Three in one: evolution of viviparity, coenocytic placenta and polyembryony in cyclostome bryozoans.

Uliana A. Nekliudova, Thomas Schwaha, Olga N. Kotenko, Daniela Gruber, Norbert Cyran, Andrew N. Ostrovsky

Research outputpeer-review

Abstract

Background
Placentation has evolved multiple times among both chordates and invertebrates. Although they are structurally less complex, invertebrate placentae are much more diverse in their origin, development and position. Aquatic colonial suspension-feeders from the phylum Bryozoa acquired placental analogues multiple times, representing an outstanding example of their structural diversity and evolution. Among them, the clade Cyclostomata is the only one in which placentation is associated with viviparity and polyembryony—a unique combination not present in any other invertebrate group.

Results
The histological and ultrastructural study of the sexual polymorphic zooids (gonozooids) in two cyclostome species, Crisia eburnea and Crisiella producta, revealed embryos embedded in a placental analogue (nutritive tissue) with a unique structure—comprising coenocytes and solitary cells—previously unknown in animals. Coenocytes originate via nuclear multiplication and cytoplasmic growth among the cells surrounding the early embryo. This process also affects cells of the membranous sac, which initially serves as a hydrostatic system but later becomes main part of the placenta. The nutritive tissue is both highly dynamic, permanently rearranging its structure, and highly integrated with its coenocytic ‘elements’ being interconnected via cytoplasmic bridges and various cell contacts. This tissue shows evidence of both nutrient synthesis and transport (bidirectional transcytosis), supporting the enclosed multiple progeny. Growing primary embryo produces secondary embryos (via fission) that develop into larvae; both the secondary embyos and larvae show signs of endocytosis. Interzooidal communication pores are occupied by 1‒2 specialized pore-cells probably involved in the transport of nutrients between zooids.

Conclusions
Cyclostome nutritive tissue is currently the only known example of a coenocytic placental analogue, although syncytial ‘elements’ could potentially be formed in them too. Structurally and functionally (but not developmentally) the nutritive tissue can be compared with the syncytial placental analogues of certain invertebrates and chordates. Evolution of the cyclostome placenta, involving transformation of the hydrostatic apparatus (membranous sac) and change of its function to embryonic nourishment, is an example of exaptation that is rather widespread among matrotrophic bryozoans. We speculate that the acquisition of a highly advanced placenta providing massive nourishment might support the evolution of polyembryony in cyclostomes. In turn, massive and continuous embryonic production led to the evolution of enlarged incubating polymorphic gonozooids hosting multiple progeny.
Original languageEnglish
Article number54
JournalBMC Ecology and evolution
Volume21
DOIs
Publication statusPublished - 2021

Scopus subject areas

  • Agricultural and Biological Sciences(all)

Fingerprint Dive into the research topics of 'Three in one: evolution of viviparity, coenocytic placenta and polyembryony in cyclostome bryozoans.'. Together they form a unique fingerprint.

Cite this