Stability of Linear Systems with Multitask Right-hand Member

G. V. Alferov, G. G. Ivanov, P. A. Efimova, A. S. Sharlay, Seifedine Kadry

Research output: Chapter in Book/Report/Conference proceedingChapterResearchpeer-review

14 Scopus citations


To study the dynamics of mechanical systems and to define the construction parameters and control laws, it is necessary to have computational models accurately describing properties of real mechanisms. From a mathematical point of view, the computational models of mechanical systems are actually the systems of differential equations. These models can contain equations that also describe non-mechanical phenomena. In this chapter, the problems of stability and asymptotic stability conditions for the motion of mechanical systems with holonomic and non-holonomic constraints are under consideration. Stability analysis for the systems of differential equations is given in term of the second Lyapunov's method. With the use of the set-theoretic approach, the necessary and sufficient conditions for stability and asymptotic stability of zero solution of the considered system are formulated. The proposed approaches can be used to study the stability of the motion for robot manipulators, transport, space, and socio-economic systems.

Original languageEnglish
Title of host publicationStochastic Methods for Estimation and Problem-Solving in Engineering
PublisherIGI Global
Number of pages39
EditionNova Science Publishers
ISBN (Electronic)9781522550464
ISBN (Print)1522550453, 9781522550457
StatePublished - 2 Mar 2018

Scopus subject areas

  • Engineering(all)


  • Stability of linear systems
  • linear systems
  • Stability

Fingerprint Dive into the research topics of 'Stability of Linear Systems with Multitask Right-hand Member'. Together they form a unique fingerprint.

Cite this