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Abstract. Ordinary differential equations (ODEs) are a well-known universal 

tool to describe dynamic processes in physics, chemistry, biology, etc. Nowa-

days, extensive development of sensing techniques and IoT devices resulted in 

the accumulation of a large amount of data that brought to the front edge the pure 

data-driven methods to describe and predict real-world processes. However, pure 

data-driven methods are unreliable in applications with higher requirements for 

generalization and the ability to interpret the results. To overcome the resulting 

problems, prior domain knowledge expressed in the form of ODEs should be 

incorporated into the data learning tool. For this reason, the paper suggests a pol-

ynomial neural network that, by design, corresponds to a system of ODEs. The 

proper initialization of the PNN transfers the knowledge of the specific depend-

encies and coefficient values from ODEs to the PNN. The paper introduces an 

iterative procedure for constructing a general solution for a nonstationary system 

of ODEs in the polynomial form. Matrix coefficients of this decomposition ini-

tialize PNN. This method is illustrated for generalized Lotka-Volterra ordinary 

differential equations demonstrating chaotic behavior. 

Keywords: Physics informed neural network, polynomial learning, system 

identification, Taylor mapping, neural ODE 

1 Introduction 

Differential equations are the fundamental language of all physical laws expressing 

the intrinsic nature of biological, physical, and chemical processes. Aside from these, 

differential equations (ODEs) are an essential tool in describing the behavior of com-

plex systems. In other words, they build the foundation for modeling process dynamics, 

design control systems, and short-term and mid-term forecasting. These explain a re-

cent interest in the governing equations reconstruction from the experimental data. 

Despite the universality of a system described by ordinary differential equations, it 

could be hard to build a full-scale model in real systems scenarios considering the in-

teractions of many parameters. So, generally ODE model is a simplification that cap-

tures only fundamental features of the complex physical process. 

On the other hand, due to the intense development and usage of machine learning 

(ML) algorithms, they tend to be a framework for building predicting models in differ-

ent areas. Although ML approaches possess a practical perspective and have prior 
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success, most cannot extract interpretable information from the data and do not work 

well on examples different from training data. This ambiguity has made it problematic 

for machine learning systems to be adopted in sensitive domains, where their value 

could be tremendous, such as industrial production, pharmaceutics, and so on [12]. 

These challenges led to the development of hybrid models, such as physics-inspired 

neural networks (PINN), aimed to blend black-box predicting models and domain in-

formation expressed as ordinary/partial differential equations or conservation laws 

[12]. Using differential equations in the neural network basis allows combining ODEs 

with neural network approaches such as learning and automatic feature extraction and 

using them to create new forecasting tools with improved extrapolation and interpreta-

bility. 

PINN often follows one of two ways to incorporate the governing physics equations: 

automatic differentiation of the loss function or classic numerical methods for solving 

a differential equation in the network design. For instance, [14] suggests the energy 

conservation law rather than the conventional 𝐿1-𝐿2 regularization, [7, 8] use Hamil-

ton’s equations to maintain the underlying system’s symplectic structure, [13–15] de-

mand that the NN output meets the Euler-Lagrange equation. Followers of the second 

technique utilize finite-difference or Runge-Kutta methods in neural networks [4, 18]. 

For instance, the basic Euler discretization of autonomous ODEs is similar to residual 

NNs [3, 16, 19]. Runge-Kutta schemes are closely related to recurrent NNs [10], while 

convolutional NNs are comparable with the multigrid method for PDEs [9]. 

To sum up, PINN is an analog to ODE (PDE) capable of solving forward and inverse 

problems with extensive identification power through online adaptation from new in-

coming data. In contrast to the existing methods, the strategy presented in this research 

offers a way to incorporate past knowledge about dynamical systems into NN. It is 

based on the Taylor mapping approach for solving ODEs and allows direct transfer of 

ODE to neural polynomial architecture (PNN) [1, 2, 6, 11]. The algorithm for initializ-

ing the nonstationary PNN weights is presented in the study, along with the results of 

using it to solve forward and inverse problems for the specified ODEs. 

The remainder of this article is arranged as follows: the problem statement is pre-

sented in Section 2, and the algorithm description for PNN initialization using ODE is 

provided in Section 3. The outcomes of numerically solving the forward and inverse 

problems for generalized Lotka-Volterra equations are shown in Section 4. 

2 Problem statement 

Consider the following set of ordinary differential equations: 

 
𝑑𝐗

𝑑𝑡
= 𝐹(𝑡, 𝐗). (1) 

Here 𝑡 is an independent variable (time), 𝐗 ∈ ℝ𝑛 is a 𝑛-dimensional state of the system, 

𝐹 is a known vector field that maps 𝐹:ℝ × ℝ𝑛 → ℝ𝑛 and implies the system’s past 

knowledge. 
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We aim to design a neural network’s building block incorporating ODEs (1). This 

block is going to specify the underlying ODEs’ dynamics and propagate the system 

state in time, i.e., solve (1) with initial condition 𝐗(𝑡0) = 𝐗0: 

 𝐗(𝑡, 𝐗0) = ℳ𝐹
𝑡(𝐗0) = 𝐗0 + ∫ 𝐹

𝑡

𝑡0
(𝜏, 𝐗(𝜏))𝑑𝜏. (2) 

Mapping ℳ𝐹
𝑡 defines system’s state propagator from time moment 𝑡0 to 𝑡 which is 

the core of ODE layer in neural network. Approximating ℳ𝐹
𝑡 with traditional solvers 

is based on dividing the interval [𝑡0, 𝑡] into several steps and numerical computing in-

tegral in (2). For example, the simplest iterative procedure is explicit Euler method 

where a single step takes the following form 

 𝐗(𝑡𝑘+1) = 𝐗(𝑡𝑘) + ℎ𝐹(𝑡𝑘, 𝐗(𝑡𝑘)). (3) 

The iterative formula (3) can also be used to represent advanced numerical integra-

tion techniques, where the state vector values at the previous time step are typically not 

multiplicatively separable in the nonlinear function 𝐹. This indicates that numerical 

computation should be repeated for each new initial condition when solving a forward 

problem for (1). On the other hand, it also complicates the identification of 𝐹 in the 

inverse problem for (1). 

The paper aims to build an expression of the flow ℳ𝐹
𝑡(𝐗0) in the polynomial form 

 𝐗(𝑡) = ∑ 𝑅1𝑖𝑚
𝑖=1 (𝑡, 𝑡0)𝐗0

[𝑖], (4) 

show the procedure to construct unknown 𝑅1𝑖(𝑡, 𝑡0), 𝑖 = 1. .𝑚 matrices based on the 

system (1) and a corresponding neural network’s layer. Here 𝐗[𝑘] is 𝑘-th Kronecker 

power of vector 𝐗 (means 𝐗⊗ 𝐗[𝑘−1] after removing duplicate terms). The advantage 

of representation (4) is that it is linear with respect to the matrices 𝑅1𝑖(𝑡, 𝑡0). 

3 PNN design 

3.1 General architecture 

The length of the time interval 𝑇 = [𝑡0, 𝑡] and the number of nonlinear terms 𝑚 af-

fect how accurate the approximation (4) is. A more precise numerical ODE solution is 

obtained by increasing 𝑚 and subdividing interval 𝑇 into smaller increments. The flow 

ℳ𝐹
𝑡(𝐗0) is identical to a network made up of a series of polynomial neurons displayed 

in Figure 1. If (1) is autonomous, PNN can be thought of as a recurrent neural network 

with shared weights because its weight matrices, 𝑅1𝑖(𝑡𝑗, 𝑡𝑗−1) ≡ 𝑊𝑖, depend only on 

the size of a time step 𝑡𝑗 − 𝑡𝑗−1. In contrast, for non stationary system, weights 

𝑅1𝑖(𝑡𝑗, 𝑡𝑗−1) ≡ 𝑊𝑖(𝑡) are time dependent. 
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Fig. 1. Internal structure of polynomial neuron (4th order of nonlinearity) and construction of 

PNN for stationary and nonstationary systems 

By design, PNN represents a general solution of ordinary differential equations up 

to the required degree of accuracy (4). To include the a priory knowledge about ODE 

into PNN, this is necessary to calculate weight matrices 𝑅1𝑖(𝑡𝑗 , 𝑡𝑗−1),  𝑖 = 1. .𝑚,  𝑗 =

1. .𝑀 directly from (1). 

3.2 PNN initialization 

We clarify the proposed algorithm for the case, when 𝐹(𝑡, 𝐗) ∈ 𝐶∞(ℝ × ℝ𝑛), so it 

can be expanded in Taylor series in the neighborhood of (𝑡0, 𝐗0). We consider the finite 
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number of terms in the expansion and for the following inferences consider a non-sta-

tionary nonlinear system of ODEs with a polynomial r.h.s. 

 
𝑑𝐗

𝑑𝑡
= ∑ P1𝑘𝑁

𝑘=0 (𝑡)𝐗[𝑘] (5) 

Let us introduce the notation for the vector of phase moments up to 𝑁-th order 𝐗𝑁 =

[𝐗, 𝐗[2], … 𝐗[𝑁]]
𝑇
, where 𝐗[𝑚] is 𝑚-th Kronecker’s degree of vector 𝐗. With the help of 

the axillary vector 𝐗𝑁 it may be shown [2, 6] that the system (5) can be transformed to 

a linear system 

 
𝑑𝐗𝑁

𝑑𝑡
= P𝑁(𝑡)𝐗𝑁 , (6) 

by discarding terms of order higher than 𝑁, where 

 P𝑁(𝑡) = (

𝑃11 𝑃12 … 𝑃1𝑁

0 𝑃22 … 𝑃2𝑁

⋮ ⋮ ⋱ ⋮
0 0 … 𝑃𝑁𝑁

). (7) 

Now, the solution of the linear system (6) can be found according to the formula 

 𝐗𝑁 = R𝑁(𝑡, 𝑡0)𝐗0
𝑁 , (8) 

where 𝐗0
𝑁 = 𝐗𝑁(𝑡0), R

𝑁(𝑡0, 𝑡0) = 𝐸, 𝐸 is an identity matrix of corresponding dimen-

sion. 

Matrix R𝑁 has a similar-to-(7) block structure 

R𝑁(𝑡) = (

𝑅11 𝑅12 … 𝑅1𝑁

0 𝑅22 … 𝑅2𝑁

⋮ ⋮ ⋱ ⋮
0 0 … 𝑅𝑁𝑁

). 

To find the block elements of the matrix 𝑅𝑁, we represent the linear system (8) as a 

system consisting of 𝑁 subsystems of linear differential equations 

 

{
 
 

 
 
𝑑𝐗

𝑑𝑡
= P11(𝑡)𝐗 + P12(𝑡)𝐗[2] +⋯+ P1𝑁(𝑡)𝐗[𝑁],

𝑑𝐗[2]

𝑑𝑡
= P22(𝑡)𝐗[2] +⋯+ P2𝑁(𝑡)𝐗[𝑁],

…
𝑑𝐗[𝑁]

𝑑𝑡
= P𝑁𝑁(𝑡)𝐗[𝑁].

 (9) 

We will solve this system starting from the last equation as it is linear 

𝑑𝐗[𝑁]

𝑑𝑡
= P𝑁𝑁(𝑡)𝐗[𝑁] 

and the solution to this linear system can be represented as 

𝐗[𝑁](𝑡) = R𝑁𝑁(𝑡, 𝑡0)𝐗𝟎
[𝑁]. 
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To find the matrix 𝑅𝑁𝑁, as well as all other diagonal matrices 𝑅𝑖𝑖 , let us consider a 

linearized first equation of the system (9) 

𝑑𝐗

𝑑𝑡
= P11(𝑡)𝐗. 

The solution can be found analytically or numerically in the form 

𝐗(𝑡) = R11(𝑡, 𝑡0)𝐗𝟎,  𝐗𝟎 = 𝐗(𝑡0) 

For example, if P11(𝑡) ≡ P11 = const, R11(𝑡, 𝑡0) = exp((𝑡 − 𝑡0)P
11). 

This is easy to see here, that matrix 𝑅𝑖𝑖  is represented as 

 R𝑖𝑖(𝑡, 𝑡0) = (R11(𝑡, 𝑡0))
[𝑖]
. (10) 

Continuing successive solving system (9), let us consider the penultimate subsystem 

𝑑𝐗[𝑁−1]

𝑑𝑡
= P𝑁−1𝑁−1(𝑡)𝐗[𝑁−1] + P𝑁−1𝑁(𝑡)𝐗[𝑁]. 

Substituting into this system the representation for 𝑋[𝑁], we get again a linear but 

non-homogeneous system with respect to 𝑋[𝑁−1] 

𝑑𝐗[𝑁−1]

𝑑𝑡
= P𝑁−1𝑁−1(𝑡)𝐗[𝑁−1] + P𝑁−1𝑁(𝑡)R𝑁𝑁(𝑡, 𝑡0)𝐗𝟎

[𝑁]. 

The solution of this system can be written using the Cauchy formula 

𝐗[𝑁−1](𝑡) = R𝑁−1𝑁−1(𝑡, 𝑡0)𝐗𝟎
[𝑁−1] + R𝑁𝑁(𝑡, 𝑡0)𝐗𝟎

[𝑁], 

where 

R𝑁−1𝑁−1(𝑡, 𝑡0) = ∫R𝑁−1𝑁−1

𝑡

𝑡0

(𝑡, 𝜏)P𝑁−1𝑁(𝑡)R𝑁𝑁(𝜏, 𝑡0)𝑑𝜏. 

We continue the indicating iterative procedure and assume that the subsystem 

 
𝑑𝐗[𝑖]

𝑑𝑡
= P𝑖𝑖(𝑡)𝐗[𝑖] +⋯+ P𝑖𝑁(𝑡)𝐗[𝑁] (11) 

has a solution 

 𝐗𝑖𝑖(𝑡) = ∑ R𝑖𝑘𝑁
𝑘=𝑖 (𝑡, 𝑡0)𝐗𝟎

[𝑘], (12) 

where 

 R𝑖𝑗(𝑡, 𝑡0) = ∑ ∫ R𝑖𝑖
𝑡

𝑡0

𝑗
𝑙=𝑖+1 (𝑡, 𝜏)P𝑖𝑙(𝑡)R𝑙𝑗(𝜏, 𝑡0)𝑑𝜏. (13) 

Let us show by induction the validity of formulas (11)-(13) for arbitrary 𝑖. For this, 

we consider the subsystem 
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𝑑𝐗[𝑖−1]

𝑑𝑡
= P𝑖−1𝑖−1(𝑡)𝐗[𝑖−1] +⋯+ P𝑖−1𝑁(𝑡)𝐗[𝑁] 

and substitute there the representations for 𝑋[𝑖], … , 𝑋[𝑁] from the inductive assumption 

(12)-(13). By this, we get a linear non-homogeneous system with respect to 𝑋[𝑖−1] 

𝑑𝐗[𝑖−1]

𝑑𝑡
= P𝑖−1𝑖−1(𝑡)𝐗[𝑖−1] + P𝑖−1𝑖(𝑡) ∑ R𝑖−1𝑘𝑁

𝑘=𝑖 (𝑡, 𝑡0)𝐗𝟎
[𝑘] +

P𝑖−1𝑖+1(𝑡) ∑ R𝑖−1𝑘𝑁
𝑘=𝑖+1 (𝑡, 𝑡0)𝐗𝟎

[𝑘] +⋯+ P𝑖−1𝑁−1(𝑡) ∑ R𝑖−1𝑘𝑁
𝑘=𝑁−1 (𝑡, 𝑡0)𝐗𝟎

[𝑘]

+P𝑖−1𝑁(𝑡)R𝑖−1𝑁(𝑡, 𝑡0)𝐗𝟎
[𝑁] = P𝑖−1𝑖−1(𝑡)𝐗[𝑖−1] +

∑ P𝑖−1𝑙𝑖+1
𝑙=𝑖 (𝑡)R𝑙𝑗(𝑡, 𝑡0)𝐗𝟎

[𝑖+1] +⋯+ ∑ P𝑖−1𝑙𝑁−1
𝑙=𝑖 (𝑡)R𝑙𝑗(𝑡, 𝑡0)𝐗𝟎

[𝑁−1] +

∑ P𝑖−1𝑙𝑁
𝑙=𝑖 (𝑡)R𝑙𝑗(𝑡, 𝑡0)𝐗𝟎

[𝑁].
 (14) 

Introducing the notation 

 Qi−1j(𝑡, 𝑡0) = ∑ P𝑖−1𝑙
𝑗
𝐿=𝑖 (𝑡)R𝑙𝑗(𝑡, 𝑡0), (15) 

we can rewrite a linear non-homogeneous system (14) in a shorter way 

𝑑𝐗[𝑖−1]

𝑑𝑡
= P𝑖−1𝑖−1(𝑡)𝐗[𝑖−1] +∑Qi−1j

𝑁

𝑗=𝑖

(𝑡, 𝑡0)𝐗𝟎
[𝑗]. 

This system has a solution 

𝐗[𝑖−1](𝑡, 𝑡0) = R
𝑖−1𝑖−1(𝑡, 𝑡0)(𝐗𝟎

[𝑖−1] +

+ ∫(R𝑖−1𝑖−1(𝜏, 𝑡0))
−1

𝑡

𝑡0

∑Qi−1j

𝑁

𝑗=𝑖

(𝑡, 𝑡0)𝐗𝟎
[𝑗]𝑑𝜏) =

R𝑖−1𝑖−1(𝑡, 𝑡0)𝐗𝟎
[𝑖−1] +∑(∫R𝑖−1𝑖−1

𝑡

𝑡0

(𝑡, 𝜏)Q𝑖−1𝑗(𝜏, 𝑡0)𝑑𝜏)

𝑁

𝑗=𝑖

𝐗𝟎
[𝑗].

 

Denoting 

R𝑖−1𝑗(𝑡, 𝑡0) = ∫R𝑖−1𝑖−1

𝑡

𝑡0

(𝑡, 𝜏)Qi−1j(𝜏, 𝑡0)𝑑𝜏 

and using the introduced in (15) representation for Qi−1j(𝑡, 𝑡0), we get 

R𝑖−1𝑗(𝑡, 𝑡0) = ∑ ∫R𝑖−1𝑖−1

𝑡

𝑡0

𝑗

𝑙=𝑖−1+1

(𝑡, 𝜏)Pi−1l(𝜏)R
𝑙𝑗(𝜏, 𝑡0)𝑑𝜏. 

These prove the validness of representations (11)-(13) and give an iterative proce-

dure to compute the matrices 𝑅1𝑘 and find solution approximation in the form (4). 
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As a result, this section offers an iterative method for obtaining the equation (5) 

solution in the polynomial form (4) and creating the associated PNN that may be used 

to solve both forward and inverse ODE problems. 

To solve both forward and inverse ODE problems, this section suggests an iterative 

method for finding the solution to (5) in polynomial form (4) and constructing the cor-

responding PNN. 

4 Numerical experiments 

Let us consider generalized Lotka-Volterra equations representing two-predator one-

prey population dynamics in an ecosystem to illustrate the proposed method of trans-

lating ODE to a neural network model. This system exhibits chaotic behavior for a 

specific set of parameters 𝑎, 𝑏, 𝑐. Thus, it is highly sensitive to initial conditions [17]. 

The following ODEs represent the considered Lotka-Volterra model: 

 

𝑥1̇ = 𝑥1 − 𝑥1𝑥2 + 𝑐𝑥1
2 − 𝑎𝑥1

2𝑥3,

𝑥2̇ = −𝑥2 + 𝑥1𝑥2
𝑥3̇ = −𝑏𝑥3 + 𝑎𝑥1

2𝑥3,

 (16) 

where 𝑎, 𝑏, 𝑐 are constant positive parameters of the system and 𝑥𝑖 , 𝑖 = 1,2,3 are the 

state variables. 

The existence of a stationary solution and the asymptotic behavior of the solution 

has been investigated in [5]. The parameters 𝑎, 𝑏, 𝑐 are chosen in such a way that species 

densities in the model converge to an extinction steady state, although this fact has no 

bearing on the demonstration of the efficacy of the method described in the study for 

solving both forward and inverse problems. It is explained by basing the analysis on 

the time interval where the solutions noticeably stand above zero. 

4.1 Forward problem 

The forward problem formulated for ODEs means finding its numerical solution 

when the full knowledge of the system is available (structure, parameters, initial con-

ditions). The system (16) demonstrates a chaotic behavior when the parameter value is 

taken as 𝑎 = 2.9851, 𝑏 = 3, 𝑐 = 2. The initial values of generalized Lotka-Volterra 

chaotic system (16) are taken as 𝑥1(0) = 16, 𝑥2(0) = 24, 𝑥3(0) = 18. 

Let us show the ability of the method presented in this paper to approximate (16) 

solution. We will compare numerical solutions obtained with traditional solver lsoda 

and TM-solver at the time interval 𝑇 = [0; 2]. We should construct a polynomial solu-

tion containing at least three matrices 𝑅1𝑖, 𝑖 = 1. .3, since the right-hand side of (16) 

has a maximum order of nonlinearity equal to three. Moreover, the equation (16) is 

autonomous, so the matrices 𝑅1𝑖 don’t depend on time and can be computed once for 

the fixed time step length. 

According to numerical simulations, the accuracy of the solution improves margin-

ally with increasing order of non-linearity for this system. Thus, we now concentrate 

on illustrating accuracy dependence on the time step. 
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Fig. 2. Generalized Lotka-Volterra system solution with lsoda and matrix mapping for 0.001 s 

time step 

 

Fig. 3. The difference between a numerical solution with lsoda and matrix mapping for 0.001 s 

time step of Lotka-Volterra system 
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Fig. 4. The difference between numerical solution with lsoda and matrix mapping for 5 ⋅
10−5 s time step of Lotka-Volterra system 

 

Fig. 5. The difference between numerical solution with lsoda and matrix mapping for 5 ⋅
10−5 s time step of Lotka-Volterra system 
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Figure 2 shows system (16) trajectories 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡) computed with tradi-

tional lsoda solver and the introduced matrix mapping approach for the time step 0.001 

and third order of nonlinearity. The matrices 𝑅1𝑖 𝑖 = 1. .3 computed according the pro-

posed algorithm are described by the formulas (17). Figure 3 illustrates the difference 

between the numerical solutions obtained with the two considered methods. 

 

𝑅11 = (
1 0 0
0 0.999 0
0 0 0.997

)

𝑅12 = (
0.002 −0.001 0 0 0 0
0 0.001 0 0 0 0
0 0 0 0 0 0

)

𝑅13 = (
4 ⋅ 10−6 −3.5 ⋅ 10−6 −0.003 5 ⋅ 10−7 … 0

0 1.5 ⋅ 10−6 0 −5 ⋅ 10−7 … 0
0 0 0.003 0 … 0

)

 (17) 

Comparing the graphics depicting the divergence between the numerical solutions 

and the system trajectories, we can conclude that divergence is maximal for the maxi-

mal absolute values of the solution derivative. Lsoda is an adaptive solver that uses the 

initial integration step 10−5 s. 

Let us illustrate the convergence of the matrix mapping solution by decreasing the 

time-step to the lsoda solution. Figure 4 and 5 shows system (16) trajectories 𝑥1(𝑡), 
𝑥2(𝑡), 𝑥3(𝑡) and difference with lsoda correspondingly for the time step 5 ⋅ 10−5 s and 

third order of nonlinearity. 

Comparing graphics in Figures 3 and 5 show that the maximal divergence between 

the solutions obtained with the traditional and proposed method is decreased by 50 

times with the reduction of the time-step by 20 times. That means, if necessary, we can 

get a more accurate approximation of ODE with PNN initialized with matrices (17) that 

don’t depend on ODEs’ initial values and thus can reflect the system dynamics in a 

whole range of input variations. 

4.2 Inverse problem 

Let us now illustrate the ability of PNN to solve the inverse problem for the given 

ODE (16) — learning a dynamic model from the data. We consider two cases: 

• the structure of the system is known, but the exact values of parameters 𝑎, 𝑏, 𝑐 

are unavailable; 

• no knowledge about the system is available. 

Training data set 

Here we consider the system (16) with parameters 𝑎 = 10, 𝑏 = 11, 𝑐 = 5. The train-

ing data are a single trajectory consisting of 1000 points simulated by numerical solving 

equation (16) by lsoda routine with initial condition 𝐗0 = [16,10,20]
𝑇. Time discreti-

zation is 5 ms. The aim is to train PNN from these data to represent the underlying 

dynamical process accurately. Then, the learned PNN can be built in as a block to deep 

learning architectures. 
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A. Knowledge-based learning 

In the first case, we consider learning with imperfect knowledge about a system. We 

suppose that the parameters of the Lotka-Volterra system are not known in advance, 

but the system structure is available. As the system structure is known, we can presume 

that parameters values are 𝑎 = 2.9851, 𝑏 = 3, 𝑐 = 2. Thus, this incorrect system is our 

knowledge. Then, we can represent ODE according to the described algorithm up to 

the 3rd order of nonlinearity. The matrices 𝑅1𝑖 , 𝑖 = 1. .3 are found via the formulas (17) 

already computed for the forward problem. We use them to initialize the PNN weights. 

Further, they are fine-tuned during training to correspond to the real 𝑎, 𝑏, 𝑐 values. 

We produce test data by numerically solving (16) with different initial conditions 

(𝐗0 = [6,2,4]
𝑇  and 𝐗0 = [10,6,8]𝑇) to verify the trained PNN model’s generalization 

power to correctly describe predator-prey dynamics. 

 

Fig. 6. Reconstructed predator-prey dynamics (dashed lines) with initialized PNN (blue dot 

line – training data (500 samples, 100 epochs), green and orange dot lines – test data)  

Figure 6 shows that even when our initial guess about parameter values 𝑎, 𝑏, 𝑐 is 

quite far from their original values, PNN was able to adapt during learning only with 

500 training data points and 100 epochs of training. The PNN’s predictions for the test 

data set simulated with new initial values justify its ability to recover correct system 

dynamics (cf. green and orange lines in Figure 6). 

B. Learning without knowledge 

The second case supposes that we don’t know anything about the system equations 

but still want to construct the ODE model on a PNN basis using the same training data 

as for the case A. Figure 7 shows the predictions done by the trained PNN for train and 

test data initial values. Compared to knowledge-based learning, learning without 

knowledge requires more training data to converge its predictions to the actual dynam-

ics. 
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However, it is seen from Figure 7 that there are still deviations in the second species 

(𝑥2) predictions leaving room for further improvement of PNN training from zero 

weights. One possibility is introducing regularization that aims to minimize the number 

of non-zero coefficients in the weight matrices during training. 

 

Fig. 7. Reconstructed predator-prey dynamics (dashed lines) with not initialized PNN (blue dot 

line – training data (1000 samples, 100 epochs), green and orange dot lines – test data) 

Comparison results 

Standard mean squared error is used as a loss function for training and validation, 

additionally, mean absolute and mean absolute percentage errors estimate the accuracy 

of the prediction. Table 1 gathers the indicated metrics for cases A and B during training 

and validation. Figure 8 compares epoch loss for PNN trained with 500 and 1000 data 

points with and without initialization. 

Table 1. Comparison metrics for train and test cases 

Experiment MSE MAE MAPE 

case A/500/Train 9.7814e-04 0.0166 2.2911 

case A/500/Val 1 3.2742e-06 0.0012 0.0430 

case A/500/Val 2 3.1238e-05 0.0031 0.1343 

case A/1000/Train 4.1810e-04 0.0095 2.1466 

case A/1000/Val 1 1.5368e-06 8.0159e-04 0.0268 

case A/1000/Val 2 7.8331e-06 0.0014 0.1053 

case B/500/Train 0.0013 0.0209 2.7056 

case B/500/Val 1 5.8122e-06 0.0016 0.0319 

case B/500/Val 2 4.4473e-05 0.0034 0.0918 

case B/1000/Train 4.5774e-04 0.0097 2.0666 

As expected, knowledge-based learning gives lower loss function and accuracy met-

rics values and requires less data for training. Learning from scratch in the same 
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conditions performs worse, but still, PNN replicates the actual system dynamics even 

for unseen initial conditions. 

 

Fig. 8. Comparison of loss value decrease during 100 epochs training with 500 and 1000 data 

points for initialized PNN (case A) and not initialized PNN (case B) 

5 Conclusion 

This study addresses the issue of incorporating prior knowledge about the dynamical 

system into a neural network using an approach different from those adopted in the 

literature. It allows direct transferring of ODEs as initial weights to neural polynomial 

architecture (PNN) based on the Taylor mapping technique for solving ODEs. Using 

differential equations models in the neural networks allows ODEs to be combined with 

neural network approaches such as learning and automatic feature extraction and ex-

ploit them in building new predictive tools with enhanced interpretability and extrapo-

lating ability. The paper presents an iterative algorithm for PNN’s initial weights con-

struction from the given or supposed underlying ODEs. The algorithm's convergence 

is illustrated by numerical solutions to forward problems for the generalized Lotka-

Volterra equation. 

On the other hand, PNN can also be an effective tool to tackle inverse problems 

where the equations are unknown, but we want the neural model to describe the dy-

namics in the data correctly. In this case, PNN can be trained from scratch, or if we 

have an assumption about the system equations, we can use this information to initialize 

PNN. Then, the PNN’s weights are fine-tuned using NN learning algorithms. The paper 

compares the convergence of learning with and without initialization. As expected, 

knowledge-based learning brings lower loss values while at the same time requiring 

less data for training. Learning from scratch in the same conditions performs worse, but 

the authors suppose it can be improved by introducing regularization for weights spar-

sity. That would be the topic of further consideration. 
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