

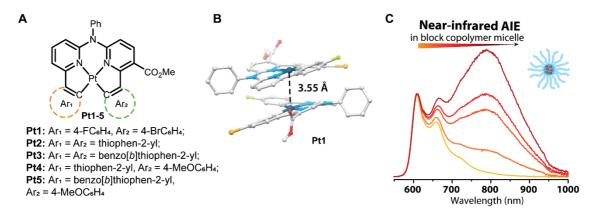
2nd INTERNATIONAL SYMPOSIUM

"NONCOVALENT INTERACTIONS IN SYNTHESIS, CATALYSIS, AND CRYSTAL ENGINEERING"

(NCI-2022)

Moscow, 14-16 November 2022

BOOK OF ABSTRACTS



Aggregation-induced emission of non-symmetric C^N*N^C-cyclometallated platinum(II) complexes

<u>Anastasia I. Solomatina</u>, Daria O. Kozina, Nina A. Zharskaia, Ekaterina E. Galenko, Pavel S. Chelushkin, Sergey P. Tunik

> Institute of Chemistry, St. Petersburg State University Universitetskii av., 26, 198504 St. Petersburg, Russia e-mail: nastisol@gmail.com

Square-planar platinum(II) complexes are known to be prone to axial π - π and d_{z2} - d_{z2} intermolecular interactions, which lead to the alteration of their photophysical properties, e.g. appearance of aggregation-induced emission (AIE) bands. We report a series of square-planar platinum(II) complexes **Pt1-Pt5** with non-symmetric tetradentate C^N*N^C-cyclometallated ligands (Figure 1A).¹ The complexes exhibit efficient luminescence with a quantum yield of up to 47% and bands' maxima ranging from 560 to 690 nm in degassed solution. Complexes **Pt1**, **Pt2**, and **Pt4** show mechanochromism in the solid state. Upon rapid injection of their THF solution in water, these complexes form nanosized particles with red-shifted AIE, indicating a change in the excited state. TD DFT computational analysis allowed assigning the observed AIE to ³MMLCT excited states of Pt-Pt bonded aggregates of these complexes (Figure 1B). For complex **Pt2**, we stabilized these aggregates inside micellar nanocarrier providing a new approach for near-infrared biosensors (Figure 1C).²

Figure 1. A. Simplified structure of **Pt1-Pt5** complexes; B. Optimized geometry of dimer of complex **Pt1** with short Pt-Pt contact; C. NIR-emission of copolymer micelles loaded with different wt. % of complex **Pt2**.

Acknowledgements

This research was supported by Russian Science Foundation grant 19-73-20055 and carried out using the equipment of St. Petersburg State University Research Park: Center for Magnetic Resonance, Center for Optical and Laser Research, Center for Chemical Analysis and Materials Research, Centre for X-ray Diffraction Studies, Computing Centre, and Cryogenic Department.

References

 A.I. Solomatina, E.E. Galenko, D.O. Kozina, A.A. Kalinichev, V.A. Baigildin, N.A. Prudovskaya, J.R. Shakirova, A.F. Khlebnikov, V.V. Porsev, R.A. Evarestov, S.P. Tunik, *Chem. Eur. J.* **2022**, accepted.
N.A. Zharskaia, A.I. Solomatina, Y.-C. Liao, E.E. Galenko, A.F. Khlebnikov, P.-T. Chou, P.S. Chelushkin, Tunik, S.P., *Biosensors* **2022**, 12, 695.