Régularisation spectrale en théorie ergodique et théorie des probabilités

Mikhail Lifshits, Michel Weber

Research output

2 Citations (Scopus)

Abstract

We show that the idea of spectral regularization introduced by Talagrand in the study of covering numbers of averages of contractions in a Hilbert space H can be concentrated in one inequality which turns out to be a suitable tool for the study of other characteristics of the set of averages. This inequality generates an intrinsic Lipschitz embedding of the circle and yields many useful corollaries. We also easily deduce the original Talagrand estimate of covering numbers and provide better estimates for geometric subsequences of the averages. Using majorizing measuring technique, we prove a new criterion of the a.s. convergence of random sequences under suitable incremental conditions. We obtain as a corollary the classical theorem of Rademacher-Menshov on orthogonal series and the famous spectral criterion for the strong law of large numbers due to Gaposhkin.

Translated title of the contributionSpectral regularization in ergodic theory and probability
Original languageFrench
Pages (from-to)99-103
Number of pages5
JournalComptes Rendus de l'Academie des Sciences - Series I: Mathematics
Volume324
Issue number1
Publication statusPublished - 1 Jan 1997

Scopus subject areas

  • Mathematics(all)

Fingerprint Dive into the research topics of 'Régularisation spectrale en théorie ergodique et théorie des probabilités'. Together they form a unique fingerprint.

Cite this