## Abstract

Matveev in 2009 introduced the notion of virtual 3-manifold, which generalizes the classical notion of 3-manifold. A virtual 3-manifold is an equivalence class of so-called special polyhedra. Each virtual 3-manifold determines a 3-manifold with nonempty boundary and ℝP^{2}-singularities. Many invariants of manifolds, such as Turaev–Viro invariants, can be extended to virtual 3-manifolds. The complexity of a virtual 3-manifold is k if its equivalence class contains a special polyhedron with k true vertices and contains no special polyhedra with fewer true vertices. In this paper, we give a complete list of virtual 3-manifolds of complexity 1 and present two-sided bounds for the number of virtual 3-manifolds of complexity 2. The question of the complete classification for virtual 3-manifolds of complexity 2 remains open.

Original language | English |
---|---|

Pages (from-to) | S154-S160 |

Number of pages | 7 |

Journal | Proceedings of the Steklov Institute of Mathematics |

Volume | 304 |

DOIs | |

Publication status | Published - 1 Apr 2019 |

## Scopus subject areas

- Mathematics (miscellaneous)