Transition radiation at the boundary of a chiral isotropic medium

Research output

Abstract

This study analyzes the radiation produced by a point charge intersecting the interface between a vacuum and a chiral isotropic medium. We deduce analytical expressions for the Fourier components of an electromagnetic field in both vacuum and medium for arbitrary charge velocity. The main focus is on investigating the far field in a vacuum. The distinguishing feature of the interface with a chiral isotropic medium is that the field in the vacuum area contains both copolarization (coinciding with the polarization of the self-field of a charge) and cross-polarization (orthogonal to the polarization of the self-field). Using a saddle-point approach, we obtain asymptotic representations for the field components in the far-field zone for typical frequency ranges of the Condon model of the chiral medium. We note that a so-called lateral wave is generated in a vacuum for certain parameters. The main contribution to the radiation at large distances is presented by two (co- and cross-) spherical waves of transition radiation. These waves are coherent and result in a total spherical wave with elliptical polarization, with the polarization coefficient being determined by the chirality of the medium. We present typical radiation patterns and ellipses of polarization.

Original languageEnglish
Article number032142
Number of pages11
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume95
Issue number3
DOIs
Publication statusPublished - 29 Mar 2017

    Fingerprint

Cite this