Хроматомасс-спектрометрическая характеристика моноалкилалкандиоатов

Евгений Владимирович Елисеенков, Игорь Георгиевич Зенкевич*

Санкт-Петербургский государственный университет, Институт химии, 198504, Санкт-Петербург, Университетский просп., 26, Россия *E-mail: izenkevich@yandex.ru

Поступила в редакцию 12.08.2022 г.; после переработки – 23.08.2022 г.

doi: 10.25703/MS.2022.19.13

За счет использования трех способов синтеза получены 48 моноалкиловых эфиров, образованных шестью алифатическими дикарбоновыми кислотами и восемью алканолами. Показано, что моноалкилалкандиоаты всегда присутствуют в реакционных смесях одновременно с соответствующими диэфирами, что обусловлено как особенностями их синтеза, так и возможным диспропорционированием в растворах. Однако, в отличие, например, от моноалкилфталатов, моноэфиры алифатических дикарбоновых кислот оказались стабильными в процессе газохроматографического разделения. На хроматограммах всех образцов не регистрируются характерные профили, свидетельствующие о разложении аналитов в хроматографической колонке.

Одновременное присутствие моно- и диалкиловых эфиров в образцах делает целесообразным идентификацию моноэфиров с использованием корреляции их газохроматографических индексов удерживания с индексами удерживания более подробно охарактеризованных диэфиров, **RI(моноэфир)** = a**RI(диэфир)** + b и других аналогичных соотношений. Моноалкилалкандиоаты (как любые карбоновые кислоты) отличаются высокой асимметрией хроматографических пиков на колонках со стандартными неполярными фазами, а в их массспектрах в условиях ионизации электронами закономерно отсутствуют сигналы молекулярных ионов. Массспектры монометиловых и моноэтиловых эфиров существенно отличаются от масс-спектров соответствующих диалкиловых эфиров, однако для спиртов с $R \ge C_3H_7$ масс-спектры моно- и диэфиров характеризуются значительным сходством.

Ключевые слова: моноалкиловые эфиры алифатических дикарбоновых кислот, сравнение с диалкиловыми эфирами, масс-спектры ИЭ, особенности фрагментации, газохроматографические индексы удерживания, гомологические инкременты индексов удерживания.

Chromatomass-spectrometric characterization of monoalkyl alkanedioates

Evgenii V. Eliseenkov, Igor G. Zenkevich*

St. Petersburg State University, Institute for Chemistry, Saint Petersburg, Universitetskii prosp., 26, 198504, Russia *E-mail: izenkevich@yandex.ru

Using three different synthetic methods, 48 monoalkyl esters of six aliphatic dicarboxylic acids and eight aliphatic alcohols were synthesized. Despite the method of synthesis, monoalkyl alkanedioates exist in reaction mixtures along with corresponding dialkyl esters. It is caused both by reaction mechanism, and by possible secondary bimolecular disproportionation in solutions. However, unlike, for example, monoalkyl phthalates, monoalkyl esters of aliphatic dicarboxylic esters appeared to be stable during their gas chromatographic separation. In no cases, characteristic chromatographic profiles, indicating the decomposition of analytes in the chromatographic column were observed.

The simultaneous presence of mono- and dialkyl esters in the samples allows using the correlation of retention indices of mono- and dialkyl esters for their identification, because the latter are characterized in more detailed way, namely **RI(monoester)** = a**RI(diester)** + b and some similar relations. The chromatographic peaks of monoalkyl alkanedioates (like for all carboxylic acids) are highly asymmetric on columns with non-polar stationary phases. Their electron ionization mass spectra naturally indicate the presence of no signals of molecular ions. Mass spectra of monomethyl and monoethyl esters differ markedly from those of corresponding dialkyl esters, but they are similar for alcohols with $R \ge C_3H_7$.

Keywords: monoalkyl esters of aliphatic dicarboxylic acids, comparison with dialkyl esters, mass spectra EI, features of fragmentation, gas chromatographic retention indices, homologous increments of retention indices.

Введение

Одной из основных причин эффективности современной хроматомасс-спектрометрии как метода идентификации компонентов сложных смесей органических соединений является существование подробного и хорошо систематизированного информационного обеспечения. Например, база данных NIST (версия 2017 г.) [1] содержит масс-спектры ИЭ 267376 соединений и газохроматографические индексы удерживания (**RI**) 99400 соединений на стандартных неполярных и полярных неподвижных фазах. В версии 2020 г. число охарактеризованных соединений доведено до 306869 (MC) и 139498 (**RI**), соответственно. Ценность таких баз еще и в том, что они позволяют выявлять не представленные в них как отдельные соединения, так и их группы (гомологические ряды,

совокупности конгенеров, изомеров и др.). Наиболее интересны причины отсутствия сведений об относительно простых соединениях. Можно предполагать, что ошибочная идентификация тех или иных аналитов, встречающихся в реальных образцах, часто связана именно с недостатком информационного обеспечения и со сходством масс-спектров соединений разных классов (так называемые ошибки II-го рода).

К основным причинам отсутствия справочной аналитической информации для хромато-массспектрометрической идентификации можно отнести следующие [2]:

1) Практическое применение тех или иных соединений неочевидно, что обусловливает отсутствие интереса химиков к таким аналитам;

2) Соединения не были обнаружены в природных объектах; нет сведений об их биологической активности, токсичности и т. д.;

 Их синтез сложен или характеризуется низкими выходами;

 Большое число изомеров высших гомологов, исчерпывающая характеристика всего многообразия которых невозможна (относится к любым гомологическим рядам);

5) Непосредственное хроматографическое разделение невозможно; требуется получение производных (дериватизация);

6) Соединения нестабильны и/или обладают высокой реакционной способностью.

Последняя из перечисленных причин (нестабильность аналитов) существенно ограничивает возможности их хроматографического разделения и приводит к заметному количеству ошибок и парадоксов при интерпретации аналитических данных [3]. В обращенно-фазовой высокоэффективной жидкостной хроматографии нестабильность аналитов чаще всего обусловлена их гидролизом, а в газовой хроматографии это происходит как в результате взаимодействия компонентов проб между собой в нагретом испарителе хроматографа, так и разложением в колонке в процессе движения хроматографических зон [4]. Кроме того, общим ограничением является нестабильность компонентов анализируемых проб в образцах еще до их анализа. Если она обусловлена взаимодействием со следами воды (гидролиз) или кислорода воздуха (окисление), то это можно устранить соответствующими модификациями способов хранения проб и техники их дозирования [5]. Если же речь идет о химической нестабильности аналитов, то ее устранение гораздо сложнее, но именно по этой причине подобные примеры заслуживают специального рассмотрения. Известен критерий выявления подобных процессов и частичной минимизации их влияния [6].

К простейшим соединениям, характеризующимся нестабильностью в образцах и, возможно, в процессе газохроматографического разделения, относятся моноалкиловые эфиры алкандикарбоновых кислот (I). Их отличительным химическим свойством является диспропорционирование в растворах с образованием термодинамически более стабильных диэфиров и соответствующих дикарбоновых кислот (схема 1):

Схема 1. Диспропорционирование моноэфиров дикарбоновых кислот.

Именно подобная нестабильность объясняет значительно менее подробную характеристику моноалкилалкандиоатов по сравнению с диэфирами и кислотами. В табл. 1 перечислены 14 таких моноэфиров C_5-C_{12} , упомянутых в базе [1]. Номера САS известны для 12 из них, но масс-спектры — только для восьми. При этом в спектрах трех моноэфиров присутствуют маловероятные сочетания интенсивных сигналов, что позволяет предположить их деструкцию. Что же касается индексов удерживания, то они были известны всего для трех алкилалкандикарбоксилатов (для одного — только на стандартной полярной фазе). Индексы удерживания специально синтезированной серии моноалкиловых эфиров (*Z*)-2-бутендиовой (малеиновой) кислоты определены в работе [7]

Чаще всего моноэфиры дикарбоновых кислот обнаруживали в эфирных маслах растений и в винах (закономерно – моноэтиловые эфиры) [8-11]. Небезынтересно заметить, что в газированных алкогольных напитках выявлено присутствие нестабильных моноалкиловых (прежде всего, моноэтилового) эфиров угольной кислоты [12]. Важную подгруппу образуют моноалкиловые эфиры бензол-1,2-дикарбоновой (фталевой) кислоты, для которых подтверждена термическая нестабильность в процессе газохроматографического разделения, тогда как в реакционных смесях фталевого ангидрида с соответствующими спиртами они достаточно стабильны [7, 13, 14]. На примере моноалкилфталатов можно отметить еще одну проблему, связанную с нестабильностью аналитов: искажения масс-спектров продуктами их термического разложения, даже если такие спектры записаны в условиях хромато-массспектрометрического анализа. Так, например, массспектр монометилфталата, приведенный в базе [1], практически совпадает с масс-спектром продукта его разложения – фталевого ангидрида [7, 13, 14].

Задача настоящей работы состояла в систематической хромато-масс-спектрометрической характеристике серии простейших моноалкиловых эфиров алкандикарбоновых кислот, образованных алканолами C_1-C_6 (восемь гомологов) и кислотами C_2-C_6 (шесть гомологов) нормального и изостроения, включая регистрацию их масс-спектров ИЭ и газохроматографических индексов удерживания на стандартной неполярной полидиметилсилоксановой неподвижной фазе. Общее число соединений – $8 \times 6 = 48$.

Экспериментальная часть

Использованные реагенты. Для получения микроколичеств моно- и диалкиловых эфиров алифатических дикарбоновых кислот использовали сле-

Моноэфир	Мол. масса	CAS №	Индекс удерживания на стандарт- ной неполярной фазе	Наиболее интенсивные сигналы в масс-спектре ИЭ (<i>m/z</i>)
Монометилбутандиоат	132	3878-55-5	1106	101
Моноэтилфумарат	144	2459-05-4	_	99
Монометилитаконат	144	7338-27-4	_	39, 59, 68, 85, 113**
Моноэтилбутандиоат*	146	1070-34-4	$2372 \pm 16^{***}$	101
Монометилпентандиоат	146	1501-27-5	_	42, 43, 46, 87, 100**
Монометилгександиоат	160	627-91-8	_	43, 56, 59, 74
Моноэтилгександиоат	174	626-86-8	_	56, 111, 128, 129**
Монопропилгександиоат	188	6939-72-6	_	_
Монометилнонандиоат	202	_	_	74, 152
Моноэтилоктандиоат	202	_	1553	—
Моноэтилнонандиоат	216	1593-55-1	_	_
Монопентилгександиоат	216	17961-10-3	—	—
Моноэтилдекандиоат	230	693-55-0		
Моногексилоктандиоат	230	17961-14-7	_	_

Таблица 1. Известные справочные данные для простейших моноалкилалкандиоатов $C_5 - C_{12}[1]$

*) Эфир обнаружен в работах [7–10]; остальные данные в базе [1] получены сотрудниками NIST и отдельно не опубликованы; **) Слишком необычные сочетания массовых чисел осколочных ионов могут свидетельствовать об искажении массспектров продуктами разложения; ***) Индекс удерживания на стандартной полярной фазе.

дующие соединения: янтарный ангидрид (98 %) («Acros Organics», Бельгия), глутаровый ангидрид (98 %) («Alfa Aesar», Германия), 2,2-диметилмалоновую кислоту (98 %) («Sigma-Aldrich», Германия), оксалилхлорид (98 %) («Мегск», Германия); щавелевую, малоновую, глутаровую и адипиновую кислоты («Реахим», Москва); метанол, этанол, 1-пропанол, 2-пропанол, 1-бутанол («Вектон», Санкт-Петербург); 2-метил-1-пропанол, 1-пентанол и 1-гексанол («Реахим», Москва). Сложные эфиры, необходимые для синтеза моноэфиров дикарбоновых кислот методом II, получали используя известные подходы, либо использовали промышленные продукты («Реахим», Москва). Ионообменная смола Dowex 50WX4 (200-400 меш) была любезно предоставлена сотрудником Института химии СПбГУ Т.Д. Мюльде, авторы выражают ей свою искреннюю признательность.

Методы синтеза моноэфиров алифатических дикарбоновых кислот. В литературе не удалось обнаружить ни одного обзора по методам получения моноэфиров дикарбоновых кислот. По-видимому, общего метода синтеза таких эфиров не существует. Поэтому была обработана информация по способам синтеза отдельных представителей этого класса соединений, главным образом, с использованием баз данных «Science Finder» и « Reaxys».

В случае алифатических дикарбоновых кислот, способных образовывать ангидриды, реакция таких ангидридов с избытком безводного алканола представляет собой достаточно общий и хорошо воспроизводимый метод синтеза рассматриваемого класса соединений (далее обозначен как метод III) [15, 16]. Аналогичный способ был использован при синтезе моноалкилфталатов [7, 13, 14] и моноалкилмалеатов [7]. Второй способ – селективная моноэтерификация дикарбоновых кислот, основанная на реакции переэтерификации, катализируемой ионообменной смолой Dowex в кислой форме, предложена в 1996 г. [17] (метод II). Установлено, что высшие алифатические дикарбоновые кислоты (1 ммоль) при нагревании со значительным избытком алкилформиата (40–50 ммоль) в присутствии 1 г смолы Dowex 50WX2 в октане (растворитель) дают алкиловые моноэфиры при незначительном образовании соответствующих диэфиров, так что селективность процесса, оцениваемая по мольному соотношению моноэфир / диэфир, как правило, превышает 10. В последующие годы работы в этом направлении были продолжены с целью объяснения высокой селективности моноэтерификации [18]. По нашим данным, в большинстве

Рис. 1. Фрагмент хроматограммы реакционной смеси, содержащей ди- (пик I) и моноэтиловые эфиры малоновой кислоты (пик II); соотношение относительных количеств 85:15 (табл. 2, 3)

Эфир	Метод синтеза*	<i>S</i> _{отн} , %	М	RI**	Масс-спектр: <i>m/z</i> ≥ 39 (<i>I</i> _{отн} ≥ 2%)
Монометил ок- салат	Ι	79	104	912 ± 4	60(14), 59(40) [CH ₃ OCO],46(2), 45(100) [HCO ₂], 44(15), 43(5)
Моноэтил окса- лат***	Ι	86	118	997 ± 3	74(4), 73(5), 60(3), 59(16), 57(3), 56(5), 47(2), 46(5), 45(57) [HCO ₂], 44(9), 43(6), 42(5), 41(3) [29(100]****
Моно(н-пропил) оксалат	Ι	53	132	1082 ± 3	$119(2), 75(3), 74(2), 73(3), 71(2), 59(2), 47(3), 45(10), 44(7), 43(100)$ $[C_3H_7], 42(10), 41(32), 39(4)$
Моно(н-бутил) оксалат	Ι	75	146	1171	$87(4), 86(2), 75(2), 74(3), 73(3), 60(2), 59(3), 58(3), 57(70) [C_4H_9], 56(22), 55(16), 45(23), 44(7), 43(23), 42(7), 41(100) [C_4H_9 - CH_4], 39(16)$
Моно(н-пентил) оксалат	Ι	96	160	1245	71(16) $[C_5H_{11}]$, 70(10), 69(3), 57(2), 56(2), 55(17), 45(9), 44(9), 43(100) $[C_5H_{11} - C_2H_4]$, 42(27), 41(31), 40(2), 39(7)
Моно(н-гексил) оксалат	Ι	93	174	1338	
Моно(изопропил) оксалат	Ι	27	132	1018 ± 2	59(3), 46(2), 45(68)[HCO ₂], 44(16), 43(100) [C ₃ H ₇], 42(8), 41(39), 40(2), 39(9)
Моно(изобутил) оксалат	Ι	98	146	1125 ± 2	76(9), 74(2), 73(5), 59(3), 58(3), 57(64) $[C_4H_9]$, 56(16), 55(7), 46(2), 45(24) $[HCO_2]$, 44(15), 43(64), 42(13), 41(100) $[C_4H_9 - CH_4]$, 40(3), 39(17)
Монометил мало- нат	II	22	118	1042 ± 2	101(2), 100(5), 90(5), 88(3), 87(83) $[M - CH_3O]$, 86(3), 74(24) $[M - CO_2]$, 72(5), 69(5), 60(18), 59(25), 57(2), 45(19), 44(23), 43(100) $[M - CO_2 - CH_3O]$, 42(54), 41(7)
Моноэтил малонат	II	15	132	1104 ± 1	115(2), 114(3), 106(2), 105(58) $[M - C_2H_3]$, 104(3), 88(6), 87(100) $[M - C_2H_5O]$, 86(6), 73(3), 70(4), 69(5), 61(7), 60(28), 59(2), 55(3), 46(4), 45(43) [HCO ₂], 44(27), 43(86) [CH ₃ CO], 42(46), 41(6)
Моно(н-пропил) малонат	II	62	146	1193 ± 1	117(2), 105(21) $[M - C_3H_5]$, 88(3), 87(100) $[M - C_3H_7O]$, 69(2), 61(5), 60(9), 59(8), 57(5), 45(6), 44(9), 43(51), 42(34), 41(18), 40(2), 39(5)
Моно(н-бутил) малонат	II	74	160	1284	117(2), 105(23) $[M - C_4H_7]$, 88(4), 87(100) $[M - C_4H_9O]$, 86(2), 73(11), 72(3), 71(5), 69(3), 61(2), 60(9), 57(10), 56(62), 55(12). 45(7), 44(11), 43(48), 42(20), 41(44), 40(2), 39(18)
Моно(н-пентил) малонат	II	50	174	1364	$ \begin{array}{c} 106(2), 105(44) \ [M-C_5H_9], 89(2), 88(3), 87(100) \ [M-C_5H_{11}O], 86(3), \\ 85(2), 69(15), 68(2), 61(6), 60(7), 59(2), 58(2), 57(5), 56(4), 55(48), 54(2), \\ 53(2), 45(9), 43(87) \ [CH_3CO], 42(87), 41(38), 40(3), 39(10) \\ \end{array} $
Моно(н-гексил) малонат	II	73	188	1457	$ \begin{array}{l} 105(34) [\mathrm{M}-\mathrm{C_6H_{11}}], 101(2), 88(2), 87(52) [\mathrm{M}-\mathrm{C_6H_{13}O}], 86(3), 85(3), \\ 84(20), 83(5), 73(4), 71(3), 70(5), 69(32), 68(2), 67(2), 61(7), 60(6), 58(2), \\ 57(7), 56(69), 55(36), 54(3), 53(2), 45(6), 44(23), 43(100) [\mathrm{CH_3CO}], \\ & 42(46), 41(41), 40(2), 39(10) \end{array} $
Моно(изопропил) малонат	II	65	146	1137 ± 2	131(5), 105(24) $[M - C_3H_5]$, 89(2), 88(3), 87(100) $[M - C_3H_7O]$, 69(5), 61(3), 60(14), 59(29), 45(68), 44(13), 43(93) $[CH_3CO]$, 42(33), 41(33), 40(3), 39(9)
Моно(изобутил) малонат	II	46	160	1236 ± 1	149(7), 118(6), 116(3), 105(11) $[M - C_4H_7]$, 100(2), 90(5), 88(4), 87(100) $[M - C_4H_9O]$, 73(14), 72(4), 71(7), 69(4), 61(2), 60(16), 59(5), 57(13), 56(60), 55(6), 45(8), 44(11), 43(75) $[CH_3CO]$, 42(24), 41(40), 39(10)
Монометил сукцинат**	III	82	132	1115	$\begin{array}{c} 115(15),106(2),105(15),104(2),103(2),102(5),101(100)[\mathrm{M-CH_{3}O}],\\ 100(8),88(7),87(28),86(2),83(3),77(2),74(3),73(28),72(4),71(2),70(4),\\ 69(2),61(4),60(12),59(17),57(5),56(13),55(42),46(2),45(56),44(28),\\ & 43(58),42(22),41(4),40(2) \end{array}$
Моноэтил сукцинат**	III	8	146	1182	129(2), 128(18), 119(6), 102(5), 101(100) $[M - C_2H_5O]$, 100(6), 75(2), 74(14), 73(31), 72(2), 56(10), 55(23), 45(22), 44(2), 43(7), 42(3)
Моно(н-пропил) сукцинат	III	81	160	1294	119(2), 103(2), 102(5), 101(100) [M - C ₃ H ₇ O], 100(2), 74(5), 73(15), 59(2), 56(5), 55(12), 45(9), 43(14), 42(10), 41(10), 39(3)
Моно(н-бутил) сукцинат	III	54	174	1366	119(3), 103(2), 102(5), 101(100) [M - C ₄ H ₉ O], 100(2), 74(5), 73(16), 72(2), 57(5), 56(23), 55(15), 45(8), 43(4), 42(2), 41(17), 39(3)
Моно(н-пентил) сукцинат	III	78	188	1445	119(6), 103(2), 102(5), 101(100) $[M - C_5H_{11}O]$, 100(2), 87(2), 74(4), 73(12), 71(3), 69(4), 56(5), 55(24), 45(8), 44(2), 43(20), 42(20), 41(12), 39(4)
Моно(н-гексил) сукцинат	III	79	202	1537	119(10), 102(4), 101(100) [M - C ₆ H ₁₃ O], 100(2), 84(9), 83(3), 74(3), 73(12), 69(13), 57(3), 56(29), 55(22), 45(7), 44(2), 43(27), 42(14), 41(17), 39(3)
Моно(изопропил) сукцинат	III	98	160	1208	119(4), 102(5), 101(100) $[M - C_3H_7O]$, 100(2), 74(7), 73(17), 59(17), 58(3), 56(4), 55(13), 45(12), 44(3), 43(44), 42(8), 41(16), 39(4)
Моно(изобутил) сукцинат	III	79	174	1330	119(3), 103(2), 102(5), 101(100) [M - C ₄ H ₉ O], 100(2), 74(4), 73(16), 57(7), 56(24), 55(13), 45(8), 43(6), 42(2), 41(15), 39(4)

Таблица 2. Масс-спектры ЭИ и газохроматографические индексы удерживания моноалкиловых эфиров алифатических дикарбоновых кислот в составе реакционных смесей, полученных методами I – III

Продолжение табл. 2

Эфир	Метод синтеза*	<i>S</i> _{отн} , %	Μ	RI**	Масс-спектр: <i>m/z</i> ≥ 39 (<i>I</i> _{отн} ≥ 2%)	
Монометил глута- рат**	III	98	146	1183 ± 1	$\begin{array}{l} 129(2), 128(7), 116(4), 115(57) [M - CH_3O], 114(35) [M - CH_3OH], \\ 101(7), 100(64) [M - HCO_2H], 99(2), 97(5), 88(3), 87(68) [M - CH_3O - CO], 86(44), 85(6), 68(4), 60(6), 59(40), 58(14), 57(2), 56(3), 55(47), \\ 49(2), 46(2), 45(68), 44(8), 43(100) [CH_3CO], 42(61), 41(52), 40(5), 39(23) \end{array}$	
Моноэтил глутарат	III	92	160	1266	143(2), 142(7), 116)6), 115(100) $[M - C_2H_5O]$, 114(51) $[M - C_2H_5OH]$ 101(4), 98(5), 97(4), 88(10), 87(61) $[M - C_2H_5O - CO]$, 86(31), 85(5), 73(11), 70(10), 69(3), 68(2), 61(5), 60(31), 58(5), 55(22), 45(48), 44(3), 43(53), 42(44), 41(23), 40(3), 39(11)	
Моно(н-пропил) глутарат	III	82	174	1352	$ \begin{array}{l} 128(4), 116(6), 115(100) [M-C_{3}H_{7}O], 114(7), 98(2), 97(2), 88(3), 87(39) \\ [M-C_{3}H_{7}O-CO], 86(15), 73(2), 70(4), 60(8), 59(2), 58(2), 55(9), \\ 45(19), 44(2), 43(45), 42(24), 41(23), 40(2), 39(7) \end{array} $	
Моно(н-бутил) глутарат	III	79	188	1440	142(2), 116(5), 115(100) [M – C ₄ H ₉ O], 114(7), 98(3), 97(2), 88(3), 87(33) [M – C ₄ H ₉ O – CO], 86(11), 73(2), 70(4), 60(5), 58(2), 57(5), 56(15), 55(9), 45(15), 44(2), 43(22), 42(12), 41(25), 40(2), 39(4)	
Моно(н-пентил) глутарат	III	92	202	1540	$ \begin{array}{l} 156(4), 117(3), 116(5), 115(100) \ [M-C_5H_{11}O], 114(16), 99(2), 98(6), 97(4), \\ 88(5), 87(50) \ [M-C_5H_{11}O-CO], 86(15), 73(3), 71(5), 70(29), 69(3), \\ 60(7), 58(2), 55(20), 45(20), 44(3), 43(64), 42(25), 41(26), 39(7) \end{array} $	
Моно(н-гексил) глутарат	III	87	216	1625	133(3), 116(5), 115(100) [M - C ₆ H ₁₃ O], 114(9), 98(2), 97(2), 88(2), 87(27) [M - C ₆ H ₁₃ O - CO], 86(8), 85(2), 84(6), 83(2), 70(3), 69(10), 60(3), 57(3), 56(17), 55(14), 45(11), 44(2), 43(43), 42(17), 41(19), 40(2), 39(5)	
Моно(изопропил) глутарат	III	95	174	1298	$ \begin{array}{l} 156(2), 146(2), 118(3), 116(3), 115(100) \left[M-C_{3}H_{7}O \right], 114(5), 103(2), \\ 87(43) \left[M-C_{3}H_{7}O-CO \right], 86(19), 71(2), 70(6), 61(2), 60(19), 59(10), \\ 58(4), 55(3), 45(20), 44(5), 43(90), 42(27), 41(26), 39(20) \end{array} $	
Моно(изобутил) глутарат	III	89	188	1403	$ \begin{array}{l} 117(2), 116(5), 115(100) \left[M - C_4 H_9 O \right], 114(10), 98(3), 97(2), 88(3), 87(30) \\ \left[M - C_4 H_9 O - CO \right], 86(7), 73(3), 70(3), 60(3), 57(9), 56(19), 55(8), \\ 45(15), 43(22), 42(11), 41(23), 39(6) \end{array} $	
Монометил адипинат**	П	8	160	1282 ± 3	$\begin{array}{c} 143(4), 142(6), 131(2), 130(2), 129(28) [M-CH_3O], 128(7), 115(16),\\ 114(82) [M-HCO_2H], 113(3), 112(3), 111(52) [M-CH_3O-H_2O],\\ 110(3), 102(5), 101(45) [M-CH_3O-CO], 100(38), 99(4), 88(3), 87(25),\\ 86(4), 85(4), 84(3), 83(37), 82(21), 75(6), 74(91), 73(17), 72(7), 71(4),\\ 69(15), 68(7), 65(2), 60(14), 59(89) [CH_3CO_2], 58(7), 57(16), 56(19),\\ 55(100) [C_4H_7], 54(12), 53(5), 52(2), 51(2), 50(2), 46(2), 45(37), 44(23),\\ 43(82) [CH_3CO], 42(34), 41(49), 40(7), 39(23) \end{array}$	
Моноэтил адипинат**	Ш	24	174	1357 ± 3	$ \begin{array}{l} 156(4), 130(6), 129(78) \ [M-C_2H_5O], 128(65), 127(2), 116(2), 115(25), \\ 112(12), 111(93) \ [M-C_2H_5O-H_2O], 110(5), 102(6), 101(49) \ [M-C_2H_5O-CO], 100(50), 99(5), 89(3), 88(61), 87(10), 86(2), 85(4), 84(17), \\ 83(53), 82(9), 74(7), 73(72), 72(2), 71(2), 70(27), 69(16), 68(7), 61(21), \\ 60(40), 59(25), 58(6), 57(10), 56(21), 55(100), 54(10), 53(5), 51(2), 46(2), \\ 45(48), 44(7), 43(65), 42(31), 41(43), 40(3), 39(19) \end{array} $	
Моно(н-пропил) адипинат	Π	67	188	1446 ± 1	$ \begin{array}{c} 142(9), 130(7), 129(100) \left[M-C_{3}H_{7}O \right], 128(3), 112(7), 111(68) \\ \left[M-C_{3}H_{7}O-H_{2}O \right], 110(2), 102(6), 101(29) \left[M-C_{3}H_{7}O-CO \right], \\ 100(25), 87(12), 85(2), 84(7), 83(31), 82(3), 74(2), 73(15), 69(5), 68(2), \\ 61(20), 60(17), 59(16), 58(2), 57(4), 56(8), 55(48), 54(4), 53(2), 45(13), \\ 44(5), 43(55), 42(25), 41(36), 40(2), 39(10) \end{array} $	
Моно(н-бутил) адипинат	II	64	202	1533	$ \begin{array}{l} 156(5), 143(2), 130(8), 129(100) \left[M-C_4H_9O \right], 128(2), 112(12), 111(56) \\ \left[M-C_4H_9O-H_2O \right], 102(6), 101(29) \left[M-C_4H_9O-CO \right], 100(24), \\ 87(10), 85(2), 84(4), 83(25), 82(5), 74(2), 73(12), 69(6), 68(2), 61(3), 60(8), \\ 59(16), 58(3), 57(21), 56(55), 55(51), 54(2), 53(2), 45(12), 44(4), 43(22), \\ 42(10), 41(41), 40(2), 39(11) \end{array} $	
Моно(н-пентил) адипинат	II	75	216	1635	$ \begin{array}{l} 170(3), 157(2), 147(2), 130(8), 129(100) [M - C_5H_{11}O], 128(4), 115(3), \\ 112(10), 111(62) [M - C_5H_{11}O - H_2O], 102(4), 101(27) [M - C_5H_{11}O - CO], 100(22), 87(10), 84(7), 83(27), 82(2), 73(10), 71(8), 70(45), 69(7), \\ 68(2), 61(4), 60(6), 59(10), 58(2), 57(4), 56(7), 55(55), 54(3), 53(2), 45(8), \\ 44(4), 43(61), 42(31), 41(30), 40(2), 39(9) \end{array} $	
Моно(н-гексил) адипинат	II	78	230	1725	$\begin{array}{c} 147(4), 130(7), 129(100) \ [M-C_6H_{13}O], 128(6), 112(6), 111(55) \\ [M-C_6H_{13}O-H_2O], 102(4), 101(24) \ [M-C_6H_{13}O-CO], 100(19), \\ 87(9), 85(7), 84(26), 83(23), 82(3), 73(6), 69(16), 61(6), 60(3), 59(8), 57(7), \\ 56(37), 55(49), 54(4), 53(3), 45(6), 44(3), 43(68), 42(21), 41(30), 39(7) \end{array}$	
Моно(изопропил) адипинат	II	86	188	1394	$ \begin{array}{c} 146(3), 142(3), 130(4), 129(76) \ [M-C_3H_7O], 128(18), 112(8), 111(61) \\ [M-C_3H_7O-H_2O], 102(14), 101(28) \ [M-C_3H_7O-CO], 100(37), \\ 87(13), 84(9), 83(25), 82(3), 74(3), 73(24), 69(6), 68(2), 61(3), 60(13), \\ 59(24), 58(3), 57(3), 56(7), 55(38), 54(3), 53(2), 45(14), 44(5), 43(100), \\ 42(19), 41(40), 40(2), 39(13) \end{array} $	

Окончание табл. 3

Эфир	Метод синтеза*	<i>S</i> _{отн} , %	M	RI**	Масс-спектр: <i>m/z</i> ≥ 39 (<i>I</i> _{отн} ≥ 2%)
Моно(изобутил) адипинат	Π	73	202	1498	$ \begin{array}{l} 156(3), 143(2), 131(2), 130(7), 129(100) \left[M-C_4H_9O \right], 128(6), 111(54) \\ \left[M-C_4H_9O-H_2O \right], 102(4), 101(26) \left[M-C_4H_9O-CO \right], 100(16), 87(7), \\ 85(2), 84(6), 83(21), 82(2), 73(10), 69(2), 60(5), 59(8), 57(26), 56(48), \\ 55(28), 54(3), 45(8), 44(2), 43(23), 42(8), 41(42), 39(10) \end{array} $
Монометил 2,2-диметил- малонат	Π	85	146	1112 ± 2	$\begin{array}{l} 128(2),115(15)[\mathrm{M-CH_{3}O}],102(5),101(4),88(2),87(51)[\mathrm{M-CH_{3}OCO}],86(2),74(2),73(8),71(6),70(100)[(\mathrm{CH_{3})_{2}CCO}],69(10),\\ 60(2),59(40)[\mathrm{CO_{2}CH_{3}}],55(7),45(25),44(9),43(20),42(28),41(46),\\ & 40(5),39(18) \end{array}$
Моноэтил 2,2-диметил- малонат	Π	60	160	1166	$ \begin{array}{l} 142(2), 133(4) \ [M-C_2H_3], 116(6), 115(33) \ [M-C_2H_5O], 99(2), 89(5), \\ 88(86) \ [(CH_3)_2CC(OH)_2], 87(71) \ [(CH_3)_2CCO_2H], 86(7), 74(5), 73(100) \\ \ [CO_2C_2H_5], 71(6), 70(48) \ [(CH_3)_2CCO], 69(6), 68(2), 60(5), 59(28), \\ 55(6), 46(2), 45(28), 44(12), 43(33), 42(29), 41(51), 40(7), 39(19) \\ \end{array} $
Моно(н-пропил) 2,2-диметилмало- нат	II	41	174	1248	134(2), 133(12) $[M - C_3H_5]$, 117(2), 116(2), 115(53) $[M - C_3H_7O]$, 114(2), 92(2), 89(7), 88(42) $[(CH_3)_2CC(OH)_2]$, 87(51) $[(CH_3)_2CCO_2H]$, 86(2), 74(2), 73(47), 72(2), 71(4), 70(16), 69(4), 68(2), 64(2), 60(3), 59(15), 55(33), 45(12), 44(12), 43(100) $[C_3H_7]$, 42(17), 41(54), 40(5), 39(13)
Моно(н-бутил) 2,2-диметилмало- нат	Π	20	188	1336	169(2), 163(2), 157(2), 154(2), 149(3), 147(3), 146(2), 144(2), 133(13) [M – C ₄ H ₇], 132(2), 116(5), 115(66) [M – C ₄ H ₉ O], 108(3), 107(4), 89(7), 88(58) [(CH ₃) ₂ CC(OH) ₂], 87(33) [(CH ₃) ₂ CCO ₂ H], 81(2), 74(4), 73(34), 71(6), 70(14), 68(2), 60(3), 59(20), 57(49) [C ₄ H ₉], 56(32), 55(17), 54(4), 53(3), 48(4), 47(2), 46(2), 45(16), 44(19), 43(26), 42(24), 41(100) [C ₃ H ₅], 39(14)
Моно(н-пентил) 2,2-диметилмало- нат	II	91	202	1419	$\begin{array}{c} 133(12) \ [M-C_5H_9], 116(2), 115(38) \ [M-C_5H_{11}O], 89(4), 88(36) \\ [(CH_3)_2CC(OH)_2], 87(29) \ [(CH_3)_2CCO_2H], 86(2), 73(16), 71(15), 70(26), \\ 69(4), 59(8), 55(14), 45(8), 44(10), 43(100), 42(23), 41(32), 40(3), 39(9) \end{array}$
Моно(н-гексил) 2,2-диметилмало- нат	Π	90	216	1508	$ \begin{array}{l} 133(15) \ [M-C_6H_{11}], 116(2), 115(37) \ [M-C_6H_{13}O], 89(3), 88(32) \\ [(CH_3)_2CC(OH)_2], 87(25) \ [(CH_3)_2CCO_2H], 86(2), 85(5), 84(6), 73(12), \\ 71(2), 70(11), 69(10), 59(7), 57(10), 56(17), 55(12), 45(6), 44(7), 43(100), \\ 42(16), 41(32), 40(2), 39(7) \end{array} $
Моно(изопропил) 2,2-диметил- малонат	II	95	174	1186	$ \begin{array}{l} 115(23) \ [M-C_{3}H_{7}O], 89(2), 88(29) \ [(CH_{3})_{2}CC(OH)_{2}], 87(31) \\ [(CH_{3})_{2}CCO_{2}H], 86(2), 73(20), 71(2), 70(10), 69(3), 60(2), 59(10), 45(12), \\ 44(10), 43(100) \ [C_{3}H_{7}], 42(11), 41(35), 40(4), 39(10) \end{array} $
Моно(изобутил) 2,2-диметилмало- нат	II	86	188	1299	$ \begin{array}{l} 134(2), 133(20) \left[M-C_4H_7 \right], 117(2), 116(5), 115(81) \left[M-C_4H_9O \right], 105(3), \\ 100(2), 99(2), 89(3), 88(54) \left[(CH_3)_2CC(OH)_2 \right], 87(77) \left[(CH_3)_2CCO_2H \right], \\ 86(4), 73(34), 72(2), 71(11), 70(18), 69(7), 60(4), 59(15), 58(4), 57(60) \\ \left[C_4H_9 \right], 56(43), 55(2), 45(12), 44(8), 43(35), 42(21), 41(100) \left[C_3H_5 \right], 40(5), \\ 39(23) \end{array} $

^{*)} Методы синтеза: І – реакция алифатического спирта с оксалилхлоридом [20], ІІ – реакция алифатической дикарбоновой кислоты со сложным эфиром R¹COOR², катализируемая ионообменной смолой Dowex [17, 18], ІІІ – реакция ангидрида алифатической дикарбоновой кислоты (янтарный, глутаровый) с алифатическим спиртом [15, 16];

^{**)} Индексы удерживания, указанные без стандартных отклонений, соответствуют значениям *s*RI = 1;

***) Масс-спектры этих моноэфиров содержатся в базе NIST [1];

****) Максимальный сигнал масс-спектра с *m/z* 29 не попадает в выбранную область массовых чисел и приведен дополнительно.

случаев вместо алкилформиатов оказалось возможным использовать более доступные алкилацетаты. Описание модифицированной процедуры синтеза методом II имеет следующие вид.

Реакцию дикарбоновых кислот (0.1 ммоль) с алкилацетатами (4–5 ммоль) проводили в присутствии ионообменной смолы Dowex 50WX4 (в кислой форме, 100 мг) и 0.5 мл н-октана при перемешивании реакционных смесей в конических стеклянных пробирках магнитной мешалкой на силиконовой бане (температура 80-100 °C) при атмосферном давлении в течение 3-6 ч. После окончания реакций реакционные смеси растворяли в 6-8 мл н-гексана и встряхивали с 2.5-3 мл дистиллированной воды. Органические фазы переносили в пенициллиновые флаконы объемом 10 мл и высушивали прокаленным Na_2SO_4 (0.5–1.0 г) в течение 1–2 ч. Перед анализом полученные растворы разбавляли н-гексаном в 10–20 раз.

В некоторых работах в качестве общего метода синтеза моноэфиров дикарбоновых кислот рассматривали щелочной гидролиз соответствующих диэфиров, что не совсем верно и в нашей работе этот способ не использован. В некоторых руководствах по синтезу органических соединений, например [19], для синтеза монометиладипината, рекомендуют проводить этерификацию кислоты метанолом при мольном соотношении 1:1, но выход моноэфира при этом не превышает 34 %. В последние годы был разработан новый метод получения моноалкилоксалатов, заключающийся в реакции спирта с избытком оксалилхлорида (метод I) [20]. В нашей работе синтезированы и охарактеризованы моноэфиры, образованные восемью спиртами нормального и изостроения, содержащих от одного до шести атомов углерода, и шестью кислотами с числом атомов углерода от двух до шести. Это позволило сформировать массив данных из 8'6 = 48 объектов. Молекулярные массы моноэфиров (M) равны $M_{спирт} + M_{кислота} - 18$:

Спирт	М _{спирт}	Кислота	M _{кислота}
Метанол	32	1-Гексанол	102
Этанол	46	Щавелевая	90
1-Пропанол	60	Малоновая	104
2-Пропанол	60	Янтарная	118
1-Бутанол	74	Глутаровая	132
2-Метил-1- пропанол	74	2,2-Диметил- малоновая	132
1-Пентанол	88	Адипиновая	146

Для предотвращения возможного разложения моноалкилалкандикарбоксилатов в ходе их выделения мы исключили эту операцию и анализировали непосредственно реакционные смеси.

Хромато-масс-спектрометрический анализ. Исследование реакционных смесей проводили на хроматомасс-спектрометре Shimadzu QP 2010 SE с ионизацией электронами (энергия ионизации 70 эВ), температуры интерфейса и источника ионов 250 °С. Колонка Optima 1, длина 25 м, внутренний диаметр 0.32 мм, толщина пленки неподвижной фазы 0.35 мкм. Режим анализа: изотерма 40 °С (3 мин), программирование температуры от 40 до 250 °C со скоростью 10 град мин⁻¹, изотерма 250 °С (10 мин), температура испарителя 250 °C, температура детектора 250 °C, газ-носитель гелий, объемная скорость 1.82 мл мин⁻¹ (линейная скорость 53.3 см c^{-1}), деление потока 1 : 10, объем дозируемых проб 1.0 мкл. Для определения индексов удерживания в образцы добавляли раствор смеси реперных *н*-алканов C₈-C₁₂, C₁₄, C₁₆ и C₁₈-C₂₂ в гексане.

Обработка результатов. Целевые компоненты образцов (моно- и диалкиловые эфиры дикарбоновых кислот) характеризовали линейными индексами удерживания. В отдельных случаях (для контроля) вычисляли линейно-логарифмические индексы удерживания (программа QBasic). Поскольку хроматографические пики моноэфиров обычно несимметричны и сильно размыты, то их времена удерживания измеряли не в максимумах, а по передним фронтам приблизительно на половине высот пиков [21, 22]. Статистическую обработку данных проводили с использованием ПО Excel (Microsoft Office 2010) и Origin (версия 4.1). В качестве источника справочных данных по индексам удерживания ранее известных соединений использовали базу данных NIST [1].

Таблица 4. Сравнение индексов удерживания алкилкарбоксилатов RCO_2R' с различными фрагментами R' = H, CH_3 , C_2H_5 и C_3H_7 с данными для моноалкилалкандиоатов $X(CO_2H)(CO_2R')$ и диалкилалкандиоатов $X(CO_2R')_2$

Алкилкарбоксилаты							
Эфир	RI (ацетат)	RI (бутират)					
$R' = CH_3$	511 ± 3	706 ± 3					
$R' = C_2 H_5$	600 ± 5	784 ± 4					
R' = H	624 ± 21	807 ± 13					
$\mathbf{R'} = \mathbf{C}_3 \mathbf{H}_7$	695 ± 2	881 ± 4					
M	Моноалкилалкандиоаты						
Эфир	Эфир Этандиовая Бутандиова						
	кислота	кислота					
	Моноэфир /	Моноэфир /					
	Диэфир	Диэфир					
$R' = CH_3$	$912 \pm 4 > 799 \pm 2$	1115 > 1000					
$R' = C_2 H_5$	$997 \pm 3 > 957 \pm 2$	1182 > 1158					
$\mathbf{R'} = \mathbf{C}_3 \mathbf{H}_7$	$1082 \pm 3 < 1136 \pm 1$	1294 < 1344					

Обсуждение результатов

Масс-спектры и газохроматографические индексы удерживания моноалкилалкандикарбоксилатов приведены в табл. 2. Из 48 охарактеризованных эфиров ранее были известны масс-спектры только пяти [1], причем три из них плохо совпадают с нашими данными, так как содержат излишне большое число интенсивных сигналов с маловероятными сочетаниями массовых чисел, что может свидетельствовать о деструкции аналитов. Все реакционные смеси содержали переменные количества соответствующих диалкиловых эфиров. Поскольку уровень изученности стабильных диалкилдикарбоксилатов гораздо выше, то для 21 эфира из 48 масс-спектры были известны ранее [1] и хорошо совпадают с нашими данными (табл. 3). Кроме этого в обеих таблицах указан метод синтеза моноэфиров (I-III в соответствии с принятой выше символикой) и относительные площади пиков эфиров без учета площадей пиков раствори-

Рис. 2. Корреляция индексов удерживания всех моно- и диэфиров алкандикарбоновых кислот. Параметры линейной регрессии: $a = 0.54 \pm 0.02$, $b = 537 \pm 35$, R = 0.956, $S_0 = 53$

Эфир	Метод синтеза*	S _{отн} , %	М	RI**	Масс-спектр: <i>m/z</i> ≥ 39 (<i>I</i> _{отн} ≥ 2%)
Диметилоксалат***	Ι	11	118	799 ± 2	118(3) M , 60(4), 59(100) [CO ₂ CH ₃], 45(45), 44(5), 43(6)
Диэтилоксалат***	Ι	14	146	957 ± 2	75(2), 74(10), 73(3), 57(2), 56(2), 45(16), 44(2), 43(6), 41(2) [29(100)]****
Дипропилоксалат	Ι	35	174	1136 ± 1	45(2), 44(5), 43(100) [C ₃ H ₇], 42(8), 41(28), 39(3)
Дибутилоксалат***	Ι	19	202	1330	$\begin{array}{c} 103(2), 58(4), 57(100) \ [C_4H_9], 56(23), 55(7), 44(3), 43(4), 42(4), 41(76), \\ 40(2), 39(7) \end{array}$
Дипентилоксалат	Ι	6	230	1524	115(2), 72(2), 71(34) [C ₅ H ₁₁], 70(15), 69(3), 55(10), 44(6), 43(100), 42(27), 41(31), 40(2), 39(7)
Дигексилоксалат	Ι	7	258	1716	$\begin{array}{c} 131(2),129(3),85(19)[\mathrm{C_6H_{13}}],84(8),83(2),69(6),57(14),56(12),55(8),\\ 44(5),43(100),42(7),41(19),39(3) \end{array}$
Ди(изопропил)окса- лат***	Ι	73	174	1035 ± 1	59(3), 45(26), 44(6), 43(100) [C ₃ H ₇], 42(7), 41(28), 39(5)
Ди(изобутил)оксалат	Ι	2	202	1243 ± 1	73(2), 59(2), 58(5), 57(100) [C ₄ H ₉], 56(20), 55(3), 43(9), 42(4), 41(63), 40(2), 39(8)
Диметилмалонат***	II	78	132	900 ± 1	132(2), 102(4), 101(100) [M – CH ₃ O], 100(5), 75(2), 74(55) [CH ₂ C(OH) OCH ₃], 69(10), 60(2), 59(80) [CO ₂ CH ₃], 58(5), 57(30), 45(9), 44(2), 43(25), 42(33), 41(6)
Диэтилмалонат***	II	85	160	1043 ±1	134(4), 133(69) $[M - C_2H_3]$, 132(3), 116(6), 115(100) $[M - C_2H_5O]$, 114(2), 105(6), 89(2), 88(29) $[CH_2C(OH)OC_2H_5]$, 87(13), 86(3), 73(3), 70(8), 69(5), 61(9), 60(19), 59(2), 45(2), 44(5), 43(98), 42(38), 41(7)
Дипропилмалонат***	II	38	188	1225 ± 2	147(4) $[M - C_3H_5]$, 130(3), 129(50) $[M - C_3H_7O]$, 111(2), 106(2), 105(63) $[M - C_3H_5 - C_3H_6]$, 87(36) $[M - C_3H_7O - C_3H_6]$, 69(3), 61(7), 60(7), 59(4), 57(5), 44(4), 43(100) $[C_3H_7]$, 42(27), 41(24), 39(5)
Дибутилмалонат***	II	26	216	1409	$ \begin{array}{l} 161(4) \ [M-C_4H_7], 144(2), 143(24) \ [M-C_4H_9O], 125(2), 106(4), \\ 105(100) \ [M-C_4H_7-C_4H_8], 87(40) \ [M-C_4H_9O-C_4H_8], 83(6), \\ 73(5), 72(2), 71(3), 69(2), 61(2), 60(5), 58(2), 57(51), 56(33), 55(7), \\ 44(3), 43(13), 42(16), 41(44), 40(2), 39(6) \end{array} $
Дипентилмалонат	II	50	244	1598	175(5), 157(8), 106(4), 105(100) $[M - C_5H_9 - C_5H_{10}]$, 97(4), 87(21) $[M - C_5H_{11}O - C_5H_{10}]$, 72(2), 71(29) $[C_5H_{11}]$, 70(23), 69(6), 61(2), 60(2), 55(16), 44(4), 43(68), 42(29), 41(20), 39(4)
Дигексилмалонат	II	27	272	1789	$ \begin{array}{l} 189(4),171(3),111(2),106(4),105(100)[M-C_6H_{11}-C_6H_{12}],87(13),\\ 86(2),85(20)[C_6H_{13}],84(7),83(3),69(10),57(10),56(22),55(16),\\ 44(5),43(71),42(17),41(20),39(3) \end{array} $
Ди(изопропил)малонат	II	35	188	1120±1	$ \begin{array}{l} 147(2), 131(4), 130(2), 129(25) \left[M-C_{3}H_{7}O \right], 118(2), 111(21), 105(37) \\ \left[M-C_{3}H_{5}-C_{3}H_{6} \right], 102(6), 87(40) \left[M-C_{3}H_{7}O-C_{3}H_{6} \right], 69(3), \\ 61(2), 60(11), 59(19), 45(11), 44(4), 43(100) \left[C_{3}H_{7} \right], 42(17), 41(20), 39(5) \\ \end{array} $
Ди(изобутил)малонат	II	54	216	1334 ± 1	$\begin{array}{l} 144(2),143(22),130(2),125(4),118(6),117(2),106(2),105(48)\;[M-C_4H_7-C_4H_8],87(24)\;[M-C_4H_9O-C_4H_8],83(7),73(6),72(2),\\ 71(4),69(2),60(4),58(5),57(100)\;[C_4H_9],56(32),55(3),43(16),42(16),\\ 41(37),40(2),39(7) \end{array}$
Диметилсукцинат	III	18	146	1000	116(6), 115(100) [M – CH ₃ O], 114(26), 87(19), 86(2), 59(34) [CO ₂ CH ₃], 58(2), 57(4), 56(5), 55(46), 45(7), 43(4), 42(4), 41(5)
Диэтилсукцинат***	III	92	174	1158	147(2), 130(4), 129(61) [M – C ₂ H ₅ O], 128(17), 102(13), 101(100) [M – C ₂ H ₅ O – C ₂ H ₄], 100(6), 75(2), 74(11), 73(20), 57(4), 56(9), 55(16), 45(12), 43(5), 42(2)
Дипропилсукцинат***	III	19	202	1344	144(2), 143(23) $[M - C_3H_7O]$, 102(4), 101(100) $[M - C_3H_7O - C_3H_6]$, 100(3), 75(2), 74(5), 73(6), 56(5), 55(5), 45(2), 43(22), 42(6), 41(11), 39(2)
Дибутилсукцинат***	III	46	230	1534	
Дипентилсукцинат	III	22	258	1724	$\begin{array}{l} 189(3), 171(8) [M-C_5H_{11}O], 119(8), 102(4), 101(100) [M-C_5H_{11}O-C_5H_{10}], 100(2), 75(2), 74(4), 73(3), 71(14), 70(8), 69(2), 56(3), 55(9),\\ 44(2), 43(32), 42(10), 41(10), 39(2) \end{array}$
Дигексилсукцинат	III	18	286	1919	$\begin{array}{l} 203(4) \ [M-C_6H_{11}], \ 185(\overline{6}), \ 119(15), \ 102(5), \ 101(100) \ [M-C_6H_{13}O-C_6H_{12}], \ 100(2), \ 85(19), \ 84(4), \ 75(2), \ 74(3), \ 73(3), \ 69(5), \ 57(6), \ 56(13), \ 55(11), \ 44(2), \ 43(44), \ 42(8), \ 41(14), \ 39(2) \end{array}$

Таблица 3. Масс-спектры ИЭ и газохроматографические индексы удерживания диалкиловых эфиров алифатических дикарбоновых кислот в составе реакционных смесей, полученных методами I–III

Продолжение табл. 3

Эфир	Метод синтеза*	S _{отн} , %	М	RI**	Масс-спектр: <i>m/z</i> ≥ 39 (<i>I</i> _{отн} ≥ 2%)
Ди(изопропил)сукци- нат***	ш	2	202	1215	143(5), 119(9), 116(2), 102(4), 101(100) $[M - C_3H_7O - C_3H_6]$, 100(3), 75(2), 74(11), 73(11), 59(11), 58(2), 56(6), 55(9), 45(10), 44(4), 43(38), 42(7), 41(15), 39(4)
Ди(изобутил)сукци- нат***	III	21	230	1453	$ \begin{array}{l} 175(2) \ [M-C_4H_7], \ 157(10) \ [M-C_4H_9O], \ 119(20), \ 114(2), \ 102(4), \\ 101(100) \ [M-C_4H_9O-C_4H_8], \ 100(3), \ 74(3), \ 73(6), \ 58(4), \ 57(93) \\ \ [C_4H_9], \ 56(23), \ 55(7), \ 45(2), \ 43(6), \ 42(3), \ 41(26), \ 39(4) \end{array} $
Диметилглутарат***	III	2	160	1104 ± 1	$ \begin{array}{l} 130(5), 129(60) \ [M-CH_3O], 128(33) \ [M-CH_3OH], 102(3), 101(56) \\ [M-CH_3O-CO], 100(78) \ [M-CH_3OH-CO], 98(2), 97(7), 87(21), \\ 85(8), 74(12), 72(7), 70(2), 69(6), 68(3), 60(2), 59(100) \ [CO_2CH_3], \\ 58(9), 56(3), 55(45), 49(2), 45(6), 43(29), 42(33), 41(29), 40(2), 39(14) \\ \end{array} $
Диэтилглутарат***	III	8	188	1263	$ \begin{array}{l} 144(9), 143(100) \left[M-C_2H_5O \right], 142(28) \left[M-C_2H_5OH \right], 116(8), \\ 115(85) \left[M-C_2H_5O-C_2H_4 \right], 114(77) \left[M-C_2H_5OH-C_2H_4 \right], 113(2), \\ 101(10), 98(4), 97(6), 89(2), 88(17), 87(73), 86(20), 85(13), 73(17), 71(2), \\ 70(13), 69(3), 68(2), 61(8), 60(16), 59(2), 56(2), 55(38), 49(4), 45(31), \\ 43(44), 42(54), 41(18), 40(2), 39(7) \end{array} $
Дипропилглутарат	III	18	216	1441 ± 1	$\begin{array}{c} 158(3),157(31)[\mathrm{M}-\mathrm{C_{3}H_{7}O}],156(5),128(12),116(6),115(100)[\mathrm{M}-\mathrm{C_{3}H_{7}O}-\mathrm{C_{3}H_{6}}],114(6),98(2),87(26),86(15),73(4),70(4),61(4),60(4),\\ 55(6),45(6),43(32),42(20),41(17),39(4) \end{array}$
Дибутилглутарат	III	21	244	1630	171(2), 171(14) $[M - C_4H_9O]$, 170(2), 142(8), 116(6), 115(100) $[M - C_4H_9O - C_4H_8]$, 114(8), 98(2), 87(20), 86(14), 73(3), 70(3), 60(2), 57(10), 56(9), 55(6), 45(4), 43(10), 42(12), 41(20), 39(3)
Дипентилглутарат	Ш	8	272	1823	$\begin{array}{c} 156(6), 116(6), 115(100) \left[M - C_5 H_{11} O - C_5 H_{10} \right], 114(8), 98(2), 87(14), \\ 86(10), 71(5), 70(10), 69(2), 55(7), 45(3), 44(2), 43(30), 42(15), 41(11), \\ 39(2) \end{array}$
Дигексилглутарат	III	10	300	2018	170(5), 116(6), 115(100) [M - C ₆ H ₁₃ O - C ₆ H ₁₂], 114(8), 87(12), 86(9), 85(4), 84(3), 70(2), 69(4), 57(3), 56(5), 55(7), 45(2), 43(33), 42(10), 41(12), 39(2)
Ди(изопропил)глугарат	III	5	216	1326	157(7), 156(4), 133(3), 132(4), 130(2), 116(6), 115(100) $[M - C_3H_7O - C_3H_6[, 114(23), 89(2), 88(4), 87(17), 86(12), 73(2), 70(3), 68(8), 59(4), 55(5), 45(7), 44(2), 43(43), 42(16), 41(16), 39(5)$
Ди(изобутил)глутарат	III	8	244	1552	116(6), 115(100) $[M - C_4H_9O - C_4H_8]$, 114(11), 98(2), 87(13), 86(6), 70(4), 57(22), 56(8), 55(4), 45(13), 43(8), 42(2), 41(16), 39(3)
Диметиладипат***	Π	92	174	1208 ± 3	$\begin{array}{c} 144(3), 143(33) \left[M-CH_3O \right], 142(10), 115(18), 114(91) \left[M-CH_3OCOH \right], 113(3), 112(6), 111(79) \left[M-CH_3O-CH_3OH \right], 110(4), \\ 102(4), 101(64) \left[M-CH_3O-CH_2CO \right], 100(3), 99(3), 97(5), 88(3), \\ 87(13), 84(3), 82(29), 82(14), 75(2), 74(49), 73(36), 72(11), 71(5), 69(10), \\ 68(5), 60(3), 59(100) \left[CO_2CH_3 \right], 58(2), 57(4), 56(10), 55(73), 54(9), \\ 53(4), 45(8), 44(4), 43(44), 42(23), 41(35), 40(2), 39(13) \end{array}$
Диэтиладипат***	Π	76	202	1358 ± 3	$ \begin{array}{l} 158(5), 157(55) \left[M - C_2 H_5 O \right], 156(5), 130(3), 129(15), 128(47) \left[M - C_2 H_5 O C H O \right], 116(3), 115(43) \left[M - C_2 H_5 O - C H_2 C O \right], 112(8), 111(100) \\ \left[M - C_2 H_5 O - C_2 H_5 O H \right], 110(4), 102(3), 101(24), 100(7), 99(4), 88(12), \\ 87(8), 85(2), 84(5), 83(24), 82(3), 74(3), 73(36), 70(8), 69(7), 68(3), \\ 61(8), 60(11), 59(7), 57(4), 56(14), 55(46), 54(3), 53(2), 45(12), 44(2), \\ & 43(26), 42(14), 41(17), 39(5) \end{array} $
Дипропиладипат***	II	33	230	1546 ± 1	$\begin{array}{l} 172(7), 171(80) \left[M-C_{3}H_{7}O \right], 170(3), 143(4), 142(24), 130(7), 129(100) \\ \left[M-C_{3}H_{7}O-C_{3}H_{6} \right], 128(3), 115(3), 112(9), 111(85) \left[M-C_{3}H_{7}O-C_{3}H_{7}OH \right], 110(3), 102(5), 101(26), 100(23), 99(2), 88(2), 87(32), 85(2), \\ 84(6), 83(24), 82(3), 74(2), 73(13), 69(3), 68(2), 61(12), 60(11), 59(8), \\ 58(2), 57(2), 56(16), 55(36), 54(2), 45(4), 44(3), 43(59), 42(20), 41(38), \\ & 40(2), 39(8) \end{array}$
Дибутиладипат***	II	34	258	1736	$ \begin{array}{l} 186(1), 185(57) \left[M - C_4 H_9 O \right], 157(2), 156(18), 143(18), 130(6), \\ 129(100) \left[M - C_4 H_9 O - C_4 H_8 \right], 128(3), 112(9), 111(78) \left[M - C_4 H_9 O - C_4 H_9 O H \right], 110(2), 103(2), 102(4), 101(25), 100(24), 99(2), 88(2), 87(35), \\ 85(2), 84(6), 83(21), 82(2), 73(10), 69(2), 68(2), 61(3), 60(7), 59(6), \\ 58(2), 57(24), 56(36), 55(39), 54(3), 45(3), 44(2), 43(17), 42(7), 41(45), \\ 40(2), 39(6) \end{array} $
Дипентиладипат	II	25	286	1930	$ \begin{array}{l} 200(6), 199(45) \ [M-C_5H_{11}O], 171(2), 170(12), 157(12), 130(7), 129(100) \\ [M-C_5H_{11}O-C_5H_{10}], 128(4), 115(3), 112(8), 111(50) \ [M-C_5H_{11}O-C_5H_{11}OH], 110(2), 102(4), 101(19), 100(17), 87(29), 84(5), 68(2), 61(3), \\ 60(2), 59(4), 57(2), 56(6), 55(32), 54(2), 45(2), 44(3), 43(2), 42(18), \\ & 41(22), 39(4) \end{array} $

Окончание табл. 3

Эфир	Метод синтеза*	S _{отн} , %	М	RI**	Масс-спектр: <i>m/z</i> ≥ 39 (<i>I</i> _{отн} ≥ 2%)	
Дигексиладипат	II	22	314	2124	$\begin{array}{c} 214(4), 213(40) \left[M - C_6 H_{13} O \right], 184(7), 171(10), 130(6), 129(100) \left[M - C_6 H_{13} O - C_6 H_{12} \right], 128(4), 112(5), 111(44), 103(2), 102(3), 101(18), \\ 100(15), 87(25), 85(9), 84(13), 83(10), 82(2), 73(5), 69(8), 59(3), 57(7), \\ 56(20), 55(28), 54(2), 44(3), 43(66), 42(12), 41(23), 39(3) \end{array}$	
Ди(изопропил)адипат	II	14	230	1427	$ \begin{array}{l} 172(8), 171(21) \ [M-C_{3}H_{7}O], 147(2), 146(3), 144(3), 142(10), 130(6), \\ 129(100) \ [M-C_{3}H_{7}O-C_{3}H_{6}], 128(16), 112(4), 111(37) \ [M-C_{3}H_{7}O-C_{3}H_{7}OH], 103(2), 102(12), 101(15), 100(27), 87(19), 84(4), 83(15), \\ 82(2), 74(2), 73(15), 69(3), 61(3), 60(3), 59(9), 57(2), 56(6), 55(23), \\ 54(2), 45(4), 44(3), 43(59), 42(16), 41(23), 39(5) \end{array} $	
Ди(изобутил)адипат***	II	27	258	1657	$ \begin{array}{l} 258(2) \text{ M}, 217(2), 185(25) [\text{M}-\text{C}_4\text{H}_9\text{O}], 172(3), 162(3), 156(11), 144(3), \\ 143(7), 135(4), 131(3), 130(13), 129(100) [\text{M}-\text{C}_4\text{H}_9\text{O}-\text{C}_4\text{H}_8], 128(4), \\ 111(52), 102(3), 101(12), 100(5), 87(12), 85(4), 84(6), 83(16), 82(4), \\ 75(3), 73(12), 69(4), 67(4), 60(9), 59(6), 57(42), 56(24), 55(26), 45(3), \\ 44(10), 43(6), 42(4), 41(39), 39(4) \end{array} $	
Диметил (2,2-диметил) малонат	II	14	160	964	$ \begin{array}{l} 160(3) \ M, \ 129(24) \ [M-CH_{3}O], \ 128(5), \ 116(5), \ 115(6), \ 102(6), \\ 101(100) \ [M-CO_{2}CH_{3}], \ 100(3), \ 99(2), \ 88(10), \ 85(2), \ 74(4), \ 73(64) \\ \ [CH_{2}CO_{2}CH_{3}], \ 71(6), \ 70(20), \ 69(21), \ 59(45) \ [CO_{2}CH_{3}], \ 57(2), \ 55(5), \\ \ 45(5), \ 44(2), \ 43(16), \ 42(19), \ 41(45), \ 40(4), \ 39(15) \end{array} $	
Диэтил (2,2-диметил) малонат***	II	40	188	1086	$ \begin{array}{l} 188(3) \ M, \ 161(4) \ [M-C_2H_3], \ 144(4), \ 143(38) \ [M-C_2H_5O], \ 117(5), \\ 116(67) \ [(CH_3)_2CC(OH)OC_2H_5], \ 115(35), \ 114(2), \ 99(4), \ 89(8), \\ 88(100) \ [(CH_3)_2CC(OH)_2], \ 87(77) \ [(CH_3)_2CCO_2H], \ 86(6), \ 73(46) \\ \ [CH_2CO_2CH_3], \ 72(2), \ 71(16), \ 70(42), \ 69(15), \ 60(4), \ 59(50), \ 55(2), \\ 45(13), \ 44(5), \ 43(21), \ 42(27), \ 41(37), \ 40(4), \ 39(3) \end{array} $	
Дипропил (2,2-диметил) малонат	II	59	216	1264	$ \begin{array}{l} 175(9) \ [M-C_3H_5], 158(2), 157(50) \ [M-C_3H_7O], 133(3), 130(12), \\ 129(19), 115(6), 114(2), 101(23), 89(7), 88(100) \ [(CH_3)_2CC(OH)_2], \\ 87(24), 86(2), 73(17), 71(4), 70(21), 69(5), 60(2), 59(30), 45(2), 44(4), \\ 43(95) \ [C_3H_7], 42(20), 41(51), 40(3), 39(9) \end{array} $	
Дибутил (2,2-диметил) малонат	II	80	244	1437	$ \begin{array}{l} 189(7) \left[\mathrm{M} - \mathrm{C_4H_7} \right], 172(5), 171(38) \left[\mathrm{M} - \mathrm{C_4H_9O} \right], 144(10), 143(11), \\ 133(9), 116(2), 115(36) \left[\mathrm{M} - \mathrm{C_4H_9O} - \mathrm{C_4H_8} \right], 114(3), 89(6), 88(100) \\ \left[(\mathrm{CH_3})_2\mathrm{CC(OH)_2} \right], 87(19), 73(13), 71(4), 70(18), 69(3), 59(21), 58(3), \\ 57(51), 56(10), 55(6), 45(3), 43(8), 42(13), 41(59), 40(2), 39(7) \end{array} $	
Дипентил (2,2-диметил) малонат	II	9	272	1619	$ \begin{array}{l} 203(6) \left[\mathrm{M} - \mathrm{C_5H_9} \right], 186(3), 185(25) \left[\mathrm{M} - \mathrm{C_5H_{11}O} \right], 158(3), 133(25), \\ 129(4), 116(2), 115(30) \left[\mathrm{M} - \mathrm{C_5H_{11}O} - \mathrm{C_5H_{10}} \right], 89(5), 88(73) \\ \left[(\mathrm{CH_3})_2 \mathrm{CC}(\mathrm{OH})_2 \right], 87(16), 73(4), 71(30), 70(18), 69(11), 59(18), 55(7), \\ 45(2), 44(5), 43(100), 42(22), 41(29), 40(2), 39(4) \end{array} $	
Дигексил (2,2-диметил) малонат	Π	10	300	1806	$\begin{array}{c} 218(2), 217(8[M-C_6H_{11}]), 200(2), 199(18) [M-C_6H_{13}O], 172(2), \\ 133(25), 119(10), 116(2), 115(27) [M-C_6H_{13}O-C_6H_{12}], 101(4), 89(5), \\ 88(58) [(CH_3)_2CC(OH)_2], 87(10), 85(11), 84(4), 83(11), 74(2), 73(5), \\ 71(12), 70(13), 69(8), 59(11), 56(12), 55(13), 53(2), 44(2), 43(100), \\ \qquad $	
Диизопропил (2,2-диме- тил)малонат	II	5	216	1153	$ \begin{array}{l} 158(2), 157(17) \left[M - C_3 H_7 O \right], 133(2), 130(7), 129(4), 116(2), 115(31) \\ \left[M - C_3 H_7 O - C_3 H_6 \right], 114(2), 101(4), 89(3), 88(74) \left[(CH_3)_2 CC(OH)_2 \right], \\ 87(20), 73(14), 71(4), 70(10), 69(2), 59(12), 45(5), 44(4), 43(100), 42(11), \\ 41(29), 40(2), 39(6) \end{array} $	
Диизобутил (2,2-диме- тил)малонат	Ш	14	244	1365	$\begin{array}{l} 189(6) \left[M-C_{4}H_{7} \right], 172(5), 171(41) \left[M-C_{4}H_{9}O \right], 144(5), 143(11), \\ 134(4), 133(56), 127(2), 115(58) \left[M-C_{4}H_{9}O - C_{4}H_{8} \right], 114(3), 89(5), \\ 88(89) \left[(CH_{3})_{2}CC(OH)_{2} \right], 87(15), 73(10), 71(12), 70(25), 69(5), 60(2), \\ 59(22), 58(5), 57(100), 56(17), 55(7), 45(6), 44(2), 43(18), 42(20), 41(74), \\ 39(12) \end{array}$	

*) Методы синтеза: I – реакция алифатического спирта с оксалилхлоридом [20], II – реакция алифатической дикарбоновой кислоты со сложным эфиром R¹COOR², катализируемая ионообменной смолой Dowex [17, 18], III – реакция ангидрида алифатической дикарбоновой кислоты (янтарный, глутаровый) с алифатическим спиртом [15, 16];

**) Индексы удерживания, указанные без стандартных отклонений, соответствуют значениям *s*_{RI = 1;}

***) Масс-спектры этих моноэфиров содержатся в базе NIST [1];

****) Максимальный сигнал масс-спектра с *m/z* 29 не попадает в выбранную область массовых чисел и приведен дополнительно.

Таблица 5. Параметры линейной регрессии RI(моноэфир) $\approx a$ RI(диэфир) + b для эфиров различных дикарбоновых кислот

Кислота	$a \pm s_a$	$b \pm s_{b}$	R	S ₀
Щавелевая	0.459 ± 0.010	552 ± 12	0.9987	7.8
Малоновая	0.470 ± 0.006	615 ± 8	0.9995	4.6
2,2-Диметил-	0.477 ± 0.007	646 ± 10	0.9994	5.2
малоновая				
Янтарная	0.463 ± 0.006	651 ± 9	0.9992	5.1
Глутаровая	0.482 ± 0.004	658 ± 6	0.9998	3.1
Адипиновая	0.482 ± 0.004	701 ± 7	0.9998	3.4

теля, ($S_{\text{отн}}$, %) для оценки соотношения моно (от 8 до 98 %) и диэфиров (от 2 до 92 %) в реакционных смесях. Поскольку большинство реакционных смесей не содержали иных компонентов кроме монои диэфиров, то сумма значений $S_{\text{отн}}$ в табл. 2 и 3 составляет 100 %.

Сравнение данных, приведенных в табл. 2 и 3, показывает, что масс-спектры монометиловых и моноэтиловых эфиров существенно отличаются от массспектров соответствующих диалкиловых эфиров, однако для спиртов с $R \ge C_3H_7$ они сходны.

Закономерности газохроматографического удерживания моноалкилалкандиоатов. Говоря о закономерностях газохроматографического удерживания моноалкиловых эфиров алкандикарбоновых кислот $X(CO_2H)(CO_2R')$ необходимо отметить следующие моменты. Прежде всего, эти соединения содержат группу - CO_2H и, фактически, являются замещенными карбоновыми кислотами. Следовательно, их пики на колонках с неполярными фазами характеризуются значительной асимметрией, что типично для любых монокарбоновых кислот. Для иллюстрации на рис. 1 приведен фрагмент хроматограммы смеси, содержащей ди- (I) и моноэтиловые эфиры малоновой кислоты (II). Формальное значение фактора асимметрии (A) для пика моноэфира превышает 10. Увеличение алкильных фрагментов R' в молекулах моноэфиров приводит к уменьшению их полярности. В результате асимметрия их хроматографических пиков несколько уменьшается, но все равно аномально высока.

Известным способом уменьшения асимметрии хроматографических пиков является разделение аналитов на колонках с полярными неподвижными фазами. Однако наличие в молекулах карбоксильной группы $-CO_2H$ приводит к увеличению индексов удерживания более чем на 1000 ед. Так, для моноэтилбутандиоата на стандартных неполярных фазах значение RI равно 1182 (табл. 2), а на стандартных полярных — 2372 (табл. 1). Столь большие значения RI неудобны в практической работе.

Как в полученных нами реакционных смесях, так и в природных образцах моноэфиры почти всегда присутствуют вместе с соответствующими диэфирами. Поскольку хроматомасс-спектрометрическое выявление моноэфиров сложнее, чем диэфиров, целесообразно охарактеризовать относительное расположение их пиков. Здесь наблюдается полная аналогия с положением пиков моноалкилкарбоксилатов относительно образующих их алканкарбоновых кислот: метиловый и этиловый эфиры элюируются до соответствующих кислот, а начиная с пропилового – после. В случае моноалкилалкандикарбоксилатов это правило приобретает следующий вид: монометиловые и моноэтиловые эфиры элюируются после соответствующих диметиловых и диэтиловых эфиров, а начиная с монопропиловых – до дипропиловых. Иллюстрирующие это положение значения RI сопоставлены в табл. 4. Положение пиков моноизопропиловых эфиров относительно диизопропиловых характеризуется средней величиной $\Delta RI = -6 \pm 26$. Это означает возможность их перекрывания, что может затруднять выявление присутствия моноизопропиловых эфиров в образцах.

Рис. 3. Зависимость гомологических инкрементов индексов удерживания (i_{RI}) от суммарного числа разветвлений углеродного скелета молекул (Z) для моно- (**a**) и диалкиловых (**б**) эфиров алкандикарбоновых кислот. Параметры регрессионных уравнений: **a**) $a = -58.6 \pm 4.6$, $b = 169 \pm 5$, R = -0.885, $S_0 = 27$; **б**) $a = -98.8 \pm 4.9$, $b = -58 \pm 5$, R = -0.950, $S_0 = 28$

Таким образом, предсказать положение хроматографических пиков моноалкилдикарбоксилатов исходя из положения пиков диалкиловых эфиров на основании простейшего аддитивного соотношения RI(моноэфир) \approx RI(диэфир) + Δ RI [23] можно только с высокой неопределенностью, так как для всей совокупности эфиров Δ RI \neq const. Более полезной представляется простейшая линейная регрессия вида (1):

$$RI(моноэфир) \approx aRI(диэфир) + b.$$
 (1)

Расположение точек на графике этой зависимости показано на рис. 2 (параметры уравнения линейной регрессии указаны в подписи к рисунку). Значение S_0 равное 53 подтверждает, что это соотношение пригодно лишь для приближенных оценок. В качестве примера можно привести оценку RI монобутилсукцината по данным для дибутилсукцината (RI 1534, табл. 3): 1534 × 0.54 + 537 ≈ 1365 (экспериментальное значение RI = 1366, табл. 2).

Заметно большую точность оценок обеспечивает соотношение (1) в пределах не всей совокупности моно- и диэфиров, а конкретных дикарбоновых кислот. Параметры уравнений линейной регрессии вида (1) приведены в табл. 5. Значения S_0 при таких ограничениях закономерно уменьшаются до 3–8 ед. индекса.

Для примера оценим RI упомянутого выше дибутилсукцината: $1534 \times 0.463 + 651 \approx 1361$ (экспериментальное значение RI = 1366). Однако применение разных наборов коэффициентов уравнения (1) для разных дикарбоновых кислот целесообразно только при условии предварительной идентификации кислотной «составляющей» эфира по массспектрометрическим признакам.

И, наконец, существует еще один способ оценки индексов удерживания моно- и диалкиловых эфиров дикарбоновых кислот, который требует предварительного установления числа атомов углерода ($N_{\rm C}$) в спиртовых алкильных фрагментах, основанный на корреляции (2):

$$\mathbf{RI} \approx \mathbf{a}' N_{\mathbf{C}} + \mathbf{b}' \tag{2}$$

Параметры уравнений линейной регрессии вида (2) приведены в табл. 6. Погрешности оценок RI с использованием этого соотношения для моноэфиров составляют 2–9 ед. индекса, а для диэфиров примерно в два раза больше (12–21 ед. индекса). Одновременное использование нескольких приведенных соотношений при необходимости обеспечивает получение достаточно надежных оценок индексов удерживания. В отдельных случаях актуально решение обратной задачи – оценка числа атомов углерода в спиртовых алкильных фрагментах с использованием обратного к (2) соотношения, $N_{\rm C} = f(\rm RI)$.

Основные закономерности фрагментации моноалкилалкандиоатов в условиях ИЭ. Направления фрагментации моноэфиров хорошо согласуются с известными закономерностями распада диалкиловых эфиров [24], которые, однако, для производных раз-

Таблица 6. Параметры линейной регрессии RI $\approx a'N_{\rm C} + b'$ (1 $\leq N_{\rm C} \leq$ 6) для различных эфиров дикарбоновых кислот

Кислота	$a \pm s_a$	$b \pm s_b$	R	S ₀						
Моноэфиры										
Щавелевая	84.7 ± 1.0	828 ± 4	0.9998	4.0						
Малоновая	84.2 ± 2.2	946 ± 8	0.9987	9.0						
2,2-Диметил- малоновая*	85.5 ± 0.6	993 ± 3	0.9999	2.1						
Янтарная	85.4 ± 1.7	1022 ± 7	0.9992	7.1						
Глутаровая	88.9 ± 1.1	1089 ± 4	0.9997	4.5						
Адипиновая	89.6 ± 1.9	1183 ± 7	0.9991	8.0						
	Диэф	иры								
Щавелевая	185.6 ± 3.5	525 ± 13	0.9993	14.4						
Малоновая	189.2 ± 3.9	698 ± 15	0.9991	16.4						
2,2-Диметил- малоновая	170.9 ± 5.0	764 ± 20	0.998	21.1						
Янтарная	185.2 ± 2.9	798 ± 11	0.9995	12.3						
Глутаровая	184.0 ± 3.3	903 ± 13	0.9994	13.7						
Адипиновая	185.3 ± 3.7	1002 ± 14	0.9993	15.3						

*) Без учета данных для монометилоксалата.

ных кислот реализуются в различных сочетаниях. Необходимость использования хроматографических параметров (индексов) удерживания при идентификации моноалкилалкандиоатов обусловлена тем, что сигналы молекулярных ионов в их масс-спектрах ИЭ практически не регистрируются (табл. 2). Однако молекулярные массы таких эфиров можно вычислить на основании массовых чисел наиболее характеристичных ионов [M - RO]⁺, сигналы которых достаточно интенсивны в масс-спектрах всех моноэфиров за исключением моноалкилоксалатов. Сигналы ионов [M – RO – CO]⁺ (или в одну стадию [M – ROCO]⁺) также достаточно характеристичны, однако они малоинтенсивны в масс-спектрах эфиров щавелевой (кроме метилоксалата), малоновой и 2,2-диметилмалоновой (кроме метилового и этилового эфиров) кислот. Одновременно с ними в спектрах моноэфиров адипиновой кислоты регистрируются достаточно редко встречающиеся сигналы ионов $[M - RO - H_2O]^+$. Считающиеся характеристичными для сложных эфиров спиртов с $N_{\rm C} \ge 2$ сигналы ионов [М - С_nH_{2n-1}]⁺ (двойная перегруппировка водорода) [24, 25] достаточно интенсивны в масс-спектрах моноэфиров малоновой и 2,2-диметилмалоновой кислот. В спектрах всех эфиров регистрируются сигналы ионов [C_nH_{2n+1}]⁺ переменной интенсивности и сигналы образующихся из них вторичных осколочных ионов.

Кроме перечисленных, в масс-спектрах отдельных моноэфиров присутствуют сигналы ионов, «уникальных» для конкретных соединений. Так, для метил- и этилоксалатов характерны сигналы ионов $[HCO_2]^+ c m/z 45$, в масс-спектрах метил и этилглутаратов присутствуют сигналы ионов $[M - ROH]^+$ с m/z 114, в масс-спектрах метил- и этил-2,2диметилмалонатов заметны сигналы ионов $[CO_2R]^+$. Сигнал $[M - 46] = [M - HCO_2H]^+$. присутствует только в масс-спектре метилглутарата, а в молекулярных ионах метилмалоната наблюдается уникальная перегруппировка Мак-Лафферти, приводящая к ионам $[M - CO_2]^+$ с m/z 74. Наличие разветвлений углеродного скелета во фрагменте, соответствующем дикарбоновой кислоте, приводит к образованию ионов, нетипичных для остальных моноэфиров. Например, в масс-спектрах метил-, этил- и пропил-2,2-диметилмалонатов регистрируются сигналы ионов [(CH₃)₂CCO]⁺ с m/z 70, а в случае $R \ge C_2H_5 -$ ионов [(CH₃)₂CO(OH)]⁺ с m/z 87 и [(CH₃)₂CC(OH)₂]⁺. с m/z 88. Аналогичное выявление общих и уникальных сигналов масс-спектров может быть проведено для диалкилдикарбоксилатов, однако они изучены гораздо подробнее [24, 25]. Все перечисленные ионы указаны в табл. 2 и 3.

Детальное сопоставление масс-спектров монои диалкиловых эфиров, приведенных в табл. 2 и 3, показывает, что они схожи только в случае $R \ge C_3H_7$, а при $R = CH_3$ или C_2H_5 они заметно различаются.

Гомологические инкременты индексов удерживания. Оценка молекулярных масс и числа разветвлений углеродного скелета. Газохроматографические параметры удерживания допускают совместную интерпретацию с масс-спектрометрическими данными, в том числе в форме гомологических инкрементов индексов удерживания, *i*_{RI} [26]:

$$i_{\rm RI} = {\rm RI} - 100x, \tag{3}$$

где x = int(M/14), int — функция, обозначающая целую часть числа (эквивалентно записи $M = 14x + y_M$), y_M — номер гомологической группы соединения, $y_M \equiv M(mod14)$ [26].

Главная особенность гомологических инкрементов индексов удерживания состоит в том, что они представляют информацию не для отдельных соединений, а для всех рассматриваемых совокупностей гомологов в максимально сжатой форме. Однако при этом значения $i_{\rm RI}$, как и самих индексов удерживания, зависят от числа разветвлений углеродного скелета молекул (*Z*). Иногда по значениям $i_{\rm RI}$ целесообразно выделить и другие подгруппы гомологов, как, например, в нашем случае метиловые эфиры. Поэтому для рассматриваемых нами моно- и диалкиловых эфиров алкандикарбоновых кислот получаем следующую форму представления информации:

Подгруппа эфиров	Ζ	$\langle i_{\rm RI} \rangle \pm s_i$
Моноалкилалкандиоаты	0	168 ± 29
То же без метиловых эфиров	0	160 ± 23
Моноалкилалкандиоаты	1	115 ± 17
Диалкилалкандиоаты	0	-57 ± 31
То же без метиловых эфиров	0	-69 ± 18
Диалкилалкандиоаты	1	-164 ± 15

Если на основании масс-спектрометрических данных удается определить молекулярную массу аналита, то значения *i*_{RI} позволяют осуществлять его групповую идентификацию, а именно отнесе-

ние к соответствующему гомологическому ряду [25]. Однако часто представляет интерес возможность решения и обратной задачи: оценки молекулярных масс аналитов по хроматографическим данным, если в их масс-спектрах сигналы молекулярных ионов не регистрируются или малоинтенсивны. Если соотношение $M = 14x + y_M$ записать как $x = (M - y_M)/14$ и решить последнее уравнение относительно M, получаем:

$$M \approx 0.14(\mathrm{RI} - i_{\mathrm{RI}}) + y_{\mathrm{M}}.$$
 (4)

При этом подразумевается, что номер гомологической группы у_М хотя бы ориентировочно установлен в результате интерпретации массспектрометрических данных (неоднозначность установления у_М приводит к необходимости проверки нескольких альтернативных гипотез). Вычисляемые значения М подлежат округлению, особенность которого в том, что его выполняют не до ближайшего целого числа, а до ближайшего значения M, сравнимого с $y_{\rm M}$ по модулю 14, или, в символике теории вычетов, $M = y_{M} \pmod{14}$. Если еще раз обратиться к уже дважды упомянутому выше примеру монобутилсукцината с RI = 1366 и $y_{\rm M} = 6$ (для всех алкилалкандиоатов), то получаем $0.14 \times (1366 - 160) + 6 \approx 174.8$, что после округления до ближайшего целого числа, сравнимого с $y_{\rm M} = 6$, дает 174 (правильный ответ).

Важнейшим свойством $i_{\rm RI}$, как и самих индексов удерживания, является их зависимость от числа разветвлений углеродного скелета молекул (Z). Это несколько усложняет процедуру групповой идентификации, так как приходится принимать во внимание несколько альтернативных значений этих параметров, но, с другой стороны, позволяет предложить решение такой задачи как оценка Z по хромато-массспектрометрическим данным на основании следующего простейшего соотношения:

$$i_{\rm RI} = aN + b \tag{5}$$

из которого следует

$$N \approx (i_{\rm RI} - b)/a \tag{6}$$

с последующим округлением результатов. Графики зависимостей $i_{\text{RI}} = f(N)$ для моно- и диалкилалкандиоатов приведены на рис. 3а,6, соответственно; параметры линейных регрессий указаны в подписи к рисунку.

Как следует из отрицательных знаков коэффициентов "*a*" и коэффициентов корреляции, зависимости $i_{\text{RI}} = f(N)$ убывающие, т.е. чем больше суммарное количество разветвлений углеродного скелета молекул, тем меньше значения i_{RI} (с учетом знака). При этом атом углерода C² в производных 2,2-диметилмалоновой кислоты, содержащий два метильных заместителя, эквивалентен двум разветвлениям скелета. Для иллюстрации возможностей этого подхода оценим, например, число разветвлений в молекуле монопентил-2,2-диметилмалоната с M = 202, RI = 1419, $i_{\text{RI}} = 94$. Тогда в соответствии с соотношением (6) получаем: $N \approx (94 - 169) / (-58.6) \approx 1.88 \approx 2$ (правильный ответ). Интересно заметить, что области значений $i_{\rm RI}$ для разных N для диалкилалкандиоатов несмотря на их разброс не перекрываются друг с другом. Это определяет возможность однозначного определения величины N по значению $i_{\rm RI}$. Для моноалкилалкандиоатов из-за перекрывания диапазонов $i_{\rm RI}$ при разных N однозначность результатов несколько хуже.

И, наконец, в заключение обсуждения необходимо вернуться к проблеме возможной нестабильности моноэфиров дикарбоновых кислот в реакционных смесях и/или в ходе газохроматографического разделения. Здесь целесообразно их сравнение с поведением моноалкилфталатов [7, 13, 14], для которых во всех реакционных смесях соответствующие диалкилфталаты, полностью отсутствуют. При этом регистрируются специфические профили хроматограмм, однозначно указывающие на разложение моноалкилфталатов в хроматографической колонке [4].

В случае же моноалкилалкандикарбоксилатов все реакционные смеси содержат соответствующие диалкиловые эфиры. Образование диэфиров наблюдается даже в реакционных смесях, полученных из ангидридов янтарной (n = 2, 2-92 %) и глутаровой (n = 3, 8-21 %) кислот (метод синтеза III), когда по схеме процесса оно формально не может быть реализовано в одну стадию, но возможно в результате вторичной этерификации или диспропорционирования:

При этом, несмотря на значительную асимметрию пиков моноэфиров, специфические профили хроматограмм, подтверждающие их термическое разложение в колонке [4], не были зарегистрированы ни в одном случае. Таким образом, можно полагать, что моноалкиловые эфиры алкандикарбоновых кислот нестабильны именно в растворах, тогда как в процессе самого анализа они вполне устойчивы.

Заключение

Систематическая характеристика моноалкиловых эфиров, образованных шестью алкандикарбоновыми кислотами и восемью алканолами (48 соединений) позволила установить их устойчивость в процессе газохроматографического разделения (отсутствуют характерные профили хроматограмм, подтверждающие разложение аналитов). Наиболее вероятна нестабильность моноэфиров в растворах, связанная с их диспропорционированием, что приводит к образованию соответствующих диалкиловых эфиров. Показано, что особенности моноалкилалкандиоатов (высокая асимметрия газохроматографических пиков) идентичны особенностям моноалканкарбоновых кислот. Одновременное присутствие в образцах различных эфиров позволяет использовать для идентификации моноалкиладкандикарбоксилатов различные корреляционные соотношения для индексов удерживания (RI) с привлечением данных для более подробно охарактеризованных диэфиров, в том числе RI(моноэфир) = aRI(диэфир) + b.

Благодарности

В работе использовано оборудование Ресурсного центра «Методы анализа состава вещества» Научного парка Санкт-Петербургского государственного университета. Авторы благодарят сотрудников Центра за содействие.

Конфликт интересов

Авторы подтверждают отсутствие конфликта интересов.

Дополнительная информация

Зенкевич И.Г.: ORCID ID 0000-0001-8975-2257.

Список литературы

- The NIST 17 Mass Spectral Library (NIST17/2017/EPA/ NIH). Software/Data Version (NIST17); NIST Standard Reference Database, Number 69, June 2017. National Institute of Standards and Technology, Gaithersburg, MD 20899: http://webbook.nist.gov (дата обращения: август 2022 г.).
- Зенкевич И.Г., Лукина В.М. Хроматомасс-спектрометрическая характеристика диэтилкеталей алифатических карбонильных соединений // Аналитика и контроль. 2019. Т. 23. № 3. С. 410–424.
- 3. Middleditch B.S. *Analytical Artifacts: GC, MS, HPLC, TLC, and PC*. Amsterdam: J. Chromatogr. Library. Vol. 44. 1989. 1033 p.
- Zenkevich I.G. Features and new examples of gas chromatographic separation of thermally unstable analytes / *Recent Advances in Gas Chromatography*. Ch. 3. London: IntechOpen Ltd. 2020. P. 1–21.
- Иванова Н.Т., Франгулян Л.А. Газохроматографический анализ нестабильных и реакционноспособных соединений. М.: Химия, 1979. 232 с.
- Kornilova T.A., Ukolov A.A., Kostikov R.R., Zenkevich I.G. A simple criterion for gas chromatography/mass spectrometric analysis of thermally unstable compounds, and reassessment of the by-products of alkyl diazoacetate synthesis // *Rapid Commun. Mass Spectrom.* 2013. Vol. 27, N 3. P. 461–466.
- Зенкевич И.Г., Фахретдинова Л.Н. Хроматографическая и хромато-масс-спектральная характеристика моноэфиров дикарбоновых кислот // Журн. аналит. химии. 2016. Т. 71, № 12. С. 1296–1307.
- Wada K., Shibamoto T. Isolation and identification of volatile compounds from a wine using solid phase extraction, gas chromatography, and gas chromatography/mass spectrometry // J. Agric. Food Chem. 1997. Vol. 45, N 11. P. 4362–4366.
- Selli S., Cabaroglu T., Canbas A. Flavour components of organic wine made from a Turkish cv. Kazan. // Int. J. Food. Sci. Technol. 2003. Vol. 38, N 5. P. 587–593.
- Wei A., Mura K., Shibamoto T. Antioxidative activity of volatile chemicals extracted from beer // *J. Agric. Food Chem.* 2001. Vol. 49, N 1. P. 4097–4101.

- Tao L., Wenlai F., Yan X. Characterization of volatile and semi-volatile compounds in Chinese extraction followed by gas chromatography – mass spectrometry // J. Int. Brew. 2008. Vol. 114, N 2. P. 172–179.
- Rabello M., Denis R., Vidal T.R., do Lago C.L. Monoalkyl carbonates in carbonated alcoholic beverages // *Food Chem*. 2012. Vol. 133, N 2. P. 352–357.
- Зенкевич И.Г., Фахретдинова Л.Н. Термическая нестабильность моноалкиловых эфиров фталевой кислоты в условиях газохроматографического разделения // Аналитика и контроль. 2015. Т. 19, № 2. С. 175–182.
- 14. Зенкевич И.Г. Особенности хромато-масс-спектрометрической идентификации моноалкилфталатов // Журн. аналит. химии. 2020. Т. 75, № 10. С. 921–930.
- Hizal S., Hejl M., Jacupec M.A., Galanski M., Keppler B.K. Synthesis, characterization, lipophilicity and cytotoxic properties of novel bis(carboxylato)oxalatobis(1-propylamine) platinum(IV) complexes // *Inorg. Chim. Acta.* 2019. Vol. 491. P. 76–83.
- Menger F.M., Galloway A.L. Contiguous versus segmented hydrophobicity in micellar systems // J. Am. Chem. Soc. 2004. Vol. 126. P. 15883–15889.
- Saitoh M., Fujisaki S., Ishii Y., Nishiguchi T. Convenient selective monoesterification of a,w-dicarboxylic acids catalyzed by ion-exchange resins // *Tetrahedr. Lett.* 1996. Vol. 37, N 37. P. 6733–6736.
- Nishiguchi T., Ishii Y., Fujisaki S. Selective monoesterification of dicarboxylic acids catalyzed by ion-exchange resins // *J. Chem. Soc., Perkin Transaction 1.* 1999. N 20. P. 3023–3027.
- Furniss B.S., Hannaford A.J., Smith P.W.G., Tatchell A.R. Vogel's Textbook of Practical Organic Chemistry. 5th Ed. New York: J. Wiley & Sons, 1989. 1514 p. P. 703.
- Zhang X., MacMillan D.W.C. Alcohols as latent coupling fragments for metallophotoredox catalysis: sp³-sp² cross-coupling of oxalates with aryl halides // *J. Am. Chem. Soc.* 2016. Vol. 138. P. 13862–1386.
- Зенкевич И.Г., Уколова Е.С. Модификация алгоритма определения хроматографических индексов удерживания для компенсации их зависимости от соотношения характеризуемых и реперных компонентов // Журн. аналит. химии. 2012. Т. 67, № 3. С. 282–289.
- Zenkevich I.G., Ukolova E.S. Dependence of chromatographic retention indices on a ratio of amounts of target and reference compounds // *J. Chromatogr. A.* 2012. Vol. 1265. P. 133–143.
- Зенкевич И.Г. Хроматографическая характеристика органических реакций на основе аддитивности изменения газохроматографических параметров удерживания реагентов и продуктов // Журн. органич. химии. 1992. Т. 29. № 9. С. 1827–1840.
- Вульфсон Н.С., Заикин В.Г., Микая А.И. Масс-спектрометрия органических соединений. М. : Химия, 1986. 312 с.
- 25. Hamming M.G., Foster N.G. Interpretation of mass spectra of organic compounds. New York: Acad. Press, 1979. 694 p.
- Зенкевич И.Г., Иоффе Б.В. Интерпретация масс-спектров органических соединений. Л. : Химия, 1986. 176 с.

References

- The NIST 17 Mass Spectral Library (NIST17/2017/EPA/NIH). Software/Data Version (NIST17); NIST Standard Reference Database, Number 69, June 2017. National Institute of Standards and Technology, Gaithersburg, MD 20899: http://webbook.nist.gov (Accessed: August 2022).
- Zenkevich I.G., Lukina V.M. // Analitika i kontrol². 2019. Vol. 23. N 3. P. 410–424.
- 3. Middleditch B.S. *Analytical Artifacts: GC, MS, HPLC, TLC, and PC.* Amsterdam: J. Chromatogr. Library. Vol. 44. 1989. 1033 p.
- Zenkevich I.G. Features and new examples of gas chromatographic separation of thermally unstable analytes / *Recent Advances in Gas Chromatography*. Ch. 3. London: IntechOpen Ltd. 2020. P. 1–21. doi: 10.5772/intechopen.94229.
- 5. Ivanova N.T., Frangulyan L.A. *Gas chromatographic analysis of unstable and reactive compounds*. Moscow: Khimia Publ, 1979. 232 p.
- Kornilova T.A., Ukolov A.A., Kostikov R.R., et al. // Rapid Commun. Mass Spectrom. 2013. Vol. 27, N 3. P. 461–466. doi: 10.1002/rcm.6457.
- Zenkevich I.G., Fakhretdinova L.N. // J. Analyt. Chem. (Rus.). 2016. Vol. 71, N 12. P. 1204–1214.
- Wada K., Shibamoto T. // J. Agric. Food Chem. 1997. Vol. 45, N 11. P. 4362–4366.
- Selli S., Cabaroglu T., Canbas A. // Int. J. Food. Sci. Technol. 2003. Vol. 38, N 5. P. 587–593.
- Wei A., Mura K., Shibamoto T. // J. Agric. Food Chem. 2001. Vol. 49. N 1. P. 4097–4101.
- Tao L., Wenlai F., Yan X. // J. Int. Brew. 2008. Vol. 114. N 2. P. 172– 179.
- Rabello M., Denis R., Vidal T.R., et al. // Food Chem. 2012. Vol. 133, N 2. P. 352–357.
- Zenkevich I.G., Fakhretdinova L.N. // Analitika i kontrol'. 2015. Vol. 19, N 2. P. 175–182.
- Zenkevich I.G. // J. Anal. Chem. (Rus.). 2020. Vol. 75., N 10. P. 1322– 1329.
- Hizal S., Hejl M., Jacupec M.A., Galanski M., et al. // *Inorg. Chim. Acta*. 2019. Vol. 491. P. 76–83.
- Menger F.M., Galloway A.L. // J. Am. Chem. Soc. 2004. Vol. 126. P. 15883–15889.
- Saitoh M., Fujisaki S., Ishii Y., et al. // *Tetrahedr. Lett.* 1996. Vol. 37. N 37. P. 6733–6736.
- Nishiguchi T., Ishii Y., Fujisaki S. // J. Chem. Soc., Perkin Transaction 1, 1999, N 20, P. 3023–3027.
- Furniss B.S., Hannaford A.J., Smith P.W.G., Tatchell A.R. Vogel's Textbook of Practical Organic Chemistry. 5th Ed. New York: J. Wiley & Sons, 1989. 1514 p. P. 703.
- Zhang X., MacMillan D.W.C. // J. Am. Chem. Soc. 2016. Vol. 138. P. 13862–13865.
- Zenkevich I.G., Ukolova E.S. // J. Anal. Chem. (Rus.). 2012. Vol. 67. N 3. P. 243–250.
- Zenkevich I.G., Ukolova E.S. // J. Chromatogr. A. 2012. V. 1265. P. 133–143.
- Zenkevich I.G. // J. Org. Chem. (Rus.). 1992. Vol. 29. N 9. P. 1827– 1840.
- Vulfson N.S., Zaikin V.G., Mikaya A.I. Mass spectrometry of organic compounds. Moscow: Khimia Publ., 1986. 312 p.
- 25. Hamming M.G., Foster N.G. Interpretation of mass spectra of organic compounds. New York: Acad. Press. 1979. 694 p.
- Zenkevich I.G., Ioffe B.V. Interpretatsia mass-spektrov organicheskikh soedinenii. Leningrad: Khimia Publ., 1986. 176 p.