The Fast and the Capacious: A [Ni(Salen)]-TEMPO Redox-Conducting Polymer for Organic Batteries

Anatolii. A. Vereshchagin, Daniil A. Lukyanov, Ilia R. Kulikov, Naitik A. Panjwani, Elena A. Alekseeva, Jan Behrends, Oleg V. Levin

Research output: Contribution to journalArticlepeer-review


Abstract Redox-active nitroxyl-containing polymers are promising candidates as possible replacements for inorganic based energy-storage materials, due to their high energy density and fast redox kinetics. One challenge towards the implementation of such a system is the insufficient electrical conductivity, impeding the charge collection even with highly conductive additives. Herein, the first implementation of a polymeric bis(salicylideniminato) nickel (NiSalen) conductive backbone as an active charge-collecting wire is reported. NiSalen simultaneously serves as a charge collector for nitroxyl pendants and supports the redox capacity of the material. This novel polymer exhibits a specific capacity of up to 91.5?mAh?g?1, retaining 87?% of its theoretical capacity at 800?C and more than 30?% at as high as 3000 C (66?% capacity retention after 2000 cycles). The properties of the new material upon operation was studied by means of operando electrochemical methods, UV-Vis, and electron paramagnetic resonance spectroscopy.
Original languageRussian
JournalBatteries & Supercaps
Issue numbern/a
StateE-pub ahead of print - 17 Nov 2020

Cite this