Renormalization group analysis of a turbulent compressible fluid near d = 4: Crossover between local and non-local scaling regimes

N. V. Antonov, N.M. Gulitskiy, M. M. Kostenko, T. Lu civjansk

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

We study scaling properties of the model of fully developed turbulence for a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field theoretic renormalization group (RG). The scaling properties in this approach are related to fixed points of the RG equation. Here we study a possible existence of other scaling regimes and an opportunity of a crossover between them. This may take place in some other space dimensions, particularly at d = 4. A new regime may there arise and then by continuity moves into d = 3. Our calculations have shown that there really exists an additional fixed point, that may govern scaling behaviour.
Original languageEnglish
Pages (from-to)05006
JournalEPJ Web of Conferences
Volume125
DOIs
StatePublished - 2016

Fingerprint Dive into the research topics of 'Renormalization group analysis of a turbulent compressible fluid near d = 4: Crossover between local and non-local scaling regimes'. Together they form a unique fingerprint.

Cite this