Spectroscopic and theoretical studies of potassium sodium l-(+)-tartrate tetrahydrate and l-tartaric acid used as precursors for in situ laser-induced deposition of the catalytically active copper microstructures

Ilya I. Tumkin, Evgeniia M. Khairullina, Liubov A. Myund, Lev S. Logunov, Dmitrii I. Gordeychuk, Maxim S. Panov, Vladimir A. Kochemirovsky

Research output

1 Citation (Scopus)

Abstract

In this work we study the influence of l-(+)-?NaC(4)H(4)O(6)x4H(2)O (KNaT) and l-H2C4H4O6 (H2T) on the complexation processes occurring during in situ laser-induced catalytic destruction of the organic components of the aqueous solutions with formation of the unsaturated hydrocarbons. For that purpose, ATR-FTIR, Raman, IR, and NIR spectroscopy as well as quantum chemical calculations were implemented. It was observed that hydration of T2- anion via carboxylate groups is stronger than that via hydroxyl groups. We also established the changes in the spectral characteristics of the absorption bands corresponding to vibrations of T2-, HT-, and H2T, at solid state-liquid and acid-salt transitions, depending on concentration of the solution components and the [OH-]/[H2T] ratio. Finally, it was shown that ethylene is a main product of the catalytic destruction of the copper tartrate complexes.

Original languageEnglish
Article number89
Number of pages11
JournalOptical and Quantum Electronics
Volume51
Issue number3
DOIs
Publication statusPublished - 1 Mar 2019

Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Spectroscopic and theoretical studies of potassium sodium l-(+)-tartrate tetrahydrate and l-tartaric acid used as precursors for in situ laser-induced deposition of the catalytically active copper microstructures'. Together they form a unique fingerprint.

  • Cite this