
Neural Network Representation for Ordinary Differential

Equations

Anna Golovkina[0000-0002-8906-5227] and Vladimir Kozynchenko[0000-0003-1011-2455]

Saint Petersburg State University, Saint Petersburg 199034, Russia

a.golovkina@spbu.ru

Abstract. Ordinary differential equations (ODEs) are a well-known universal

tool to describe dynamic processes in physics, chemistry, biology, etc. Nowa-

days, extensive development of sensing techniques and IoT devices resulted in

the accumulation of a large amount of data that brought to the front edge the pure

data-driven methods to describe and predict real-world processes. However, pure

data-driven methods are unreliable in applications with higher requirements for

generalization and the ability to interpret the results. To overcome the resulting

problems, prior domain knowledge expressed in the form of ODEs should be

incorporated into the data learning tool. For this reason, the paper suggests a pol-

ynomial neural network that, by design, corresponds to a system of ODEs. The

proper initialization of the PNN transfers the knowledge of the specific depend-

encies and coefficient values from ODEs to the PNN. The paper introduces an

iterative procedure for constructing a general solution for a nonstationary system

of ODEs in the polynomial form. Matrix coefficients of this decomposition ini-

tialize PNN. This method is illustrated for generalized Lotka-Volterra ordinary

differential equations demonstrating chaotic behavior.

Keywords: Physics informed neural network, polynomial learning, system

identification, Taylor mapping, neural ODE

1 Introduction

Differential equations are the fundamental language of all physical laws expressing

the intrinsic nature of biological, physical, and chemical processes. Aside from these,

differential equations (ODEs) are an essential tool in describing the behavior of com-

plex systems. In other words, they build the foundation for modeling process dynamics,

design control systems, and short-term and mid-term forecasting. These explain a re-

cent interest in the governing equations reconstruction from the experimental data.

Despite the universality of a system described by ordinary differential equations, it

could be hard to build a full-scale model in real systems scenarios considering the in-

teractions of many parameters. So, generally ODE model is a simplification that cap-

tures only fundamental features of the complex physical process.

On the other hand, due to the intense development and usage of machine learning

(ML) algorithms, they tend to be a framework for building predicting models in differ-

ent areas. Although ML approaches possess a practical perspective and have prior

2

success, most cannot extract interpretable information from the data and do not work

well on examples different from training data. This ambiguity has made it problematic

for machine learning systems to be adopted in sensitive domains, where their value

could be tremendous, such as industrial production, pharmaceutics, and so on [12].

These challenges led to the development of hybrid models, such as physics-inspired

neural networks (PINN), aimed to blend black-box predicting models and domain in-

formation expressed as ordinary/partial differential equations or conservation laws

[12]. Using differential equations in the neural network basis allows combining ODEs

with neural network approaches such as learning and automatic feature extraction and

using them to create new forecasting tools with improved extrapolation and interpreta-

bility.

PINN often follows one of two ways to incorporate the governing physics equations:

automatic differentiation of the loss function or classic numerical methods for solving

a differential equation in the network design. For instance, [14] suggests the energy

conservation law rather than the conventional 𝐿1-𝐿2 regularization, [7, 8] use Hamil-

ton’s equations to maintain the underlying system’s symplectic structure, [13–15] de-

mand that the NN output meets the Euler-Lagrange equation. Followers of the second

technique utilize finite-difference or Runge-Kutta methods in neural networks [4, 18].

For instance, the basic Euler discretization of autonomous ODEs is similar to residual

NNs [3, 16, 19]. Runge-Kutta schemes are closely related to recurrent NNs [10], while

convolutional NNs are comparable with the multigrid method for PDEs [9].

To sum up, PINN is an analog to ODE (PDE) capable of solving forward and inverse

problems with extensive identification power through online adaptation from new in-

coming data. In contrast to the existing methods, the strategy presented in this research

offers a way to incorporate past knowledge about dynamical systems into NN. It is

based on the Taylor mapping approach for solving ODEs and allows direct transfer of

ODE to neural polynomial architecture (PNN) [1, 2, 6, 11]. The algorithm for initializ-

ing the nonstationary PNN weights is presented in the study, along with the results of

using it to solve forward and inverse problems for the specified ODEs.

The remainder of this article is arranged as follows: the problem statement is pre-

sented in Section 2, and the algorithm description for PNN initialization using ODE is

provided in Section 3. The outcomes of numerically solving the forward and inverse

problems for generalized Lotka-Volterra equations are shown in Section 4.

2 Problem statement

Consider the following set of ordinary differential equations:

𝑑𝐗

𝑑𝑡
= 𝐹(𝑡, 𝐗). (1)

Here 𝑡 is an independent variable (time), 𝐗 ∈ ℝ𝑛 is a 𝑛-dimensional state of the system,

𝐹 is a known vector field that maps 𝐹:ℝ × ℝ𝑛 → ℝ𝑛 and implies the system’s past

knowledge.

3

We aim to design a neural network’s building block incorporating ODEs (1). This

block is going to specify the underlying ODEs’ dynamics and propagate the system

state in time, i.e., solve (1) with initial condition 𝐗(𝑡0) = 𝐗0:

 𝐗(𝑡, 𝐗0) = ℳ𝐹
𝑡(𝐗0) = 𝐗0 + ∫ 𝐹

𝑡

𝑡0
(𝜏, 𝐗(𝜏))𝑑𝜏. (2)

Mapping ℳ𝐹
𝑡 defines system’s state propagator from time moment 𝑡0 to 𝑡 which is

the core of ODE layer in neural network. Approximating ℳ𝐹
𝑡 with traditional solvers

is based on dividing the interval [𝑡0, 𝑡] into several steps and numerical computing in-

tegral in (2). For example, the simplest iterative procedure is explicit Euler method

where a single step takes the following form

 𝐗(𝑡𝑘+1) = 𝐗(𝑡𝑘) + ℎ𝐹(𝑡𝑘, 𝐗(𝑡𝑘)). (3)

The iterative formula (3) can also be used to represent advanced numerical integra-

tion techniques, where the state vector values at the previous time step are typically not

multiplicatively separable in the nonlinear function 𝐹. This indicates that numerical

computation should be repeated for each new initial condition when solving a forward

problem for (1). On the other hand, it also complicates the identification of 𝐹 in the

inverse problem for (1).

The paper aims to build an expression of the flow ℳ𝐹
𝑡(𝐗0) in the polynomial form

 𝐗(𝑡) = ∑ 𝑅1𝑖𝑚
𝑖=1 (𝑡, 𝑡0)𝐗0

[𝑖], (4)

show the procedure to construct unknown 𝑅1𝑖(𝑡, 𝑡0), 𝑖 = 1. .𝑚 matrices based on the

system (1) and a corresponding neural network’s layer. Here 𝐗[𝑘] is 𝑘-th Kronecker

power of vector 𝐗 (means 𝐗⊗ 𝐗[𝑘−1] after removing duplicate terms). The advantage

of representation (4) is that it is linear with respect to the matrices 𝑅1𝑖(𝑡, 𝑡0).

3 PNN design

3.1 General architecture

The length of the time interval 𝑇 = [𝑡0, 𝑡] and the number of nonlinear terms 𝑚 af-

fect how accurate the approximation (4) is. A more precise numerical ODE solution is

obtained by increasing 𝑚 and subdividing interval 𝑇 into smaller increments. The flow

ℳ𝐹
𝑡(𝐗0) is identical to a network made up of a series of polynomial neurons displayed

in Figure 1. If (1) is autonomous, PNN can be thought of as a recurrent neural network

with shared weights because its weight matrices, 𝑅1𝑖(𝑡𝑗, 𝑡𝑗−1) ≡ 𝑊𝑖, depend only on

the size of a time step 𝑡𝑗 − 𝑡𝑗−1. In contrast, for non stationary system, weights

𝑅1𝑖(𝑡𝑗, 𝑡𝑗−1) ≡ 𝑊𝑖(𝑡) are time dependent.

4

Fig. 1. Internal structure of polynomial neuron (4th order of nonlinearity) and construction of

PNN for stationary and nonstationary systems

By design, PNN represents a general solution of ordinary differential equations up

to the required degree of accuracy (4). To include the a priory knowledge about ODE

into PNN, this is necessary to calculate weight matrices 𝑅1𝑖(𝑡𝑗 , 𝑡𝑗−1),  𝑖 = 1. .𝑚,  𝑗 =

1. .𝑀 directly from (1).

3.2 PNN initialization

We clarify the proposed algorithm for the case, when 𝐹(𝑡, 𝐗) ∈ 𝐶∞(ℝ × ℝ𝑛), so it

can be expanded in Taylor series in the neighborhood of (𝑡0, 𝐗0). We consider the finite

5

number of terms in the expansion and for the following inferences consider a non-sta-

tionary nonlinear system of ODEs with a polynomial r.h.s.

𝑑𝐗

𝑑𝑡
= ∑ P1𝑘𝑁

𝑘=0 (𝑡)𝐗[𝑘] (5)

Let us introduce the notation for the vector of phase moments up to 𝑁-th order 𝐗𝑁 =

[𝐗, 𝐗[2], … 𝐗[𝑁]]
𝑇
, where 𝐗[𝑚] is 𝑚-th Kronecker’s degree of vector 𝐗. With the help of

the axillary vector 𝐗𝑁 it may be shown [2, 6] that the system (5) can be transformed to

a linear system

𝑑𝐗𝑁

𝑑𝑡
= P𝑁(𝑡)𝐗𝑁 , (6)

by discarding terms of order higher than 𝑁, where

 P𝑁(𝑡) = (

𝑃11 𝑃12 … 𝑃1𝑁

0 𝑃22 … 𝑃2𝑁

⋮ ⋮ ⋱ ⋮
0 0 … 𝑃𝑁𝑁

). (7)

Now, the solution of the linear system (6) can be found according to the formula

 𝐗𝑁 = R𝑁(𝑡, 𝑡0)𝐗0
𝑁 , (8)

where 𝐗0
𝑁 = 𝐗𝑁(𝑡0), R

𝑁(𝑡0, 𝑡0) = 𝐸, 𝐸 is an identity matrix of corresponding dimen-

sion.

Matrix R𝑁 has a similar-to-(7) block structure

R𝑁(𝑡) = (

𝑅11 𝑅12 … 𝑅1𝑁

0 𝑅22 … 𝑅2𝑁

⋮ ⋮ ⋱ ⋮
0 0 … 𝑅𝑁𝑁

).

To find the block elements of the matrix 𝑅𝑁, we represent the linear system (8) as a

system consisting of 𝑁 subsystems of linear differential equations

{

𝑑𝐗

𝑑𝑡
= P11(𝑡)𝐗 + P12(𝑡)𝐗[2] +⋯+ P1𝑁(𝑡)𝐗[𝑁],

𝑑𝐗[2]

𝑑𝑡
= P22(𝑡)𝐗[2] +⋯+ P2𝑁(𝑡)𝐗[𝑁],

…
𝑑𝐗[𝑁]

𝑑𝑡
= P𝑁𝑁(𝑡)𝐗[𝑁].

 (9)

We will solve this system starting from the last equation as it is linear

𝑑𝐗[𝑁]

𝑑𝑡
= P𝑁𝑁(𝑡)𝐗[𝑁]

and the solution to this linear system can be represented as

𝐗[𝑁](𝑡) = R𝑁𝑁(𝑡, 𝑡0)𝐗𝟎
[𝑁].

6

To find the matrix 𝑅𝑁𝑁, as well as all other diagonal matrices 𝑅𝑖𝑖 , let us consider a

linearized first equation of the system (9)

𝑑𝐗

𝑑𝑡
= P11(𝑡)𝐗.

The solution can be found analytically or numerically in the form

𝐗(𝑡) = R11(𝑡, 𝑡0)𝐗𝟎,  𝐗𝟎 = 𝐗(𝑡0)

For example, if P11(𝑡) ≡ P11 = const, R11(𝑡, 𝑡0) = exp((𝑡 − 𝑡0)P
11).

This is easy to see here, that matrix 𝑅𝑖𝑖 is represented as

 R𝑖𝑖(𝑡, 𝑡0) = (R11(𝑡, 𝑡0))
[𝑖]
. (10)

Continuing successive solving system (9), let us consider the penultimate subsystem

𝑑𝐗[𝑁−1]

𝑑𝑡
= P𝑁−1𝑁−1(𝑡)𝐗[𝑁−1] + P𝑁−1𝑁(𝑡)𝐗[𝑁].

Substituting into this system the representation for 𝑋[𝑁], we get again a linear but

non-homogeneous system with respect to 𝑋[𝑁−1]

𝑑𝐗[𝑁−1]

𝑑𝑡
= P𝑁−1𝑁−1(𝑡)𝐗[𝑁−1] + P𝑁−1𝑁(𝑡)R𝑁𝑁(𝑡, 𝑡0)𝐗𝟎

[𝑁].

The solution of this system can be written using the Cauchy formula

𝐗[𝑁−1](𝑡) = R𝑁−1𝑁−1(𝑡, 𝑡0)𝐗𝟎
[𝑁−1] + R𝑁𝑁(𝑡, 𝑡0)𝐗𝟎

[𝑁],

where

R𝑁−1𝑁−1(𝑡, 𝑡0) = ∫R𝑁−1𝑁−1

𝑡

𝑡0

(𝑡, 𝜏)P𝑁−1𝑁(𝑡)R𝑁𝑁(𝜏, 𝑡0)𝑑𝜏.

We continue the indicating iterative procedure and assume that the subsystem

𝑑𝐗[𝑖]

𝑑𝑡
= P𝑖𝑖(𝑡)𝐗[𝑖] +⋯+ P𝑖𝑁(𝑡)𝐗[𝑁] (11)

has a solution

 𝐗𝑖𝑖(𝑡) = ∑ R𝑖𝑘𝑁
𝑘=𝑖 (𝑡, 𝑡0)𝐗𝟎

[𝑘], (12)

where

 R𝑖𝑗(𝑡, 𝑡0) = ∑ ∫ R𝑖𝑖
𝑡

𝑡0

𝑗
𝑙=𝑖+1 (𝑡, 𝜏)P𝑖𝑙(𝑡)R𝑙𝑗(𝜏, 𝑡0)𝑑𝜏. (13)

Let us show by induction the validity of formulas (11)-(13) for arbitrary 𝑖. For this,

we consider the subsystem

7

𝑑𝐗[𝑖−1]

𝑑𝑡
= P𝑖−1𝑖−1(𝑡)𝐗[𝑖−1] +⋯+ P𝑖−1𝑁(𝑡)𝐗[𝑁]

and substitute there the representations for 𝑋[𝑖], … , 𝑋[𝑁] from the inductive assumption

(12)-(13). By this, we get a linear non-homogeneous system with respect to 𝑋[𝑖−1]

𝑑𝐗[𝑖−1]

𝑑𝑡
= P𝑖−1𝑖−1(𝑡)𝐗[𝑖−1] + P𝑖−1𝑖(𝑡) ∑ R𝑖−1𝑘𝑁

𝑘=𝑖 (𝑡, 𝑡0)𝐗𝟎
[𝑘] +

P𝑖−1𝑖+1(𝑡) ∑ R𝑖−1𝑘𝑁
𝑘=𝑖+1 (𝑡, 𝑡0)𝐗𝟎

[𝑘] +⋯+ P𝑖−1𝑁−1(𝑡) ∑ R𝑖−1𝑘𝑁
𝑘=𝑁−1 (𝑡, 𝑡0)𝐗𝟎

[𝑘]

+P𝑖−1𝑁(𝑡)R𝑖−1𝑁(𝑡, 𝑡0)𝐗𝟎
[𝑁] = P𝑖−1𝑖−1(𝑡)𝐗[𝑖−1] +

∑ P𝑖−1𝑙𝑖+1
𝑙=𝑖 (𝑡)R𝑙𝑗(𝑡, 𝑡0)𝐗𝟎

[𝑖+1] +⋯+ ∑ P𝑖−1𝑙𝑁−1
𝑙=𝑖 (𝑡)R𝑙𝑗(𝑡, 𝑡0)𝐗𝟎

[𝑁−1] +

∑ P𝑖−1𝑙𝑁
𝑙=𝑖 (𝑡)R𝑙𝑗(𝑡, 𝑡0)𝐗𝟎

[𝑁].
 (14)

Introducing the notation

 Qi−1j(𝑡, 𝑡0) = ∑ P𝑖−1𝑙
𝑗
𝐿=𝑖 (𝑡)R𝑙𝑗(𝑡, 𝑡0), (15)

we can rewrite a linear non-homogeneous system (14) in a shorter way

𝑑𝐗[𝑖−1]

𝑑𝑡
= P𝑖−1𝑖−1(𝑡)𝐗[𝑖−1] +∑Qi−1j

𝑁

𝑗=𝑖

(𝑡, 𝑡0)𝐗𝟎
[𝑗].

This system has a solution

𝐗[𝑖−1](𝑡, 𝑡0) = R
𝑖−1𝑖−1(𝑡, 𝑡0)(𝐗𝟎

[𝑖−1] +

+ ∫(R𝑖−1𝑖−1(𝜏, 𝑡0))
−1

𝑡

𝑡0

∑Qi−1j

𝑁

𝑗=𝑖

(𝑡, 𝑡0)𝐗𝟎
[𝑗]𝑑𝜏) =

R𝑖−1𝑖−1(𝑡, 𝑡0)𝐗𝟎
[𝑖−1] +∑(∫R𝑖−1𝑖−1

𝑡

𝑡0

(𝑡, 𝜏)Q𝑖−1𝑗(𝜏, 𝑡0)𝑑𝜏)

𝑁

𝑗=𝑖

𝐗𝟎
[𝑗].

Denoting

R𝑖−1𝑗(𝑡, 𝑡0) = ∫R𝑖−1𝑖−1

𝑡

𝑡0

(𝑡, 𝜏)Qi−1j(𝜏, 𝑡0)𝑑𝜏

and using the introduced in (15) representation for Qi−1j(𝑡, 𝑡0), we get

R𝑖−1𝑗(𝑡, 𝑡0) = ∑ ∫R𝑖−1𝑖−1

𝑡

𝑡0

𝑗

𝑙=𝑖−1+1

(𝑡, 𝜏)Pi−1l(𝜏)R
𝑙𝑗(𝜏, 𝑡0)𝑑𝜏.

These prove the validness of representations (11)-(13) and give an iterative proce-

dure to compute the matrices 𝑅1𝑘 and find solution approximation in the form (4).

8

As a result, this section offers an iterative method for obtaining the equation (5)

solution in the polynomial form (4) and creating the associated PNN that may be used

to solve both forward and inverse ODE problems.

To solve both forward and inverse ODE problems, this section suggests an iterative

method for finding the solution to (5) in polynomial form (4) and constructing the cor-

responding PNN.

4 Numerical experiments

Let us consider generalized Lotka-Volterra equations representing two-predator one-

prey population dynamics in an ecosystem to illustrate the proposed method of trans-

lating ODE to a neural network model. This system exhibits chaotic behavior for a

specific set of parameters 𝑎, 𝑏, 𝑐. Thus, it is highly sensitive to initial conditions [17].

The following ODEs represent the considered Lotka-Volterra model:

𝑥1̇ = 𝑥1 − 𝑥1𝑥2 + 𝑐𝑥1
2 − 𝑎𝑥1

2𝑥3,

𝑥2̇ = −𝑥2 + 𝑥1𝑥2
𝑥3̇ = −𝑏𝑥3 + 𝑎𝑥1

2𝑥3,

 (16)

where 𝑎, 𝑏, 𝑐 are constant positive parameters of the system and 𝑥𝑖 , 𝑖 = 1,2,3 are the

state variables.

The existence of a stationary solution and the asymptotic behavior of the solution

has been investigated in [5]. The parameters 𝑎, 𝑏, 𝑐 are chosen in such a way that species

densities in the model converge to an extinction steady state, although this fact has no

bearing on the demonstration of the efficacy of the method described in the study for

solving both forward and inverse problems. It is explained by basing the analysis on

the time interval where the solutions noticeably stand above zero.

4.1 Forward problem

The forward problem formulated for ODEs means finding its numerical solution

when the full knowledge of the system is available (structure, parameters, initial con-

ditions). The system (16) demonstrates a chaotic behavior when the parameter value is

taken as 𝑎 = 2.9851, 𝑏 = 3, 𝑐 = 2. The initial values of generalized Lotka-Volterra

chaotic system (16) are taken as 𝑥1(0) = 16, 𝑥2(0) = 24, 𝑥3(0) = 18.

Let us show the ability of the method presented in this paper to approximate (16)

solution. We will compare numerical solutions obtained with traditional solver lsoda

and TM-solver at the time interval 𝑇 = [0; 2]. We should construct a polynomial solu-

tion containing at least three matrices 𝑅1𝑖, 𝑖 = 1. .3, since the right-hand side of (16)

has a maximum order of nonlinearity equal to three. Moreover, the equation (16) is

autonomous, so the matrices 𝑅1𝑖 don’t depend on time and can be computed once for

the fixed time step length.

According to numerical simulations, the accuracy of the solution improves margin-

ally with increasing order of non-linearity for this system. Thus, we now concentrate

on illustrating accuracy dependence on the time step.

9

Fig. 2. Generalized Lotka-Volterra system solution with lsoda and matrix mapping for 0.001 s

time step

Fig. 3. The difference between a numerical solution with lsoda and matrix mapping for 0.001 s

time step of Lotka-Volterra system

10

Fig. 4. The difference between numerical solution with lsoda and matrix mapping for 5 ⋅
10−5 s time step of Lotka-Volterra system

Fig. 5. The difference between numerical solution with lsoda and matrix mapping for 5 ⋅
10−5 s time step of Lotka-Volterra system

11

Figure 2 shows system (16) trajectories 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡) computed with tradi-

tional lsoda solver and the introduced matrix mapping approach for the time step 0.001

and third order of nonlinearity. The matrices 𝑅1𝑖 𝑖 = 1. .3 computed according the pro-

posed algorithm are described by the formulas (17). Figure 3 illustrates the difference

between the numerical solutions obtained with the two considered methods.

𝑅11 = (
1 0 0
0 0.999 0
0 0 0.997

)

𝑅12 = (
0.002 −0.001 0 0 0 0
0 0.001 0 0 0 0
0 0 0 0 0 0

)

𝑅13 = (
4 ⋅ 10−6 −3.5 ⋅ 10−6 −0.003 5 ⋅ 10−7 … 0

0 1.5 ⋅ 10−6 0 −5 ⋅ 10−7 … 0
0 0 0.003 0 … 0

)

 (17)

Comparing the graphics depicting the divergence between the numerical solutions

and the system trajectories, we can conclude that divergence is maximal for the maxi-

mal absolute values of the solution derivative. Lsoda is an adaptive solver that uses the

initial integration step 10−5 s.

Let us illustrate the convergence of the matrix mapping solution by decreasing the

time-step to the lsoda solution. Figure 4 and 5 shows system (16) trajectories 𝑥1(𝑡),
𝑥2(𝑡), 𝑥3(𝑡) and difference with lsoda correspondingly for the time step 5 ⋅ 10−5 s and

third order of nonlinearity.

Comparing graphics in Figures 3 and 5 show that the maximal divergence between

the solutions obtained with the traditional and proposed method is decreased by 50

times with the reduction of the time-step by 20 times. That means, if necessary, we can

get a more accurate approximation of ODE with PNN initialized with matrices (17) that

don’t depend on ODEs’ initial values and thus can reflect the system dynamics in a

whole range of input variations.

4.2 Inverse problem

Let us now illustrate the ability of PNN to solve the inverse problem for the given

ODE (16) — learning a dynamic model from the data. We consider two cases:

• the structure of the system is known, but the exact values of parameters 𝑎, 𝑏, 𝑐

are unavailable;

• no knowledge about the system is available.

Training data set

Here we consider the system (16) with parameters 𝑎 = 10, 𝑏 = 11, 𝑐 = 5. The train-

ing data are a single trajectory consisting of 1000 points simulated by numerical solving

equation (16) by lsoda routine with initial condition 𝐗0 = [16,10,20]
𝑇. Time discreti-

zation is 5 ms. The aim is to train PNN from these data to represent the underlying

dynamical process accurately. Then, the learned PNN can be built in as a block to deep

learning architectures.

12

A. Knowledge-based learning

In the first case, we consider learning with imperfect knowledge about a system. We

suppose that the parameters of the Lotka-Volterra system are not known in advance,

but the system structure is available. As the system structure is known, we can presume

that parameters values are 𝑎 = 2.9851, 𝑏 = 3, 𝑐 = 2. Thus, this incorrect system is our

knowledge. Then, we can represent ODE according to the described algorithm up to

the 3rd order of nonlinearity. The matrices 𝑅1𝑖 , 𝑖 = 1. .3 are found via the formulas (17)

already computed for the forward problem. We use them to initialize the PNN weights.

Further, they are fine-tuned during training to correspond to the real 𝑎, 𝑏, 𝑐 values.

We produce test data by numerically solving (16) with different initial conditions

(𝐗0 = [6,2,4]
𝑇 and 𝐗0 = [10,6,8]𝑇) to verify the trained PNN model’s generalization

power to correctly describe predator-prey dynamics.

Fig. 6. Reconstructed predator-prey dynamics (dashed lines) with initialized PNN (blue dot

line – training data (500 samples, 100 epochs), green and orange dot lines – test data)

Figure 6 shows that even when our initial guess about parameter values 𝑎, 𝑏, 𝑐 is

quite far from their original values, PNN was able to adapt during learning only with

500 training data points and 100 epochs of training. The PNN’s predictions for the test

data set simulated with new initial values justify its ability to recover correct system

dynamics (cf. green and orange lines in Figure 6).

B. Learning without knowledge

The second case supposes that we don’t know anything about the system equations

but still want to construct the ODE model on a PNN basis using the same training data

as for the case A. Figure 7 shows the predictions done by the trained PNN for train and

test data initial values. Compared to knowledge-based learning, learning without

knowledge requires more training data to converge its predictions to the actual dynam-

ics.

13

However, it is seen from Figure 7 that there are still deviations in the second species

(𝑥2) predictions leaving room for further improvement of PNN training from zero

weights. One possibility is introducing regularization that aims to minimize the number

of non-zero coefficients in the weight matrices during training.

Fig. 7. Reconstructed predator-prey dynamics (dashed lines) with not initialized PNN (blue dot

line – training data (1000 samples, 100 epochs), green and orange dot lines – test data)

Comparison results

Standard mean squared error is used as a loss function for training and validation,

additionally, mean absolute and mean absolute percentage errors estimate the accuracy

of the prediction. Table 1 gathers the indicated metrics for cases A and B during training

and validation. Figure 8 compares epoch loss for PNN trained with 500 and 1000 data

points with and without initialization.

Table 1. Comparison metrics for train and test cases

Experiment MSE MAE MAPE

case A/500/Train 9.7814e-04 0.0166 2.2911

case A/500/Val 1 3.2742e-06 0.0012 0.0430

case A/500/Val 2 3.1238e-05 0.0031 0.1343

case A/1000/Train 4.1810e-04 0.0095 2.1466

case A/1000/Val 1 1.5368e-06 8.0159e-04 0.0268

case A/1000/Val 2 7.8331e-06 0.0014 0.1053

case B/500/Train 0.0013 0.0209 2.7056

case B/500/Val 1 5.8122e-06 0.0016 0.0319

case B/500/Val 2 4.4473e-05 0.0034 0.0918

case B/1000/Train 4.5774e-04 0.0097 2.0666

As expected, knowledge-based learning gives lower loss function and accuracy met-

rics values and requires less data for training. Learning from scratch in the same

14

conditions performs worse, but still, PNN replicates the actual system dynamics even

for unseen initial conditions.

Fig. 8. Comparison of loss value decrease during 100 epochs training with 500 and 1000 data

points for initialized PNN (case A) and not initialized PNN (case B)

5 Conclusion

This study addresses the issue of incorporating prior knowledge about the dynamical

system into a neural network using an approach different from those adopted in the

literature. It allows direct transferring of ODEs as initial weights to neural polynomial

architecture (PNN) based on the Taylor mapping technique for solving ODEs. Using

differential equations models in the neural networks allows ODEs to be combined with

neural network approaches such as learning and automatic feature extraction and ex-

ploit them in building new predictive tools with enhanced interpretability and extrapo-

lating ability. The paper presents an iterative algorithm for PNN’s initial weights con-

struction from the given or supposed underlying ODEs. The algorithm's convergence

is illustrated by numerical solutions to forward problems for the generalized Lotka-

Volterra equation.

On the other hand, PNN can also be an effective tool to tackle inverse problems

where the equations are unknown, but we want the neural model to describe the dy-

namics in the data correctly. In this case, PNN can be trained from scratch, or if we

have an assumption about the system equations, we can use this information to initialize

PNN. Then, the PNN’s weights are fine-tuned using NN learning algorithms. The paper

compares the convergence of learning with and without initialization. As expected,

knowledge-based learning brings lower loss values while at the same time requiring

less data for training. Learning from scratch in the same conditions performs worse, but

the authors suppose it can be improved by introducing regularization for weights spar-

sity. That would be the topic of further consideration.

Acknowledgment. The research presented in this paper was funded by Saint Petersburg State

University, project ID: 90317740.

References

1. Andrianov, S.: Symbolic computation of approximate symmetries for ordinary differential

equations. Mathematics and Computers in Simulation. 57, 3-5, 147–154 (2001).

15

2. Andrianov, S.N.: Dynamical modeling of control systems for particle beams. Saint Peters-

burg State University, SPb (2004).

3. Chen, R.T.Q. et al.: Neural ordinary differential equations. In: Proceedings of the 32nd in-

ternational conference on neural information processing systems. pp. 6572–6583 Curran As-

sociates Inc., Red Hook, NY, USA (2018).

4. Dufera, T.T.: Deep neural network for system of ordinary differential equations: Vectorized

algorithm and simulation. Machine Learning with Applications. 5, 100058 (2021).

https://doi.org/10.1016/j.mlwa.2021.100058.

5. Elsadany, A.A. et al.: Dynamical analysis, linear feedback control and synchronization of a

generalized Lotka-Volterra system. International Journal of Dynamics and Control. 6, 1,

328–338 (2017). https://doi.org/10.1007/s40435-016-0299-x.

6. Golovkina, A., Kozynchenko, V.: Parametric identification of a dynamical system with

switching. In: Gervasi, O. et al. (eds.) Computational science and its applications – ICCSA

2022 workshops. pp. 557–569 Springer International Publishing, Cham (2022).

7. Greydanus, S. et al.: Hamiltonian neural networks. In: Proceedings of the 33rd international

conference on neural information processing systems. Curran Associates Inc., Red Hook,

NY, USA (2019).

8. Han, C.-D. et al.: Adaptable hamiltonian neural networks. Physical Review Research. 3, 2,

(2021). https://doi.org/10.1103/physrevresearch.3.023156.

9. He, J., Xu, J.: MgNet: A unified framework of multigrid and convolutional neural network.

Science China Mathematics. 62, 7, 1331–1354 (2019). https://doi.org/10.1007/s11425-019-

9547-2.

10. Huang, Y.-W.: Neural networks for chemical engineers edited by a. B. Bulsari (Lap-

peenranta university of technology, Finland). Journal of the American Chemical Society.

118, 37, 8987–8987 (1996). https://doi.org/10.1021/ja955254c.

11. Ivanov, A. et al.: Polynomial neural networks and Taylor maps for dynamical systems sim-

ulation and learning. Frontiers in Artificial Intelligence and Applications. 1230–1237

(2019). https://doi.org/10.3233/FAIA200223.

12. Karniadakis, G.E. et al.: Physics-informed machine learning. Nature Reviews Physics. 3, 6,

422–440 (2021). https://doi.org/10.1038/s42254-021-00314-5.

13. Lusch, B. et al.: Deep learning for universal linear embeddings of nonlinear dynamics. Na-

ture Communications. 9, 1, (2018). https://doi.org/10.1038/s41467-018-07210-0.

14. Lutter, M. et al.: Deep lagrangian networks: Using physics as model prior for deep learning.

In: International conference on learning representations. (2019).

15. Roehrl, M.A. et al.: Modeling system dynamics with physics-informed neural networks

based on lagrangian mechanics. IFAC-PapersOnLine. 53, 2, 9195–9200 (2020).

https://doi.org/10.1016/j.ifacol.2020.12.2182.

16. Rubanova, Y. et al.: Latent ODEs for irregularly-sampled time series. In: Proceedings of the

33rd international conference on neural information processing systems. Curran Associates

Inc., Red Hook, NY, USA (2019).

17. Vaidyanathan, S.: Adaptive control and synchronization of a generalized Lotka–Volterra

system. International Journal on Bioinformatics & Biosciences. 1, 1, 12 (2011).

18. Wang, Y.-J., Lin, C.-T.: Runge-Kutta neural network for identification of dynamical systems

in high accuracy. IEEE Transactions on Neural Networks. 9, 2, 294–307 (1998).

https://doi.org/10.1109/72.661124.

19. Weinan, E.: A proposal on machine learning via dynamical systems. Communications in

Mathematics and Statistics. 5, 1, 1–11 (2017). https://doi.org/10.1007/s40304-017-0103-z.

https://doi.org/10.1016/j.mlwa.2021.100058
https://doi.org/10.1007/s40435-016-0299-x
https://doi.org/10.1103/physrevresearch.3.023156
https://doi.org/10.1007/s11425-019-9547-2
https://doi.org/10.1007/s11425-019-9547-2
https://doi.org/10.1021/ja955254c
https://doi.org/10.3233/FAIA200223
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s41467-018-07210-0
https://openreview.net/forum?id=BklHpjCqKm
https://doi.org/10.1016/j.ifacol.2020.12.2182
https://doi.org/10.1109/72.661124
https://doi.org/10.1007/s40304-017-0103-z

