Abstract
Original language | English |
---|---|
Title of host publication | Proceedings of the 16th International Conference on Mining Software Repositories |
Publisher | IEEE Computer Society |
Pages | 13-17 |
Volume | 2019 |
ISBN (Print) | 9781728134123 |
Publication status | Published - May 2019 |
Event | 16th International Conference on Mining Software Repositories - Montreal Duration: 26 May 2019 → 27 May 2019 |
Conference
Conference | 16th International Conference on Mining Software Repositories |
---|---|
Abbreviated title | MSR 2019 |
Country | Canada |
City | Montreal |
Period | 26/05/19 → 27/05/19 |
Fingerprint
Cite this
}
PathMiner: a library for mining of path-based representations of code. / Kovalenko, Vladimir; Bogomolov, Egor; Bryksin, Timofey ; Bacchelli, Alberto.
Proceedings of the 16th International Conference on Mining Software Repositories. Vol. 2019 IEEE Computer Society, 2019. p. 13-17 8816777.Research output
TY - CHAP
T1 - PathMiner: a library for mining of path-based representations of code
AU - Kovalenko, Vladimir
AU - Bogomolov, Egor
AU - Bryksin, Timofey
AU - Bacchelli, Alberto
PY - 2019/5
Y1 - 2019/5
N2 - One recent, significant advance in modeling source code for machine learning algorithms has been the introduction of path-based representation - an approach consisting in representing a snippet of code as a collection of paths from its syntax tree. Such representation efficiently captures the structure of code, which, in turn, carries its semantics and other information. Building the path-based representation involves parsing the code and extracting the paths from its syntax tree; these steps build up to a substantial technical job. With no common reusable toolkit existing for this task, the burden of mining diverts the focus of researchers from the essential work and hinders newcomers in the field of machine learning on code. In this paper, we present PathMiner - an open-source library for mining path-based representations of code. PathMiner is fast, flexible, well-tested, and easily extensible to support input code in any common programming language.
AB - One recent, significant advance in modeling source code for machine learning algorithms has been the introduction of path-based representation - an approach consisting in representing a snippet of code as a collection of paths from its syntax tree. Such representation efficiently captures the structure of code, which, in turn, carries its semantics and other information. Building the path-based representation involves parsing the code and extracting the paths from its syntax tree; these steps build up to a substantial technical job. With no common reusable toolkit existing for this task, the burden of mining diverts the focus of researchers from the essential work and hinders newcomers in the field of machine learning on code. In this paper, we present PathMiner - an open-source library for mining path-based representations of code. PathMiner is fast, flexible, well-tested, and easily extensible to support input code in any common programming language.
UR - https://2019.msrconf.org/details/msr-2019-papers/38/PathMiner-A-Library-for-Mining-of-Path-Based-Representations-of-Code
M3 - Article in an anthology
SN - 9781728134123
VL - 2019
SP - 13
EP - 17
BT - Proceedings of the 16th International Conference on Mining Software Repositories
PB - IEEE Computer Society
ER -