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The phase space of a mechanical system with singularities

Vyacheslav S. Kalnitsky® and S. N. Burian?

L2 Saint Petersburg State University, Russia

In the present report, we discuss some approaches to build the geometrical
image of phase space over the manifold with singularities. The start point
of our consideration is the real mechanical model of double pendulum with
restriction.The rod lengths ratio is 2:1.

Fig. 1. Double pendulum with restriction

A thread of fixed length holds the end of a double pendulum, with their
own ends fixed on the vertical axis. It gives that the trajectory of the pendulum
end is an ellipse. Let us start with the length of the thread long enough for
motion through the vertical. The critical length is exactly when the rods of
the pendulum merge in the vertical position. Right before the critical value
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the motion of the pendulum has the following character: near the vertical, the
second rod leaves the elliptical trajectory and leaps to a symmetrical position
on restriction with the hit. When the length of the thread goes shorter, the point
of leaving goes closer to the vertical position. Finally, in the critical case the
points of leaving and hitting coincide and we observe the smooth symmetrical
motion near the vertical. All this is experimental data.

Now let us consider the configuration space of the pendulum. In the neigh-
borhood of the equilibrium state the space is two one-dimensional manifoldsin
R* with one point of intersection. It is because there are two possible positions
of the second rod on the thread: before and after the first one. The intersection
in the general case is transversal and so the real trajectory of the system on
the configuration space has the angle without stop. It means that on any geo-
metrical image of phase space, as some sort of a bundle, the projection of the
evolution trajectory is not a smooth trajectory on the base.

Moreover, it easy to calculate the length of the thread and the positions
of their fixed ends such that the configuration space is the two lines with a
contact point of nonzero order. Now, any real trajectory is smooth, but we have
geometrical uncertainty, which contradicts dynamical certainty. Therefore, any
geometrical model of the phase space should guarantee the last.

In our investigation, we have considered several approaches to this prob-
lem. Namely, the Sikorsky space [1] and Diffiety space [2]. Both approaches
give different geometrical descriptions of the phase space as a bundle over
the singular manifold and some forms of a Hamiltonian vector field on them.
However, both approaches in the cases of transversality require that the solu-
tion of the differential equation in generalized sense must have zero velocity
at a singular point. In the case of geometrical uncertainty, they do not give the
resolution of it.

To explain the observed effect, we should suppose that the bundle leaf over
a singular point have more degrees of freedom than one. Maybe, for exam-
ple, the generalized solution of the Hamiltonian vector field poses a parameter
which is not time but some reparametrization of it.
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