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Light-hole excitons in quantum wells are less studied than the heavy-hole ones. In this paper,
we focus on the observation of the light-hole exciton behavior in the GaAs/AlGaAs quantum well
in the presence of the external magnetic field. We analyze the behaviour in terms of g-factor and
a diamagnetic shift constant. These values were extracted from the reflectance spectra obtained
in magnetic field up to B = 6 T. To model experimental results a numerical approach solving
the multidimensional Schroedinger equation is employed. It accounts for the heavy-hole-light-hole
coupling according to Luttinger Hamiltonian. Comparison with experiment revealed surprisingly
low diamagnetic shift in experiment with diamagnetic constant κ = 3.37 × 10−5 eV/T2. A series of
calculations was conducted varying problem parameters to reveal the origin of the low diamagnetic
shift. A further development of the numerical technique is needed to fully describe the behavior of
the light-hole exciton.

INTRODUCTION

Light hole exciton states in QWs have remained un-
tackled by the researchers1–5 in comparison to the heavy-
hole ones6–12. The reason is twofold. On one hand, the
heavy-hole exciton state in the GaAs-based heterostruc-
tures lies lower in energy, therefore it is observable in
both reflectance and photoluminescence spectra. Unlike
the light-hole exciton, which has roughly threefold less
oscillator strength and effective channel of relaxation to
the heavy-hole exciton state. On the other hand, their
properties are far too similar to address less available to
the experimental observations light hole state. On top of
that exciton states in quasi-two-dimensional structures
present difficulties to theoretical description, in particu-
lar, due to the penetration of quasiparticles into the bar-
rier, interplay of Coloumb coupling with QW potential,
and, finally, heavy-hole-light-hole (hh-lh) coupling in the
GaAs-based heterostructures.

Modern computation capabilities allow one to effec-
tively solve the Schroedinger equation for the exciton in
the QW taking into account all the above mentioned pe-
culiarities of the system. Numerical calculations of exci-
ton states has been developed for some time now11–16 and
several aspects of the exciton behavior have been success-
fully described in that studies. Exciton binding energy,
its oscillator strength across various QW widths, the g-
factor renormalization were modelled in the framework
of the numerical calculation.

Theoretical studies of the light-hole (lh) properties
in the QW heterostructures rely on the Luttinger-Kohn
model17,18. The situation in the QW is particularly in-
teresting for the ground lh state in the QW as it is in
the close vicinity of the second state of size quantization
for the heavy hole (hh). One would expect, that varying

QW width or the AlGaAs barrier height the properties
of the light hole can vary dramatically due to the hh-lh
coupling. However the formation of the exciton compli-
cates all sorts of theoretical efforts in this system. We
attempt to resolve this problem by means of the numer-
ical calculation.

Experimental studies of the lh exciton g-factor were
conducted previously19–21. They showed lh g-factor vari-
ation with QW width. Study [19] presents measure-
ments in which lh g-factor remains larger than 6, while in
study [21] this value is strictly lower than 6 for all studied
QWs. Possible reason for this difference lies in compo-
sition of the studied samples, which shows sensitivity of
the g-factor to the QW potential parameters. To model
these g-factor variations one has to take into account the
hh-lh coupling.

We also address the experimental aspect of the lh ex-
citon study. We use reflectance spectroscopy technique
with separate detection of two opposite circular polariza-
tions. In experiment external magnetic field spans from 0
to 6 T, with the sample placed in cryostat at T = 1.5 K.
Our access to the heterostructure samples of the high-
cristalline quality results in the reliable experimental re-
sults. To verify the quality of the heterostructure we
resort to the reflectance characterisation of the grown
samples. It allows one to determine radiative, Γ0, and
nonradiative, Γ, broadenings of the exciton resonance,
thus introducing a numerical value of the heterostruc-
ture quality in form of their ratio q = Γ0/Γ. This value
represents ratio of excitons emitted light to those scat-
tered from the exciton state to other channels of relax-
ation, in some structures in can be close to unity. In our
present work we measured lh exciton state in a 14-nm
GaAs/AlGaAs QW in presence of the external magnetic
field up to B = 6 T by means of reflectance spectroscopy.
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In the studied sample value q reaches 0.1 for lh exciton
and 0.3 for the hh one.

The manuscript is arranged as follows: first we present
the methods that we used in our study, then in section II
we discuss our numerical results in comparison to the
experimental data, we complete our study in discussion
section followed by the conclusions.

I. METHODS

A. Experiment

Experiment uses reflectance spectroscopy of the spe-
cially selected MBE-grown sample of fine crystalline qual-
ity. The sample was grown on [001] substrate, and con-
tains a 14-nm GaAs QW surrounded by AlGaAs barriers
with Al concentration of 3 %.

In experiment the light from incandescent lamp, passed
through 100µm pin-hole and fell on the sample at normal
incidence. The sample was cooled to T = 1.5 K in a cryo-
stat, equipped with a split coil superconducting magnet,
providing magnetic field up to B = 6 T in Faraday ge-
ometry. Light spot on the sample has the size of about
100µm. The reflected beam is then put into the detec-
tion system which consists of the λ/4 zero order wave
plate and a Glan-Taylor prism to separate circular polar-
izations. The detection is performed by the CCD-array,
attached to a 0.5-meter monochromator with gratings of
1200 gr./mm.

Only one lens was placed near the magnet coils to focus
the incident beam and collect the reflected one. It had
nonmagnetic mounting to avoid light beam alternation
with magnetic field applied. All other optical elements
were placed more than 2 meters away from the cryostat.
Due to geometrical limitation of the setup the light beams
were rotated. Special effort was made to preserve the po-
larisation of the reflected beam, it was redirected by two
prisms, using full internal reflection twice, so the polar-
isation distortion that appears at each reflection would
cancel out.

Reflectance spectra obtained in this measurements are
shown in figure 1. the hh exciton state and the lh exci-
ton states are found at positions expected in the 14-nm
GaAs-based QW. These energy positions are subject to
size-quantization effect and Coloumb binding effect act-
ing in opposite directions. Size quantization is expected
to shift lh exciton higher due to the smaller mass, while
Coloumb attraction is weaker in case of the lh exciton
due to smaller reduced mass.

The hh exciton state is accompanied with the low in-
tensity peak approximately 1 meV lower in energy, which
we ascribe to the trion state, and a similar in amplitude
peak that clearly has different from the hh exciton g-
factor of unknown nature. Possibly it is the dark exciton
state that somewhat interacts with light due to hh-lh
coupling. The hh exciton state and the lh one exhibit
diamagnetic shift and Zeeman splitting. In the GaAs
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FIG. 1. Reflectance spectrum of heterostructure T670 with
the 14-nm GaAs/Al0.03Ga0.97As QW. Labels “Xhh” and
“Xlh” mark the exciton states of hh and lh excitons. Magnetic
field was applied in Faraday geometry, detection is separate
for the opposite circular polarizations.

based QWs exciton Zeeman splitting is subject to the
renormalization which we investigated in detail for wider
QWs15. From this previous experience we attepmpt to
describe Zeeman splitting and diamagnetic shift using
the numerical calculation.

B. Calculation

Details of our numerical approach were already pre-
sented in our earlier studies15. It is based on the finite
difference method for solving Schrödinger equation. The
Hamiltonian is represented in form of a matrix, which
eigenvectors are the numerical values of the wave func-
tion on the given grid. The eigenvalues of the matrix are
approximations of the energies of the exciton states.

The Hamiltonian employed in this study has general
form:

Ĥ =Ĥc + Ĥv − e2

ε
√
ρ2+(ze−zh)2

+ VQW(ze, zh)

− 2κJµBB − σgeµBB (1)

here ε is the dielectric constant, e is electron charge, ze,h
are the coordinates of the electron/hole along the growth
axis, and ρ is the relative electron-hole distance in the
QW plane. Term VQW represents independent square
QW potentials for electron and hole and two last terms
represent the energy of the magnetic momenta J and σ in
the external magnetic field B with coefficients ge and 2κ,
that take into account renormalization of valence band
and conduction band g-factors due to interaction with
distant bands in crystal. For GaAs ge = −0.4422,23 and
κ = −1.2. The minus sign in the last two terms rep-
resents that usually collinear to magnetic field momenta
have smaller energy than anticollinear.
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The kinetic term Ĥc for the conduction band is defined
by the single effective electron mass, me = 0.0067m0:

Ĥc = −~2k̂2e
2me

(2)

For the valence band, however, we use Luttinger
Hamiltonian, which uses three parameters γ1, γ2, and
γ3 to describe the distortion of the valence band by the
cubic crystalline potential. To simplify the Hamiltonian
we shift to the center-of-mass and polar relative coordi-
nates in the QW plane. This transformation together

with generalized k̂e,h operators leads to massive expres-
sions15. Transition to the polar relative coordinates al-
lows to extract quantum number kϕ, which is valid for
the diagonal part of the Luttinger Hamiltonian. The di-
agonal elements of the Hamiltonian acquire a from:

(Hc +Hv)diag = − ~2

2µxy

(
1
ρ
∂
∂ρ

(
ρ ∂
∂ρ

)
− k2ϕ

ρ2

)
− ~2

2mhz
∂2

∂z2h
− ~2

2me
∂2

∂z2e

+ ρ2

2µxy

(
eB
2c

)2 − kϕ e~B2c (mh−meMµxy

)
(3)

The first two lines represent the kinetic energy of the
relative motion in the QW plane and along the growth
direction for the electron and hole separately, third line
describes the diamagnetic shift and energy correction for
the exciton orbital momentum in magnetic field.

Yet the diagonal part of the Luttinger Hamiltonian
presents itself in the chosen sets of coordinates as shown
in expressions (1, 3), however, nondiagonal elements of
the Hamiltonian alter the cylindrical symmetry, thus for
the whole Hamiltonian of the problem the kϕ quantum
number is not applicable. Here we resign to the simplifi-
cation that quantum number kϕ defines a set of solutions
for the diagonal part of the Hamiltonian, and nondiag-
onal elements describe interaction between several such
sets, according to the selection rules arising from the cu-
bic symmetry of the Hamiltonian.

According to this approach we compose a restricted
Hamiltonian that includes operator (1) for kϕ = 0,1, and
±2. Thus we consider optically active states of the diag-
onal part of the Hamiltonian (kϕ = 0), and those sets of
solutions that primarily couple with the optically active
exciton states. A restricted Hamiltonian therefore has
the following form:

Ĥ =

Hhh,kϕ=0 H12 H13 H13

H21 Hlh,kϕ=1 0 0
H31 0 Hlh,kϕ=2 0
H31 0 0 Hlh,kϕ=−2

 (4)

This structure represents a restricted Hamiltonian em-
ployed to describe optically active hh exciton state, while
for the lh exciton the indexes denoting the hole mass
would be reverted. Indexes ”hh” and ”lh” correspond

to substitution of hh and lh effective masses into expres-
sion (3). In particular:

mhh,z =
m0

γ1 − 2γ2
(5)

mlh,z =
m0

γ1 + 2γ2
(6)

mhh,xy =
m0

γ1 + γ2
(7)

mlh,xy =
m0

γ1 − γ2
(8)

Operators H12,21 and H13,31 follow from the Luttinger
Hamiltonian. H12,21 couple the heavy holes with the light
hole with same sign of angular momentum projection on
z-axis, while operators H13,31 couple those with opposite
ones. The detailed description of these operators is given
in [15].

For the Hamiltonian described above we set the grid
in ze, zh, and ρ coordinates. The grid should be large
enough to comprise the exciton wave function, but fine
enough to accurately represent square QW potential and,
more importantly, Coloumb potential. For a region along
ρ coordinate where ρ exceeds exciton Bohr radius the
uniform grid is dramatically inefficient since the wave
function is mainly exponentially decays in this region.
Therefore we introduced a nonuniform grid according to
a technique used in paper by Liu et al.24. Appendix con-
tains particular functions defining grid node coordinates,
that we used in our calculation.

II. COMPARISON

We have performed the calculations of the exciton en-
ergies and their wave functions with nominal parameters
of our heterostructure. Namely QW width L = 14 nm,
the Al concentration in barriers was 3%, which corre-
sponds to Vc + Vv = 42 meV of the barrier height. We
used Ve/Vv = 67/33 ratio, and mass parameters were
me = 0.0665, γ1 = 6.98, γ2 = 2.06, γ3 = 2.9 according
to the recommendation of the paper by Vurgaftman et
al.25.

Figure 2 compares our results to the experimentally
obtained data. Dashed line corresponds to the calcu-
lated hh exciton energies in the 14-nm QW. The lh exci-
ton energies for this calculation are not shown to avoid
cluttering of the figure as they fall on the experimental
resonances of the hh exciton.

To match the energy position of the exciton state we
varied the QW width and found that for LQW = 11.35
the calculation almost coincides with the experimental
data (blue and red connected dots). In spite this good
agreement the diamagnetic shift in experiment is still less
pronounced. Difference in diamagnetic shift is particu-
larly prominent for the lh exciton. One can consider this
as an indicator that experimental behaviour of the lh ex-
ctiton state corresponds to more compact exciton state.
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FIG. 2. Reflectance spectra in comparison with calculation at
nominal parameter (dashed line), and with calculation with
QW width set to LQW = 11.35 nm (blue and red connected
dots). Light blue dots correspond to the lh exciton position
extracted from nonradiative broadening excitation spectra.
For the nominal parameter calculation only hh curve is shawn,
because lh curve overlays the experimental spectra.

Indeed hydrogen-like exciton state in bulk material would
have diamagnetic shift that is presented by the formula:

∆Ediam =
〈ρ〉2 e2

8c2µ
B2 =

2π2ε2~2

c2µ3e2
B2 (9)

this expression uses Bohr exciton radius as mean value
of electron-hole distance perpendicular to the magnetic
field direction, 〈ρ〉. To reduce this value one have to re-
duce dielectric constant ε, thus reducing screening of the
charges in the medium, or increase the reduced mass µ.
Since the dielectric constant of GaAs is easily measured
via reflectance, its value is reliable. Therefore we con-
sider an increase of the reduced mass µ. In particular,
by the increase of the lh mass. Figure 3 shows isotropic
lh mass as a function of the reduced mass of the exciton
in its bottom panel. When one considers bare lh mass as
in Eq. (8) formula (9) gives diamagnetic constant value
highlighted by the red arrow in the figure. It is close
to the value obtained in our numerical calculation with-
out accounting for the hh-lh coupling (black dashed line
denoted ”bare lh κ”). Deviation from our calculation
is explained by the anisotropy of the diagonal part of
the exciton Hamiltonian. When we consider diamagnetic
constant retrieved from our calculation and from the ex-
periment (green and blue dashed lines correspondingly),
the reduced mass is increased so that isotropic lh mass is
of about 0.5m0 for the calculation and as high as m0 for
the experimental data. This brings us to the conclusion
that (a) hh-lh coupling is responsible for the low value of
the diamagnetic shift of the lh exciton, and (b) observed
discrepancy between calculated diamagnetic constant for
the lh exciton and that measured experimentally is sig-
nificant and requires further investigation.

In particular, hh-lh coupling can provide lh with a neg-
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FIG. 3. Diamagnetic shift constant as function of the reduced
mass in isotropic approximation (9) (top panel), and lh effec-
tive mass as a function of the reduced mass (bottom panel)

ative effective mass in the vicinity of Γ point. If the
wave vector of the lh confined in the exciton would be
distributed close to this point in the inverse space, the
reduced mass can increase even further. Although such
fine tuning of the heterostructure parameters is hardly
can be achieved for the real-life samples, our numerical
model can ignore the growth technology limitations.

III. DISCUSSION

We conducted several attempts to reach the coupling
regime in which the lh subband would acquire negative
mass near the Γ point. Those include varying Vc/Vv ra-
tio, accounting for additional hh-lh coupling due to sym-
metry breaking on the boarders of the QW, and variation
of the Luttinger parameters in the vicinity of their recom-
mended values. To compare various calculation results to
experimental values we fitted the lh exciton energy posi-
tions as function of magnetic field by the formula:

Eex(B) = E0 −
1

2
gµBB + κB2 (10)

here we introduced mean exciton g-factor, g, and dia-
magnetic constant, κ. Experimental values appeared to
be g = 3.9, κ = 3.87 × 10−5 eV/T2. Here we use term
mean g-factor due to slight deviation of the exciton en-
ergy splitting from the linear dependency. It arises from
hh-lh coupling variation with the magnetic field increase.

Our first approach lies in varying Ve/Vh ratio. The
underlying idea is to tune the energy distance between
the observable lh exciton state and those dark hh exciton
states that couple to it, and thus enhance the coupling
to acquire lower diamagnetic shift constant. Figure 4(a)
presents g-factors and diamagnetic constants obtained in
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FIG. 4. The mean g-factor (red) and the diamagnetic con-
stant (blue) values as a function of the valence band share
in the overall QW potential depth (a), the depth of the QW
potential (b), and the QW width (c). Red and blue stripes
show values extracted from the experiment, the width of the
stripe represents the uncertainty in the experimental value.

calculation as a function of the QW depth share in the
valence band. One can clearly see that although increase
in the valence band share leads to the decrease in the dia-
magnetic constant, the g-factor, in turn, tends to worse
agreement with the experiment. Furthermore, calcula-
tions with variation of the QW depth and of the QW
width also confirmed the opposite trends in g-factor and
κ behavior (see Figs 4 (b) and (c)). This correlation of

g-factor and κ clearly shows that no variation of QW po-
tential parameters can lead to simultaneous agreement
of both parameters with the experiment. As we have
shown in figure 2, setting QW width to LQW = 11.35 nm
brings calculated energies in agreement with experimen-
tally measured ones. Although calculations in figure 4
(a) and (b) were done for the nominal 14-nm QW width,
still lower QW width corresponds to great agreement for
the g-factor, and significant deviation for the diamag-
netic constant. Yet, given that calculation of the bare
g and κ (without hh-lh coupling) have values 2.8 and
6.7 × 10−5 eV/T2, the agreement is strikingly good, es-
pecially for the g-factor value.

These figures illustrate that the decrease of the lateral
exciton size, required to achieve experimental value of
κ, is not easily obtained by the QW potential variation.
In particular we examine higher QW depths and lower
QW widths, such variations enhance exciton localiza-
tion. Deeper QW leads to localization of charge carriers
in the growth direction, thus enhancing their Coloumb
coupling. Decreasing QW width acts in a similar man-
ner. This logic indeed works to a certain extent, however
the decrease of κ while deepening the QW or decreasing
it width is not enough even for the unrealistically high
QW potential depth.

Next we considered accounting for the additional hh-lh
coupling which occurs due to the symmetry breaking on
the QW border locally reducing the crystalline symmetry.
Based on the paper by M. Durnev et al.18 this hh-lh
coupling introduces addition to the Hamiltonian:

Ĥadd =
tl-h~2√
3m0a0

{Jx, Jy} (δ(zh − zl) + δ(zh − zr)) (11)

here a0 is the lattice constant, tl-h is the constant of about
unity, figure brackets denote anticommutator of the hole
angular momentum matrices Jx and Jy, and zl,zr are left
and right QW border coordinate respectively. Since we
are unable to introduce a delta-function into our numeri-
cal calculation, we replaced it with a Gaussian curve with
parameter:

δ(x)↔ 1

δx

e−
x
δx(

e−
x
δx + 1

)2 (12)

we used δx = 0.258 nm value in the calculation, which
corresponds to the half of the lattice constant of the
GaAs. Once we introduced term (11) to our calculation
we calculated κ and g parameters for various values of
tl-h. Results are shown in figure 5

It appears that our substitution of the delta-function
by the Gaussian curve gives rise to a significant effect
even for rather small values of parameter tl-h. Though
we achieve the desired regime, when the g-factor remains
almost unchanged while the κ changes significantly, the
additional coupling leads to the increase of the diamag-
netic shift constant.
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FIG. 5. The mean g-factor (red) and the diamagnetic con-
stant (blue) values as a function of the tl-h parameter. Dashed
grid lines show values extracted from the experiment.

(a)
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FIG. 6. The g-factor values (a) and the diamagnetic constant
values of the lh exciton (b) as a function of the Luttinger
parameters γ1, γ2, and γ3. Colors correspond to various values
of γ3 parameter.

We assume that our substitution of the delta-function
overestimates the effect of the additional symmetry-
driven coupling, since the original paper18 uses value
tl-h = 0.5. On the other hand, calculations in that paper
considered Al0.3Ga0.7As/GaAs QWs, with much higher
barriers, than in our case of tenfold less 3 % Al content
in the barriers.

Finally we produced a series of calculations for vary-
ing Luttinger parameters γ1, γ2, and γ3. We varied pa-
rameters in the vicinity of the recommended parameters.

Figure 6 represents the results of calculations.

Clearly, slight variation near the recommended values
has little effect on the diamagnetic constant and g-factor.
And even though hh-lh coupling decreases κ for ever in-
creasing γ3, g-factor in that case tends to increase. Vari-
ation of γ1 and γ2 has only slight effect on both param-
eters. Varying Luttinger parameters we could not reach
the desired experimental values of κ and g. However
agreement achieved in our calculation is remarkable. In-
deed, we conducted calculation without hh-lh coupling
and found that bare lh exciton g-factor is gbare = 2.84,
and bare diamagnetic constant value was found to be
κbare = 6.74× 10−5 eV/T2.

We have considered calculation of the lh exciton g-
factor and diamagnetic constant and tested a large set of
various parameters in attempt to reach a better agree-
ment with experiment. Though used Luttinger parame-
ters provide great agreement between numerical compu-
tation and experiment, further experimental verification
on a large set of samples as well as further numerical
analysis is required to refine the set of parameters for
GaAs based heterostructures.

IV. CONCLUSION

Experimental reflectance measurements showed sur-
prisingly low diamagnetic shift of the lh exciton state
in the 14-nm QW with 3% Al content. To explain this
behaviour we employed a numerical technique of solv-
ing Schrödinger equation based on the finite difference
method. The technique accounts for the hh-lh coupling
using Luttinger Hamiltonian, and allows one to examine
exciton states behavior under the influence of external
magnetic field in Faraday geometry.

We found a significant deviation of the calculated dia-
magnetic shift value from the experimentally observed
one. Several approaches were undertaken to converge
calculation results to the experimentally observed values
of g-factor and diamagnetic constant. We analysed an
effect of bands mismatch ratio, depth of the QW, and
QW width on the parameters. We also analysed possible
effect of the additional symmetry-driven hh-lh coupling
on the parameters. This additional coupling comes from
breaking of the crystalline symmetry at the QW bound-
aries. It could not however explain the deviation of our
model from the experimental data.

Finally we varied Luttinger parameters γ1, γ2, and γ3,
and found no significant improvement in the agreement
with experiment of calculated values g and κ, however
parameters obtained in our calculation are already close
to the experimental values. We suggest that further de-
velopment of the numerical model can lead to even better
agreement.
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Appendix A: Numerical procedure for the hh-lh
mixing

To optimize calculation time we implemented nonuni-
form grid in our calculation domain to decrease the num-
ber of grid nodes. In our previous study15 we modelled
relatively wide QW with width of 95 nm. Using the uni-
form grid we used grid ne × nh × nρ = 70 × 70 × 200 in
a 120× 120× 400 nm3 domain. The large size of domain
alonr the ρ coordinate is required to accurately describe
exponentially decaying exciton wave function. Here ne
and nh are the numbers of nodes along the ze and zh
direction, respectively, and nρ is that along the ρ direc-
tion. When one implements nonuniform grid number of
nodes in such domain can be reduced to 60×60×60 points
shrinking the matrix almost eightfold by dimension. This
allowed us to add hh-lh coupling into consideration. In
this study all calculations were made on 60×60×60 grid
in 50× 50× 160 nm3 domain.

The non-uniform grid is defined by the polynomial
smooth piecewise functions, defining coordinates of the
nodes:

zi =


ihz +

((
i− 5− n

2

)3 − (5− n
2

)3)
lz, if i >

n
2 + 5

ihz, if
∣∣i− n

2

∣∣ < 5

ihz +
((
i+ 5− n

2

)3 − (5− n
2

)3)
lz, if i <

n
2 − 5

(A1)

ρi =

{
ihρ, if i < 8

ihρ + (i− 8)
3
lρ, if i ≥ 8

(A2)

where hz, lz, hρ and lρ are constants, defining the scale
of linear and nonlinear parts of the grid, n = ne = nh
is the number of nodes along z coordinate (in current
calculations hρ = 0.66 nm, lρ = 2.3 × 10−4 nm, hz =
0.66 nm, lz = 3.5 × 10−4 nm). Constants 5 and 8 were
arbitrary chosen. Function (A1) was used for ze and zh
coordinates.

Difference schemes for the nonuniform grid were made
similarly to the schemes in Ref.24. For the schemes not
present in that paper, a Tailor series expansion was em-
ployed to construct system of linear equations, defining
scheme coefficients. We used the schemes with accuracy
not worse than O(h2), where h is characteristic distance
between nodes. Particular form of the differential oper-
ators were taken following the15, where similar problem
was solved for a wide InGaAs/GaAs QW.

It should be noted that, taking coupling into account
demands high accuracy from the calculation. Indeed, the
wave functions of states with angular momentum 1, that
get mixed to the ground exciton states, have two zeros
along the ρ axis. To describe such functions accurately,
one has to use grids with smaller step size in the vicinity
of the ρ = 0 point. In our calculation, step less than
1 nm was required to achieve reliable results. On the
other hand in the region of higher ρ values, the wave
function tends to the exponential decay. It does not os-
cillate, but having in mind zero boundary conditions in
the calculation, it is necessary to set larger domain in
the ρ direction. Step size in this region can be larger.
Our nonuniform grid approach meets both these require-
ments, and allows one to reliably calculate the exciton
wave function.
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