystal (LC) molecules compete with other influences
on the CLC system, such as external fields and constraints imposed by either geometry or
boundary conditions. These localized structures have already been exploited as individual
micron-sized elements for refractive and singular optics [3–5], components of diffraction
gratings [6], and transport micromachines [7–9].

The formation of localized structures is ensured by the metastability of orientational
structures in CLCs confined in the slab geometry with homeotropic anchoring condi-
tions (preferred orientation of the LC molecules at the boundary is normal to the sub-
strates) [10–13]. When the ratio of the cell thickness and the equilibrium CLC pitch (this is
the helix pitch describing twisted equilibrium structures in an unbounded LC sample) is be-
low its threshold value, the cholesteric helix is completely unwound, and the ground-state
structure is uniform. However, when an external stimulus is applied, producing sufficiently
large perturbations of the uniform frustrated state and leading to the formation of solitons,
the localized chiral structures may persist even after switching off the stimulus.

One of the standard methods is to use short pulses of an electric/optical field as
external stimuli inducing the local reorientation of a cluster of molecules [1,2,6,14–16].
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Another approach, employed in [17] to generate cholesteric bubbles, is to combine heating
the CLC sample up to the transition to an isotropic phase with subsequent rapid cooling
down. The third method, demonstrated in [18,19], involves the control of the helicoidal
periodicity at the molecular scale by light [20], and allows for the generation of dynamic
localized chiral structures in addition to the well-studied static ones.

The main feature of the localized chiral structures is their nontrivial topology or
the three dimensional (3D) spatial organization of the LC director field [14,21]. The so-
called toron is probably the smallest chiral topological structure with a diameter close the
thickness of the LC cell. The topology of the toron can be described as a double-twisted
supramolecular cylinder lying in the plane of the sample, surrounded from above and
below by a pair of hyperbolic point defects [15]. By contrast, a loop of the first-kind
cholesteric finger (CF1) with two pairs of nonsingular disclinations can be regarded as
the topologically simplest 3D solitonic structure [22–24]. Its decrease in size leads to the
formation of a localized structure without a uniform central part. A two-dimensional
(2D) optical microscopic image of this structure appears to be chiral [16,18,23,24], and the
director field distribution behind such optical view can be obtained by shrinking one of the
disclination lines into a point defect [25].

The 3D molecular architecture underlying the complex topology of localized chiral
structures cannot be reconstructed solely from two dimensional optical microscopy images.
Usually, a powerful fluorescence confocal polarizing microscopy (FCPM) technique is
applied to visualize the LC director field in three dimensions [26,27]. Other methods, such
as multiharmonic generation microscopy or stimulated Raman scattering microscopy, are
also employed to reconstruct 3D molecular organization.

Each of the above methods has its own disadvantages [28]. FCPM implies the doping
of a LC with fluorescent molecules whose orientation with respect to the LC director must
be unambiguous. Chemically selective Raman microscopy requires a fixed bond orientation
of a certain chemical group within molecules. Thus, 2D optical microscopy imaging may
still be useful for the initial inspection of CLC structures in order to identify unusual
director field patterns for the further analysis of 3D molecular ordering.

In this paper, our approach is based on the method where analytically approximated
orientational configurations are used for solitonic structure engineering in combination
with simulated polarized optical microscopy (POM) textures. By using the free energy
minimization procedure applied to the lattice model derived as a discretization of the LC
free energy functional, we obtain three localized chiral structures of different topologies
resembling chiral 3D patterns often observed in experiments [14,16,18,19,24,25,29–31] and
demonstrate how this method can be used to clarify primitive building blocks underly-
ing the architecture of director fields. We show that the ansatz formulated in terms of
looped CF1 cholesteric fingers of different diameters suffices to reconstruct both the 3D
orientational configurations and 2D optical images. The paper is organized as follows.

In Section 2, we briefly comment on numerical modeling techniques employed to
simulate the director field distributions and POM textures. The simulation results repre-
senting target structures are detailed in Section 3.1. The analytical modeling procedure that
uses the director field ansatz to approximate the structures is described in Section 3.2. Our
results for simulated and approximated structures are presented in Section 3.3, and we
present some concluding remarks in Section 4.

2. Materials and Methods
2.1. Frank Free Energy

The topological solitons in CLCs are 3D orientational structures determined by the
CLC director field n (a unit vector specifying local preferred orientation of LC molecules)
within the CLC sample of the volume V. An important point is that CLCs are optically
anisotropic liquids with locally uniaxial optical anisotropy defined by the optical axis
orientated along the director field.
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The continuum theory of CLCs is formulated in terms of the Frank–Oseen free energy
functional that, in the absence of external fields, takes the following form (see, e.g., the
book [32]):

F[n] =
∫
V

dr ω(r),

ω(r) =
K1

2
(∇ · n)2 +

K2

2
(n · ∇ × n + q)2 +

K3

2
(n×∇× n)2, (1)

where ω(r) is the elastic free energy density; K1, K2, K3 are the splay, twist, and bend Frank
elastic constants, respectively; q is the free twisting number inversely proportional to the
equilibrium CLC pitch, P: q = 2π/P. In addition to the bulk part of the CLC energy, there is
the surface contribution to the energy. It is expressed in terms of the surface energy density
known as the anchoring energy that dictate the anchoring conditions at bounding surfaces.

We consider the case of the slab geometry where CLC is placed between two parallel
bounding plates (substrates), z = −L/2 and z = L/2, where L is the cell thickness, and
assume that the anchoring conditions are homeotropic and strong. In other words, our
boundary conditions require the director orientation at the substrates to be fixed along
the normal to the cell (the z axis). This is the limiting case of strong anchoring where the
surface elasticity contributions such as the K24 term can be neglected.

Director distributions representing metastable CLC structures can be found by mini-
mizing the elastic free energy F (1). Dynamics of director reorientation is governed by the
dynamic equation of the following form:

dn
dt

= −η
δF[n, q]

δn
, (2)

where η is the rotational viscosity that plays the role of the relaxation rate constant and
δF
δn

is the functional derivative of the free energy functional with respect to the director that
can be written in the explicit form as follows:

δF[n, q]
δn

= −K1∇(∇ · n)− K3[∆n−∇(∇ · n)]

+ (K2 − K3)[2(n · ∇ × n)(∇× n)− n×∇(n · ∇ × n)] + K2(2q∇× n− n×∇q). (3)

Equation (2) gives the simplified model of CLC director dynamics where the coupling
between the director and the fluid flow is assumed to be negligible. However, in our case,
this model is used within the context of relaxation methods, so that the steady-state solution
to Relaxation Problem (2) gives the metastable state of the system corresponding to the
local minimum of the free energy.

As in [33], our overall computational strategy involves two basic steps: (a) we intro-
duce a properly discretized version of the free energy (1), and (b) we employ the direct
energy minimization by the nonlinear conjugate gradient method [34,35] in Cartesian
coordinates with constraints that fix the unit length of the director at the sites of the lattice.
Geometry of our lattice model is similar to that presented in [33]: directors are localized at
the points of a simple cubic lattice inside the rectangular cell where both lateral sizes (the
lengths along the x and y axes) are equal to LW . In contrast to [33], in this paper, we go
beyond the scope of the one-constant approximation.

In our calculations, the liquid crystal mixture E7 LC with the Frank constants
K1 = 10.5 pN [36], K2 = 6.2 pN, K3 = 18.7 pN [36–39] was used as a model LC mate-
rial. In the lattice model, the number of points along the normal and along each lateral
direction are 40 and 240, respectively (the total number of points is 2,304,000). The cell
thickness was L = 10 µm, whereas both the lateral sizes of the CLC cell are equal to
LW = 60 µm.
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2.2. Optical Imaging of Localized Topological Structures

As mentioned above, the optical anisotropy of CLC is locally uniaxial with the optical
axis directed along the director field, n(r) ≡ n(x, y, z). The optical properties of such media
are governed by the optical dielectric tensor of the following form:

εij = ε⊥δij + (ε‖ − ε⊥)ninj, (4)

where i, j ∈ {x, y, z}, δij is the Kronecker symbol, and ni is the ith component of the CLC
director, ε⊥ and ε‖ are the principal values of the tensor that define the ordinary and
extraordinary refractive indices: no =

√
µε⊥ and ne =

√
µε‖ (in what follows, the magnetic

tensor of the CLC is assumed to be isotropic with the magnetic permittivity µ ≈ 1).
Thus, in order to compute 2D distributions of light intensities representing the po-

larized optical microscopy textures (images), we utilize both the director field evaluated
at the points of our lattice model and the optical tensor (4) with refractive indices no and
ne. In our calculations we consider the case of normally incident light and employ the
well-known Jones matrix method [40,41]. According to this method, an LC sample with a
localized topological structure is split into a set of thin slabs with the director orientation
patterns obtained by either numerical or analytical modeling. The effect of the jth thin slab
is represented by a phase retardation plate with the optical axis that varies in the lateral
plane: n(x, y, j∆z) = (sin θj(x, y) cos φj(x, y), sin θj(x, y) sin φj(x, y), cos θj(x, y)). This can
be described by a coordinate-dependent Jones matrix [40,41] of the following form:

Ji = R−1(φj(x, y))

(
eiΓj(x,y), 0

0, e−iΓj(x,y)

)
R(φj(x, y)), R(φj) =

(
cos φj − sin φj
sin φj cos φj

)
,

Γj(x, y) =
π(neff(θj(x, y))− no)∆z

λ
, neff(θj) =

none√
n2

o cos2 θj + n2
e sin2 θj

. (5)

Formula (5) implies that, while propagating through the CLC cell, light splits into
ordinary and extraordinary waves. These waves “feel” the ordinary refractive index no and
the effective extraordinary refractive index neff(θ) dependent on the angle θ between n and
the normal to the substrates giving the light’s propagation direction, respectively [40,41].
Given the linearly polarized incident wave, the intensity of the transmitted light at each
pixel of a computed POM texture (image) is evaluated by successive multiplication of the
Jones matrices corresponding a series of thin CLC slabs with the coordinate-dependent
phase retardation and an analyzer.

To mimic achromatic-light observations, we performed these calculations for wave-
lengths 450, 530, and 650 nm, and then superimposed the resulting textures to obtain a
POM image between crossed linear polarizers for white imaging light.

3. Results
3.1. Simulated Structures

Our simulation procedure employed to generate localized topological structures
begins with constructing state S3 as a closed loop of the CF1 cholesteric finger whose orien-
tational structure is well-known [42,43]. To this end, we used an analytically approximated
orientational structure as the initial state and performed the relaxation procedure described
in Section 2.1 that ensured the formation of metastable structure S3. Details on analytical
approximations are given in the subsequent Section 3.2 (see Equation (16)). With the model
parameters described at the end of Section 2.1, we obtained the metastable S3 structure at
the CLC helix pitch P = 9.0 µm.

At the next step, we changed the helix pitch to P = 10.0 µm and restarted the relaxation
procedure. In the process of relaxation, we observed the formation of transient structure TS2,
and structure S1 became the final stage of relaxation. Figure 1 shows localized structures
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S3, TS2, and S1 resulting from the described procedure. They bear close resemblance to
localized chiral structures reported in a number of experiments [14–16,18,23–25,31,42].

White-light POM textures (a) and (b) are computed using the Jones matrix method
briefly described in Section 2.2 for the cases of high (Figure 1a) and low (Figure 1b) bire-
fringence, ∆n = ne − no. The director distributions in the xy and xz planes are illustrated
in Figure 1c,d, respectively. In all such distributions, we assumed that the cross-sections
passed through the center of the cell, and the color encoded the azimuthal director orienta-
tion (orientation of the director projection onto the xy plane). In all figures, the colors are
defined over the whole sphere of director orientations. The color wheels show that, in the
northern hemisphere where the z projection of the director is located, nz, is non-negative,
the colors become lighter as nz approaches unity (the northern pole is white). By contrast,
in the southern hemisphere, the colors darken as nz decreases approaching the southern
pole with nz = −1. The obtained director fields for TS2 and S1 are later used as target
orientational structures to be approximated using the ansatz.

The relaxation of state S3 involves continuous transformations most vividly manifested
by shrinking of the structure. There are three qualitatively different types of states that can
be distinguished in the course of relaxation. At the initial stage, similar to the CF1 loop
patterns reported in [16,23,24,42], the POM image of the structure S3 contains a black region
in the center corresponding to the uniform director orientation. As is shown in Figure 2,
the topological structure of the director field is represented by four closed disclination lines:
two pairs of λ+1/2 and λ−1/2 disclinations [42,43].

S3

a

b

TS2 S1

c

d

10 mmx
y

z

nx
yn

x
z

y

Figure 1. POM textures and director distributions for solitonic CLC structures S1, TS2, and S3.
(a) White light POM textures in crossed polarizers computed at ne = 1.76 and no = 1.53 [44].
Orientation of the axes for (a–c) and the white scale bar for all figures are shown in the inset at the left
and the right of the texture for S1, respectively. (b) White light POM textures in crossed polarizers
computed for the case of low birefringence with ne = 1.55 and no = 1.47 [44]. (c) Director field
distributions in the xy plane (the middle cross-section of the cell at z = 0). The color palette in the
inset at the right of the director distribution for S1 describes x and y projections of the director used
in (c,d). This color wheel represents the northern hemisphere of director orientations where nz is
non-negative. In the southern hemisphere, the colors become darker as nz decreases approaching the
southern pole with nz = −1. (d) Director field distributions in the xz plane with the origin placed at the
center of the sample. Orientation of the axes is shown in the inset at the left of the distribution for S1.
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At the next stage, when the central black region disappears keeping the spiral arms
intact, the structure called TS2 is formed. Though POM textures for the TS2 pattern
resembles those observed in [16,19,25], in our case, this structure is transient. Referring to
Figure 2, topology of the TS2 structure is described by the only disclination line and a pair
of hyperbolic point defects (hyperbolic hedgehogs). Clearly, the disclination charge is twice
as large as that for the disclinations characterizing the S3 structure. In general, TS2 might
be described as an extrachiral toron structure [14,15] that is chiral not only in terms of an
orientational structure, but also in terms of a 2D optical view.

Even though we did not observe qualitative changes in the POM images at this
stage, transient structures may somehow differ in topology owing to transitions between
disclinations and point defects. In our subsequent theoretical considerations, we consider
the TS2 structure as a target state representing transient structures whose POM images are
qualitatively similar.

At the final stage, the spiral arms in the POM texture disappeared, and metastable
state S1 was formed. The topology of the director field of this state is illustrated in Figure 2.
It represents the well-known toron structure [1,15].

x
y

z

S3 TS2 S1

c

a

b

10 mm

x
z

y

10 mm10 mm

10 mm

10 mm

10 mm 10 mm

10 mm10 mm

nx
yn

x
z

y

Figure 2. Director fields and topology of S3 (looped CF1 finger), TS2 (transient structure), and S1
(toron). (a,b) Orientational structures in the xy and xz planes, respectively. (c) Isosurfaces of the
z projection of the director computed at nz ∈ {±0.83,±0.5,±0.17}. For S3, a pair of λ+1/2 (λ−1/2)
disclination loops is marked by red (blue) circles. For TS2 and S1, cyan (magenta) circles indicate two
hyperbolic hedgehogs (+1 disclination ring).

3.2. Analytical Design of Localized Topological Structures

In this section, the CLC director is modeled using analytical tools formulated in terms
of formulas representing various helicoidal CLC structures and serving as elementary
buildings blocks for topological solitons. From the above discussion, the S3 structure is a
looped cholesteric finger CF1 that contains approximately one period of the tilted helix
embedded into the uniform vector field. Therefore, the principal building block for our
ansatz is a straight CF1 [45].

A uniform helical structure with the helix axis along the unit vector q̂

n(r) = â cos ψ + b̂ sin ψ, ψ = 2π(r · q̂)/P, (6)

where a hat indicates unit vectors; â and b̂ = q̂× â are unit vectors orthogonal to q̂; and
P is the helix pitch, presents the simplest case of helical structure that is the ground-state
structure for unbounded CLCs provided 2π/P is the free twisting number.
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In order to transform the tilted helix to CF1, we can add the uniform homeotropic
structure ẑ multiplied by weight function m, and normalize the resulting vector field
as follows:

N = n + m(r)ẑ, n̂(r) =
N(r)
|N(r)| . (7)

We assume that the weight is a smooth function. Inside the cholesteric finger, the weight
vanishes, whereas it grows in the regions where the director field is nearly homeotropic. For
instance, let us consider the weight written as a sum of three terms m = msurf + m+,helix +
m−,helix given by

msurf =
[ 2d

L− 2z

]p
+
[ 2d

L + 2z

]p
, (8)

m±,helix = exp(γ(±r · q̂− ρ)), (9)

where msurf is infinitely large at the substrates and m+,helix (m−,helix) grows exponentially
in the half-space r · q̂ > ρ (r · q̂ < −ρ).

Coefficient function (8) with positive parameters d and p is used to modify the di-
rector field so as to meet the rigid homeotropic anchoring conditions. The width of the
surface layer is determined by parameter d, whereas parameter p is related to the rate of
director reorientation near the surface. All our subsequent calculations were performed at
d = 1.1 µm and p = 2. Similarly, in Equation (9), the width of the finger and the gradient of
the director varying from the finger to the uniform phase are governed by the parameters ρ
and γ, respectively.

Figure 3 shows the cholesteric finger modeled using ansatz (7) and weight functions
(8)–(9) with P = 15 µm, q̂ = (1, 0, 1)/

√
2, γ = 0.7 µm−1 and ρ = 8 µm. If q̂ is not

orthogonal to ẑ, the construction does not produce point defects, since N is never zero.
Referring to Figure 3, we also had two pairs of nonsingular disclination lines as expected.
These disclinations are marked by the points on the xz cross-section in Figure 3.

1

a

b

2
x

z
y

x
z

y

nx
yn

Figure 3. Director field distributions of (1) tilted helix (see Equation (6)) and (2) cholesteric finger
CF1 (see Equation (7)) computed for the case of straight cholesteric finger. (a) Vertical cross-section
of the director field. (b) Isosurfaces of the z-projection of the director. Blue and red points indicate
disclination lines.

Equation (6) can also be used to introduce a more complicated helical configurations
by replacing the Cartesian coordinates with the curvilinear ones. So, in order to define
the looped helix, we employed the cylindrical coordinate system with radial distance
ρ =

√
x2 + y2 and azimuthal angle φ, tan φ = y/x. By assuming that angle Φ between ẑ

and the helix axis is fixed, we have

q̂ = ρ̂ sin Φ + ẑ cos Φ, â = ρ̂ cos Φ− ẑ sin Φ, b̂ = φ̂, (10)
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where ρ̂ = x̂ cos φ + ŷ sin φ and φ̂ = −x̂ sin φ + ŷ cos φ. The looped helix can now be
defined as the vector field:

S = â cos ψ + b̂ sin ψ, ψ =
2πc

P
, (11)

where {a, b, c} = {−z sin Φ + ρ cos Φ, φ, z cos Φ + ρ sin Φ} are our curvilinear coordinates.
For helix S, all points of line ρ = 0 are singular. However, such defects are unsta-

ble, and relaxation transforms them into isolated point defects. In order to model these
point defects, we modified the looped helix S by adding similarly organized structure
S′ = S(−ρ, φ + π). In other words, structure S′ was obtained from S when the inplane
projection of the director S− (S · ẑ)ẑ and the coordinate ρ that entered phase ψ changed
their signs. Field S + S′ is continuous with the director aligned along ẑ on the symmetry
axis ρ = 0. Point defects are formed when this field vanishes and cannot be normalized.
These singular points are hyperbolic and represent the hedgehogs shown in Figure 2.

The general form of the ansatz for topological solitons is a linear combination of the
homeotropic structure ẑ and the helix S′ superimposed with S as follows:

N = S + m′(r)S′ + m(r)ẑ, n̂(r) =
N(r)
|N(r)| , (12)

where m′(r) and m(r) are the coefficient functions that are expressed in terms of msurf,
given by Equation (8), and the two following weight (mask) functions:

m(±)
cone = m±(Φ) + m∓(−Φ), (13)

m±(Φ) = exp(±κ(c(Φ)− | sin Φ|s)), (14)

mas = e−αρ/2, (15)

where m± can be regarded as a modified version of Equation (9). Similar to the cholesteric
finger (7), weight m is a smooth function chosen to be close to zero within the region of
the solitonic structure localization. When the structure is nearly homeotropic, the weight
is large.

With the help of the function given by the first term on the right-hand side of
Equation (14), we cut all periods of the helical structures with c > s. The sharpness
of the cut is governed by the parameter κ > 0, which was taken to be κ = 0.7.

Formula (15) gives coefficient function mas, used to transition from the uniform helix
at ρ = 0 to the oblique helix.

Structure S3 is the simplest that could be obtained from a looped helix by removing
everything except for approximately one period and immersing the result into a uniform
phase. It is given by

NS3 = S + (msurf + m(+)
cone

∣∣
s=ρ1

+ m(−)
cone

∣∣
s=ρ0

)ẑ, (16)

where ρ0 and ρ1 are the inner and outer radii of S3, respectively. An important feature of
S3 is the uniformly oriented inner region; thus, the remaining part of the helix should not
intersect the axis of symmetry ρ0 > 0. So, there are no defects on axis ρ = 0 that need to be
regularized using S′.

The chirality of the POM texture for S3 manifested itself in spiral arms marked as
Region III in Figure 4. It occurred due to nonzero curvature of the looped helix. The bright
rings (see Regions I and II in Figure 4) bounding the spiral arms are more difficult to model.
Inspecting the director field presented in Figure 1d shows that the ends of the cholesteric
finger are wedge shaped having both side non parallel to the substrates. In our ansatz, we
took this observation into account by masking everything outside outer and inside inner
radii using weight functions m±cone, where each mask involved two cuts by cones m±(+Φ)
and m±(−Φ) with the opposite slopes ±Φ.
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I

S3

a

b

TS2 S1

c

d

10 mm

10 mm 10 mm 10 mm

10 mm 10 mm 10 mm

III

I

II
III x

y
z

x
z

y

x
y

z

I

Figure 4. Approximated and simulated POM textures and director field distributions for localized
topological structures S3, TS2, and S1. (a,c) Results for approximated (designed) structures using
analytical ansatz (12) (see text for the list of parameters). (b,d) Results for the simulated structures
from the lattice model. (a,b) Green light POM images in crossed polarizers at the 532 nm wavelength
for ne = 1.76 and no = 1.53. Orientation of the axes and the white scale bar for (a,b) are shown in the
inset at the left and the right of the texture for S1, respectively. (c,d) Isolines for the z projection of the
director in the xy and the xz planes. Orientation of the axes for (c,d) is shown in the insets at the left
of the distributions for S1. Chiral arms are marked as Region III, whereas Regions I and II indicate
outer and inner bright rings, respectively.

The transformation of the cholesteric finger into structure S3 rendered the four discli-
nation lines looped and did not produce point defects. Structure TS2 was formed when
the inner radius of S3 became smaller than zero. The part of the director field that was not
aligned along ẑ filled a thickened cone, and defects were formed near the apex of the cone.
The looped helix, which was the main ingredient of our ansatz, produced a line defect
that was unstable and decayed into the two point defects shown in Figure 2. To mimic the
behavior, we added regularizing field S′ with weight mas that equaled unity at the axis of
symmetry and decayed fast. For TS2, the ansatz reads

NTS2 = S + mas
∣∣
α=−0.5S′ + (msurf + m(+)

cone
∣∣
s=ρ1

)ẑ, (17)
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where ρ1 is the radius of the topological soliton. When S3 shrank, producing TS2, discli-
nations may have also been transformed into point defects. Though the exact number of
generated point defects may depend on details of the structure, we restricted ourselves to
the case of two point defects supported by the results of our numerical simulations shown
in Figure 2. The central part of the POW texture was sensitive to the distance between the
point defects. This distance was tuned by the change in coordinate c→ c + ∆c.

In contrast to S3 and TS2, the POM image of S1 was achiral. From the director field (see
Figures 1 and 2), this is a consequence of the symmetry of the structure that was invariant
under reflection: z 7→ −z. The ansatz for S1

NS1 = S + S′ + (msurf + m(+)
cone

∣∣
s=ρ1

)ẑ (18)

was similar to that of TS2, but the reflection symmetry required the weight of the reflected
looped helix S′ to be equal to unity. If radius ρ1 was sufficiently small, the resulting
structure had two hyperbolic point defects (hyperbolic hedgehogs) on the z axis, ρ = 0,
and one disclination line in plane z = 0. This is exactly the topology of a toron.

3.3. Approximated Structures

In Figure 4, we compare the results computed for the lattice model using the energy
minimization procedure with the results for the structures analytically designed using
ansatz (12) with suitably defined coefficient functions for each localized structure. The
weight functions serve only the purpose of ensuring a smooth transition between the
uniform phase and the cholesteric finger. Otherwise, there is freedom in the choice of the
analytical expressions of these functions. The remaining parameters, such as the helical
pitch and the tilt angle of the cholesteric finger, were recovered from the director fields
obtained with the relaxation procedure described above.

Now, we list the parameters used in calculations based on the ansatz. For the looped
(conically packed) helix (see Equation (11)) describing structure S1, the pitch and tilt
angles of the twisting axis are given by the following relations: P = 15 µm and tan Φ = 0.7,
whereas the radius of the soliton is ρ1 = 7 µm. In the case of structure TS2, these parameters
are: P = 12 µm, tan Φ = 0.9, ρ1 = 10 µm and ∆c = 2.5 µm. For S3, we have P = 12 µm and
tan Φ = 0.7, whereas the inner and the outer soliton radii are ρ0 = 5 µm and ρ1 = 23 µm,
respectively.

A comparison of Figure 4a,b shows that the simulated and approximated textures
are in reasonable agreement. For the cases of S1 and S3, agreement between the textures
was excellent, whereas for TS2, the fine details of the lobes in the central dark part of the
simulated texture were not perfectly reproduced in the approximated counterpart.

In Figure 4c,d, the director field distributions are illustrated with the help of isolines
where the component of the director along the cell normal, nz, was constant. These
isolines could be described as preimages with the same polar angles but different azimuthal
angles [30]. Differences between the simulated and approximated isolines in both the xy
and xz planes were hard to spot by the naked eye. So, we arrived at the conclusion that
topologies of the simulated and the approximated director fields were identical.

Director field engineering described in Section 3.2 can be regarded as a multistep
procedure. In Figure 5, we consider structure S1 and detail the results for each intermediate
step of analytical design. These steps were determined with the coefficient functions that
entered ansatz (18). Columns in Figure 5 present the POM texture and the distributions of
the azimuthal director angle in the xy and xz planes evaluated at each step. For instance,
the results for the looped helix are shown in the the first column, and the subsequent two
columns show what happened when different parts of the helix were eliminated.

In Figure 6, we see how the pitch and twisting axis tilt of the helix (11) influence the
approximated POM images for structure S3. An important point that is demonstrated
in Figure 6 is that the POM textures of topologically equivalent structures may reveal
considerable differences.
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Figure 5. POM images and director field distributions of structure S1 approximated using different

ansatz functions in Equation (18): (1) N = S; (2) N = S + m+(Φ)ẑ; (3) N = S + m(+)
coneẑ; (4) N =

S + S′ + (msurf + m(+)
cone)ẑ. (a) White light POM textures seen in crossed polarizers at ne = 1.76 and

no = 1.53. (b) Director field distributions in the xy plane (the origin is at the center of the cell).
(c) Director field distributions in the xz plane (the origin is at the center of the cell). (d) Isosurfaces of
the z projection of the director computed at nz ∈ {±0.83,±0.5,±0.17}. The helix pitch is P = 15 µm
and tan Φ = 0.7, where Φ is the helix tilt angle.

a b

c d

10 mmx
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z

Figure 6. White-light POM images in crossed polarizers for the structure S3 approximated using
ansatz (16) with varying pitch P and helix tilt angle Φ. (a) P = 12 µm and tan Φ = 0.7 (see Figure 2);
(b) P = 12 µm and tan Φ = 1.4; (c) P = 6 µm and tan Φ = 0.7; (d) P = 6 µm and tan Φ = 1.4; Other
parameters are: ne = 1.76, no = 1.53, ρ0 = 5 µm and ρ1 = 23 µm.

4. Conclusions

In this paper, we used numerical modeling and the analytical design approaches to
study the director field distributions and the corresponding POM textures of the localized



Symmetry 2022, 14, 2476 12 of 14

solitonic CLC structures S1, TS2 and S3. The simulated director fields were computed for
the lattice model by means of the energy minimization procedure. In the analytical design
approach, we approximated the director field using the ansatz of the general form given by
Equation (12).

Both the ansatz and the simulation led to perfectly identical results as far as the
director field topology of the structures under consideration was concerned. For S1 and
S3, the approximated and simulated POM textures were in good agreement. Structure
TS2 presented the only case where, though the textures are in reasonable agreement, the
differences were noticeable. One of the reasons for that was that this structure turned out
to be sensitive to the boundary conditions.

Our director field design can be divided into several steps that take into account
different factors and suitably modify the director pattern. In Figure 5, we show the effects
produced at each step.

The most important parameters that entered our ansatz were the helix pitch and tilt of
the cholesteric finger. We used the director field measurements to fit these parameters. An
alternative approach is to minimize free energy with respect to the parameters. Though the
ansatz wsas too complex to analytically treat the free energy, numerical simulations can be
performed to adjust parameters.

In principle, there are alternative scenarios to the S3-to-S1 transition that might be more
complicated than the simulated one. In order to deal with such scenarios, more accurate
analysis may require to replace the elasticity theory on the basis of Frank free energy (this
theory can safely be used to describe our case) with the Landau–de Gennes theory for the
order parameter tensor. Our analysis of optical properties can also be improved by going
beyond the well-known limitations of the Jones matrix method.

Our concluding remark is that, although topologically equivalent structures can be
optically different, the suggested ansatz correctly captured the geometry and optical prop-
erties of the studied structures. Since these structures are relatively easy to generate in
experiments, using this ansatz may significantly simplify the analysis of the experimen-
tal data. The extension of the analytical approach to the case of structures with linked
preimages such as hopfions is the subject of our future research.
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